淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507200917315400
中文論文名稱 過氧化氫偵測於芬頓法處理後工業廢水之應用
英文論文名稱 Determination and Application of Hydrogen Peroxide Sensor in Industrial Wastewater after Fenton Reaction
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 97
學期 2
出版年 98
研究生中文姓名 周祖榮
研究生英文姓名 Zu-Rong Zhou
學號 696160091
學位類別 碩士
語文別 中文
口試日期 2009-05-21
論文頁數 78頁
口試委員 指導教授-林孟山
委員-傅明仁
委員-陳壽椿
委員-許道平
中文關鍵字 過氧化氫  芬頓法  普魯士藍  印刷電極 
英文關鍵字 Hydrogen peroxide  Fenton reaction  Prussian blue  Screen print electrode 
學科別分類 學科別自然科學化學
中文摘要 本研究期望發展具快速偵測及攜帶方便的過氧化氫偵測器,並應用於
分析芬頓法處理程序中過氧化氫的濃度。本研究的主要目的是藉由普魯士藍對過氧化氫的獨特催化特性,來有效的降低在電化學上偵測過氧化氫的電位避免干擾。並利用厚膜網版印刷技術來製備印刷電極,以期達到快速、穩定、準確及成本低的量測方式,以厚膜網版印刷技術製備的普魯士藍印刷修飾電極,可用於環境廢水中的過氧化氫偵測,研究中,並藉由實際廢水的量測比較,探討過氧化氫濃度與COD 之間的相互關係。
英文摘要 This research expects to develop a hydrogen peroxide detector which fast detect and carries easily, and applies in analyzing the hydrogen peroxide concentration after Fenton reaction. First, we used the Purssian blue as a catalyzer to decrease the detection potential of hydrogen peroxide to hope to avoid the reference in electrochemistry. The screen printed technology owns many advantages such as fast, stable, accurate and low cost. For electrochemical detector, the Prussian modified electrode was fabricated by screen printed technology. The modified
electrode was application to detect the concentration of hydrogen peroxide in environment wastewater, and demonstrated the relationship between COD and the concentration of hydrogen peroxide.
論文目次 目錄(Contents)
中文摘要...................................................i
英文摘要...................................................i
目錄(Contents)...........................................iii
圖目錄....................................................vi
表目錄...................................................vii
第一章 緒論................................................1
1-1 前言...................................................1
1-2 染整廢水特性及處理排放.................................1
1-2-1 染整廢水與處理技術...................................1
1-2-2 高級氧化程序的應用...................................5
1-2-3 芬頓法簡介...........................................8
1-3 化學修飾電極簡介......................................12
1-3-1 化學吸附法..........................................12
1-3-2 共價鍵結法..........................................13
1-3-3 高分子薄膜塗佈法....................................14
1-3-4 非均勻相材料混合法..................................15
1-4 混價化合物性質與應用..................................16
1-4-1 混價化合物之性質....................................16
1-4-2 混價化合物修飾電極..................................18
1-4-3 混價化合物在分析上之應用............................22
1-5 厚膜印刷技術在化學感測器上的應用......................25
1-6 過氧化氫感測器之偵測原理..............................26
1-7 本實驗目的............................................28
第二章 實驗部份...........................................29
2-1 儀器與設備............................................29
2-2 藥品..................................................29
2-3 電極的製備............................................30
2-3-1 普魯士藍製備........................................30
2-3-2 印製電極............................................31
2-4 實驗條件設計..........................................31
2-4-1 普魯士藍比例的探討..................................31
2-4-2 操作電位的探討......................................31
2-4-3 緩衝溶液酸鹼值的探討................................32
2-4-4 緩衝溶液種類探討....................................32
2-4-5 緩衝溶液濃度探討....................................32
2-4-6 離子強度探討........................................32
2-4-7 過氧化氫感測器特性探討..............................33
2-4-8 相關性探討..........................................33
2-4-9 模擬樣品量測........................................33
2-5 化學需氧量標準量測....................................33
2-6 過氧化氫標準方法量測..................................34
第三章 實驗結果與討論.....................................36
3-1 普魯士藍感測器特性....................................36
3-2 過氧化氫感測器條件最佳化..............................42
3-2-1 修飾比例最佳化探討..................................42
3-2-2 偵測電位最佳化探討..................................44
3-2-3 環境酸鹼值最佳化探討................................44
3-2-4 緩衝溶液種類探討....................................47
3-2-5 緩衝溶液濃度探討....................................50
3-2-5 離子強度探討........................................50
3-3 過氧化氫感測器之分析特性..............................52
3-3-1 過氧化氫感測器分析特性..............................54
3-3-2 干擾物的探討........................................57
3-3-3 相關性探討..........................................58
3-3-4 模擬樣品量測........................................61
3-3-5 COD 值探討..........................................61
3-3-6 實際樣品量測........................................65
第四章 結論...............................................66
參考文獻..................................................67
圖目錄
圖(一)芬頓法循環反應示意圖................................10
圖(二) 可溶性PB 推測結構..................................18
圖(三)PB 電極在 pH 3, 0.1 M KCl 下之CV 圖................20
圖(四)PB 的結構與其對應之氧化還原示意圖..................21
圖(五):普魯士藍修飾電極之循環伏安圖......................38
圖(六):普魯士藍修飾電極對過氧化氫偵測電位................40
圖(七):普魯士藍感測器之電子傳遞機制示意圖................41
圖(八):過氧化氫連續添加..................................43
圖(九):普魯士藍修飾比例之探討............................45
圖(十):偵測電位探討......................................46
圖(十一):環境酸鹼值探討..................................48
圖(十二):緩衝溶液種類探討................................49
圖(十三):緩衝溶液濃度探討................................51
圖(十四):離子強度探討....................................53
圖(十五):校正曲線........................................55
圖(十六):過氧化氫感測器再現性探討........................56
圖(十七):相關性探討......................................60
圖(十八):過氧化氫對COD 值探討............................63
圖(十九):染料進行芬頓法後COD 值探討......................64
表目錄
表(一) 常見的氧化劑之相對氧化能力..........................6
表(二):實驗條件最佳化....................................54
表(三):分析特性..........................................57
表(四)干擾物探討..........................................59
表(五)染整廢水探討........................................61
表(六)COD 值探討..........................................65
參考文獻 1 王嘉儒,染整廢水處理,中國大百科全書環境科學卷,智慧藏百
科全書網
2 Venceslau M. C., Tom S. and Simon J. J., Characterisation of Textile Wastewater- A Revies, Environ. Tech., 1994, 15(9), 917-929.
3 Rittmann, B. E. & McCarty, P. L., Substrate Flux into Biofilm of any Thickness, JEED.ASCE, 1981, pp.831-849.
4 Gilbert E., Hoffmann-Glewe S.,Ozonation of ethylenediaminetetraacetic acid (edta) in aqueous solution, influence of pH value and metal ions, Water Res., 1990, 24(1),pp. 39-44.
5 Arana I., Santorum P., Muela A., Barcina I., Journal of Applied Microbiology, 1999, 86(5),pp. 883-888.
6 Eberhatdt M. K., M. I. Martinez, Radiation-induced hemolytic aromatic substitution. Ⅳ. effect of metal ions on the hydroxylation of nitrobenzene, J. Phys. Chem., 1975, 79,pp. 1913-1916.
7 Zepp R. G., Factors affecting the photochemical treatment of hazardous waste Environ. Sci. & Technol., 1988, 22(3),pp. 256-257
8 Mohseni M.,Gas phase trichloroethylene (TCE) photooxidation and byproduct formation: Photolysis vs. titania/silica based photocatalysis, Chemosphere, 2005, 59(3),pp. 335-342.
9 Ao C.-H., Zou S.-C., Mak C.-L., Inhibition effect of SO2 on NOx and VOCs duringphotodegradation of synchronous indoor air pollutants at parts-per-billion (ppb) level by TiO2 Applied Catalysis B:Environment, 2004, 49, 187-193.
10 Wu J.-F., Hung C.-H., Yuan C.-S., Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor, Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170,pp. 299-306.
11 Lee Y., Lee C., Yoon J., Kinetics and mechanisms of DMSO
(dimethylsulfoxide) degradation by UV/H2O2 process, Water Res., 2004, 38(10),pp. 2579-2588.
12 Qturan M. A., Pison J., J. Phys. Chem, 1995, 99, 13928.
13 James E. Duffy, Marc A. Anderson, Charles G. Hill, Walter A. Zeltner, Wet peroxide oxidation of sediments contaminated with 68 PCBs, Environ. Sci. Technol., 2000, 34(15),pp. 3199-3204.
14 Wei L., Yang G., Wang R., Ma W., Journal of Hazardous Materials, 2009, 164(2-3),pp. 1159-1163.
15 K. J. Hauser, R. J. Zabransky, Modification of the gas-liquid chromatography procedure and evaluation of a new column packing material for the identification of anaerobic bacteria. Journal of Clinical Microbiology 2, 1975, 2(1),pp. 1-7.
16 E. J. Mahne, T. A. Pinfold, J. Appl. Chem., 1968, 18,pp. 52. 17 Prengle, H. W. and C. E. Mauk, Aiche Sum. Ser., 1978, 74(178),pp. 128.
18 Ning P.,Bart H.-J.,Jiang Y.,Haan A.-D.,Tien C., Treatment of organic pollutants in coke plant wastewater by the method of ultrasonic irradiation, catalytic oxidation and activated sludge. Separation and Purification Technology , 2005, 41,pp. 133-139.
19 Fenton H. J. H., Oxidation of tartaric acid in the presence of ion, J. Chem. Soc., 1894, 65,pp. 899-910.
20 Haber F. and Weiss J., The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Roy. Soc., 1934, A147,pp. 332-351.
21 Barb W. G., Baxendale J. H., George P. and Hargrave K. R., Reactions of ferrous and ferric ions with hydrogen peroxide. II. The. ferric ion reaction, Trans. Faraday Soc., 1951, 47,pp. 462-500.
22 Kolthoff I. M. and Medalla A. I., The Relation between Ferrous Iron and Peroxide. II. Reaction with Hydrogen Peroxide in The Presence of Oxygen, J. Chem. Soc., 1949, 71,p. 3748.
23 Wai P. Kwan, and Bettina M. Voelker, Decomposition of Hydrogen Peroxide and Organic Compounds in the Presence of Dissolved Iron and Ferrihydrite, Environ. Sci. Technol., 2002, 36(7),p. 1467.
24 Potter J. and J. N. Roth, Hazardous Waste and Hazardous Materials, 1993, 1(2),p. 151.
25 Moon D. K., T. Mauyama, K. Osakada and T. Yamamoto, Chemical Oxidation of Polyamilime by Radical Generating Reagents, O2, H2O2 FeCl3 Catalyst, and Dobenzoyl Peroxide, Chemistry Letters,1991,69(9),pp. 1633-1636.
26 Hugh, R. E., Oxidation of Phenolic, Wastes J. Wat. Pollution Control Fed. , 1964, 36,pp. 1116.
27 Kibbel, W. H., Proc. 33rd Ind. Waste. Cof. , 1978,p. 22.
28 Simes, A. F. E., Industrial Effluent Treatment with Hydrogen Peroxide Chemistry and Industry, 1983,18(7),pp. 555-558.
29 Massimo B., Claudio M. and Ezio P., chemical Degradation of Chlorophenols with Fenton's Reagent, Chemosphere, 1987,
16(10-12), p. 2225.
30 Al-Hayek, N. and Dore M., Oxidation of phenols in water by hydrogen peroxide on alumine supported iron, Water Res., 1990, 24(8),pp. 973-982.
31 Tseng J., and Huang C. P., 廢水物理化學處理程序理論講習會,交通大學, 1991, 161.
32 Cheves W. and Goosen A., Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates, J. Amer. Chem. Soc. , 1973, 95(9),pp. 2987-2991.
33 Cheves W., El G. M. and Johnson R. A., Fenton's reagent. IV. Structure and reactivity relations in the reactions of hydroxyl radicals and the redox reactions of radicals, J. Amer. Chem. Soc., 1974, 96(1),pp. 133-139.
34 Cheves W., Fenton's reagent. V. Hydroxylation and side-chain cleavage of aromatics, J. Amer. Chem. Soc. , 1975, 97(2),pp. 363-367.
35 Sheng H. Lin, Chi M. Cin and Horng G. Leu., Operating
characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation, Water Res. , 1999, 33(7),pp. 1735-1741.
36 Pignatello J. J., Dark and Photoassisted Fe3+ Catalyzed of Chlorophenoxy Herbicides by Hydrogen, Environ. Sci. Technol., 1992, 26,pp. 944-951.
37 Snook, M. E., A. G. Hamilton, Oxidation and fragmentation of some 70
phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent, J. Amer. Chem. Soc.,1974, 96(3),pp. 860-869.
38 H. Li, S. H. Park, J. H. Reif, T. H. LaBean, H. Yan, DNA-Templated Self-Assembly of Protein and Nanoparticle Linear Arrays, J. Amer. Chem. Soc., 2004, 126(2),pp. 418.
39 R. Liang, J. Qiu, P. cai, A novel amperometric immunosensor based onthree-dimensional sol-gel network and nanoparticle self-assemble technique Anal. Chim. Acta, 2005, 534,pp. 223-229.
40 C. H. Lim, C. D. Ki, T. H. Kim, J. Y. Chang, Use of an Aromatic Polyimide as a Non-Cross-Linked Molecular Imprinting Material, Macromolecules, 2004, 37,pp. 6-8.
41 J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors, J. Amer. Chem. Soc., 2003, 125(2),pp. 314-315.
42 C. Drew, X. Liu, D. Ziegler, X. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, Metal Oxide-Coated Polymer Nanofibers, J. Kumar, Nano. Lett., 2003, 3(2),pp. 143-147.
43 L. Zernichow, W. Lund, Size exclusion chromatography of
aluminium species in natural waters Anal. Chim. Acta, 1995,
300(1-3),pp. 167-171.
44 J. Wang, M. Musameh, Y. Lin,Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors, J. Amer. Chem. Soc., 2003, 125(9),pp. 2408-2409.
45 P. Tomcik, C. E. Banks, T. J. Davies, R. G. Compton, A
Self-Catalytic Carbon Paste Electrode for the Detection of Vitamin B12, Anal. Chem., 2004, 76(1),pp. 161-165.
46 K. R. Rogers, J. Y. Becker, J. Cembrano, Improved selective electrocatalytic oxidation of phenols by tyrosinase-based carbon paste electrode biosensor, Electrochim. Acta, 2000, 45(25-26),pp. 4373-4379.
47 S. M. Marxer, M. H. Schoenfisch, Sol−Gel Derived Potentiometric pH Sensors, Anal. Chem., 2005, 77(3),pp. 848-853.
48 M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem.,1967,10,247. 71
49 Davidson, D., Welo, L. A., The Nature of Prussian Blue, J. Phy. Chem., 1928, 32(8),pp. 1191-1196.
50 C. Creutzin S. J.Lippard Ed.. Progress in Inorganic Chemistry, John Wiley & Sons, New York, 1983, 2.
51 Keggin J. F., Miles F. D., Structures and formulae of the Prussian blues and related compounds, Nature, 1936,137,pp. 577-578.
52 Ludi, A.; Gudel, H. V., Structural chemistry of polynuclear transition metal cyanides, Struct. Bonding 1973, 14,pp. 1-21.
53 R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochimica et Biophysica Acta, 1985, 811,pp. 265-322.
54 D. F. Shriver, P. W. Atleins and C. H. Langford, Inorganic Chemistry(2nd), Oxford University Press, Oxford Melbourne, Tokyo, 1994,pp. 611.
55 Kulesza,P. J.; Malik, M. A.; Denca, A.; Strojek, In Situ FT-IR/ATR Spectroelectrochemistry of Prussian Blue in the Solid State, Anal. Chem. 1996, 68(14),pp. 2442-2446.
56 V. D. Neff, Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue, J. Electrochem. Soc., 1978, 125,pp. 886-887.
57 K. Itaya, H. Akahoshi and S. Toshima, Electrochemistry of Prussian Blue Modified Electrodes: An Electrochemical Preparation Method, J. Electrochem. Soc. 1982, 129,pp. 1498-1500.
58 Bocarsly, A. B.; Sinha, S., Chemically-derivatized nickel surfaces: Synthesis of a new class of stable electrode interfaces, J. Electroanal. Chem., 1982, 137(1),pp.157-162.
59 Jain, A. K.; Singh, S.; Bala, C.; Anal. Lett. 1982, 15,p. 1557. 60 Lin, M. S.; Tseng, T. F.; Shih W. C., Chromium(III) hexacyanoferrate (II)-based chemical sensor for the cathodic determination of hydrogen peroxide, Analyst 1998, 123,pp. 159-163.
61 Karyakin, A. A., Prussian Blue and its analogues: Electrochemistry and Analytical applications (review), Electroanalysis, 2001, 13,pp. 813-819.
62 Chen, S. M., Electrocatalytic oxidation of thiosulfate by metal hexacyanoferrate film modified electrodes, J. Electroanal. Chem. 1996, 417(1-2),pp. 145-153.
63 Shankaran, D. R.; Narayanan, S. S., Bull. Electrochem, 1998, 14,pp. 267-270.
64 Zhou, D. M.; Ju, H. X.; Chen, H. Y., Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion®, J. Electroanal. Chem. 1996, 408(1-2),pp. 219-223.
65 Zhou, J.; Wang, E., Amperometric detection of catecholamines with liquid chromatography at a novelly constructed prussian blue chemically modified electrode, Talanta, 1992, 39(3),pp. 235-242.
66 Shankaran, D. R.; Narayanan, S. S., Fresenius’ J. Anal. Chem., 1999, 365,pp. 663-665.
67 Hou, W.; Wnag, E.,Flow-injection amperometric detection of hydrazine by electrocalytic oxidation at a Prussian Blue
film-modified electrode, Anal. Chim. Acta,1992, 257(2),pp. 275-280.
68 Jain, A .K.; Singh, R.P.; Bala, C., Studies on an araldite-based membrane of copper hexacyanoferrate (III) as a caesium ion-sensitive electrode, J. Chem. Technol. Biotechnol. Chem. Technol. 1984, 34A,pp. 363-366.
69 Gao, Z.; Zhou, X.; Wang, G.; Li, P.; Zhao, Z., Potassium
ion-selective electrode based on a cobalt(II)-hexacyanoferrate film-modified electrode Anal. Chim. Acta 1991, 244,pp. 39-48.
70 Liu, R. M.; Sun, B.; Liu, D. J.; Sun, A. L., Flow injection gas-diffusion amperometric determination of trace amounts of ammonium ions with a cupric hexacyanoferrate, Talanta, 1996, 43(7),pp. 1049-1054.
71 Jain, A. K.; Singh,; R.P. Bala,C., Anal. Lett.,1982, 15,p. 1557.
72 K. Itaya, N. Shoji and I. Uchida, Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes, J. Am. Chem. Soc. 1984, 106(12),pp. 3423-3429.
73 Karyakin, A. A.; Gitelmacher, O. V.; Karyakina, E. E., Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose, Anal. Chem. 1995, 67,pp. 2419-2423.
74 Milardovic, S.; Kruhak, I.; Ivekovic, D.; Rumenjak, V.; Tkalcec, M.; Grabaric, B. S., Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode, Anal.Chim. Acta. 1997, 350(1-2),pp. 91-96.
75 Karyakin, A. A.; Karyakina, E. E.; Gorton L., On the mechanism of H2O2 reduction at Prussian Blue modified electrodes, Electrochem. Commun., 1999,1,pp. 78-82.
76 B. Ismail, M. Abaab, B. Rezig, Structural and electrical properties of ZnO films prepared by screen printing technique, Thin Solide Films, 2001, 383(1-2),pp. 92-94.
77 M. Albareda-Sirvent, A. Merkoci, S. Alegret, Configurations used in the design of screen-printed enzymatic biosensors. A review, Sens. Actuators B, 2000, 69(1-2),pp. 153-163.
78 R. Nagata, S.A. Clark, K. Yokoyama, E. Tamiya, I. Karube,
Amperometric glucose biosensor manufactured by a printing
technique, Anal. Chim. Acta, 1995, 304(2),pp. 157-164.
79 B. Strehlitz, B. Grundig, H. Kopinke, Sensor for amperometric determination of ammonia and ammonia-forming enzyme reactions, Anal. Chim. Acta, 2000, 403(1-2),pp. 11-23.
80 C. Eggenstein, M. Borchardt, C. Diekmann, B. Gründig, C.
Dumschat, K. Cammann, M. Knoll, S. Friedrich, A disposable
biosensor for urea determination in blood based on an
ammonium-sensitive transducer, Biosens. Bioelectron., 1999,
14(1),pp. 33-41.
81 Y.F. Tu, H.Y. Chen, RETRACTED: A nano-molar sensitive
disposable biosensor for determination of dopamine, Biosens.
Bioelectron., 2002, 17(1-2),pp. 19-24.
82 K.S. Chang, W.L. Hsu, H.Y. Chen, C.K. Chang,C.Y. Chen,
Determination of glutamate pyruvate transaminase activity in clinical specimens using a biosensor composed of immobilized -glutamate oxidase in a photo-crosslinkable polymer membrane on a palladium-deposited screen-printed carbon electrode, Anal. Chim. Acta, 2003, 481(2),pp. 199-208.
83 A. Ferancová, E. Korgová, T. Buzinkaiová, W. Kutner, I. Štěpánek, J., Electrochemical sensors using screen-printed carbon electrode assemblies modified with the β-cyclodextrin or carboxymethylated β-cyclodextrin polymer films for determination of tricyclic antidepressive drugs, Anal. Chim. Acta, 2001, 447(1-2),pp. 47-54.
84 A.B. Florou, M.I. Prodromidis, S.M. Tzouwara-Karayanni, M.I. Karayannis,Fabrication and voltammetric study of lanthanum 2,6-dichlorophenolindophenol chemically modified screen printed electrodes.: Application for the determination of ascorbic acid, Anal. Chim. Acta, 2000, 423(1),pp. 107-114.
85 W.A. Collier, P. Lovejoy, A.L. Hart, Estimation of soluble L-lactate in dairy products using screen-printed sensors in a flow injection analyzer, Biosens. Bioelectron., 1998, 13(2),pp. 219-225.
86 R.M. Pemberton, J.P.Hart, J.A. Foulkes, Development of a sensitive, selective electrochemical immunoassay for progesterone in cow's milk based on a disposable screen-printed amperometric biosensor, Electrochim. Acta, 1998, 43(23),pp. 3567-3574.
87 M. Boujtitaa, J.P. Harta, R. Pittsonb, Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer, Biosens. Bioelectron., 2000, 15(5-6),pp. 257-263.
88 M. Albareda-Sirvent, A.L. Hart, Preliminary estimates of lactic and malic acid in wine using electrodes printed from inks containing sol–gel precursors, Sens. Actuators B, 2002, 87(1),pp. 73-81.
89 L. Qingwen, L. Guoan, S. Youqin, Response of nanosized cobalt oxide electrodes as pH sensors, Anal. Chim. Acta, 2000, 409(1-2),pp. 137-142.
90 R. Koncki, M. Mascini, Screen-printed ruthenium dioxide electrodes for pH measurements, Anal. Chim. Acta , 1997, 351(1-3),pp. 143-149.
91 J.A. Mihell, J.K. Atkinson, Planar thick-film pH electrodes based on ruthenium dioxide hydrate, Sens. Actuators B, 1998, 48(1-3),pp. 505-511.
92 W. Glasspool, J. Atkinson, A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane, Sens. Actuators B, 1998, 48,pp. 308-317.
93 M. Albareda-Sirven, A. Meroci, S. Alegret, Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology, Anal. Chim. Acta, 2001, 442(1),pp. 35-44.
94 J. Wang, M. Pedrero, X. Cai, Palladium-doped screen-printed electrodes for monitoring formaldehyde, Analyst, 1995, 120(7),pp. 1969-1972.
95 J.Y. Choi, K. Seo, S.R. Cho, J. R. Oh, S.H. Kahng, J. Park, Screen-printed anodic stripping voltammetric sensor containing HgO for heavy metal analysis, Anal. Chim. Acta, 2001, 443(2),pp. 241-247.
96 J.M. Zen, C.C. Yang, A.S. Kumar, Voltammetric behavior and trace determination of Pb2+ at a mercury-free screen-printed silver electrode, Anal. Chim. Acta, 2002, 464(2),pp. 229-235.
97 G.S. Reeder, W.R. Heineman, Electrochemical characterization of a microfabricated thick-film carbon sensor for trace determination of lead, Sens. Actuators B, 1998, 52(1-2),pp. 58-64.
98 P. Akhtar, H.A. Devereaux, A.J. Downard, B. O'Sullivan, K.J. Powell, Portable fractionation device and screen-printed electrode for measurement of reactive aluminium in environmental samples, Anal. Chim. Acta, 1999, 381(1),pp. 49-59.
99 A. K. Abass, J. P. Hart, Electrocatalytic, diffusional and analytical characteristics of a cobalt phthalocyanine modified, screen-printed, amperometric gas sensor for propanethiol, Sens. Actuators B, 1997, 41(1-3),pp. 169-175.
100 J.P. Hart, A.K.Abass, A disposable amperometric gas sensor for sulphur-containing compounds based on a chemically modified screen printed carbon electrode coated with a hydrogel, Anal. Chim. Acta, 1997, 342(2-3),pp. 199-206.
101 A. A. Tomchenko, I. L. Emelianov, V. V. Khatko, Tungsten
trioxide-based thick-film NO sensor: design and investigation, Sens. Actuators B, 1999, 57(1-3),pp. 166-170.
102 D. Filippini, L. Fraigi, R. Aragon, U. Weimar, Thick film Au-gate field-effect devices sensitive to NO2, Sens. Actuators B, 2002, 81(2-3),pp. 296-300.
103 V. Golovanov, J.L. Solis, V. Lantto, S. Leppävuori, Different thick-film methods in printing of one-electrode semiconductor gas sensors, Sens. Actuators B , 1996, 34(1-3),pp. 401-406.
104 G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Screen-printed perovskite-type thick films as gas sensors for environmental monitoring, Sens. Actuators B, 1999, 55(2-3),pp. 99-110.
105 D.Vincenzi, M.A.Butturi, M. Stefancich, C. Malagù, V. Guidi, M.C. Carotta, G. Martinelli, Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques, Thin Solid Films, 2001, 391(2),pp. 288-292.
106 M. Koch, N. Harris, A.G.R. Evans, N.M. White, A. Brunnschweiler, A novel micromachined pump based on thick-film piezoelectric actuation, Sens. Actuators A, 1998, 70(1-2),pp. 98-102.
107 W. Zhu, K. Yao, Z. Ahang, Design and fabrication of a novel piezoelectric multilayer actuator by thick-film screen printing technology, Sens. Actuators A, 2000, 86(3),pp. 149-153.
108 V. Ferrari, D. Marioli, A. Taroni, E. Ranucci, Multisensor array of mass microbalances for chemical detection based on resonant piezo-layers of screen-printed PZT, Sens. Actuators B, 2000, 68(1-3),pp. 81-87.
109 E. k. Eisner and J. Osteryoung, Direct and titrimetric determination of hydroxide using normal pulse polarography at mercury electrodes, Anal. Chem., 1978, 50(8),pp. 1062-1066.
110 A. Brestovisky, E. KirowaEisner and J. Osteryoung,Direct and titrimetric determination of hydrogen peroxide by reverse pulse polarography, Anal. Chem., 1983, 55(13),pp. 2063-2066.
111 H. Lundback and G. Johanson, Determination of hydrogen peroxide in pickling baths for copper alloys by linear sweep voltammetry, Anal. Chim. Acta, 1981, 128,pp. 141-146.
112 Ashok Mulchandani, Lisa C. Barrows, Biosensor and Chemical Sensor Technology, 1995, 613, 61-9.
113 Seller R. M., Spectrophotometric Determination of Hydrogen Peroxide Using Potassium(IV) Oxalate, Analyst, 1980, 105,pp. 950-954
114 Nafaˆa Adhoum, Lotfi Monser, Electrochemical sensor for
hydroperoxides determination based on Prussian blue film modified electrode, Sensor and Actuators B, 2008, 133(2), pp. 588-592.
115 Talinli, G. K. Anderson,Interference of hydrogen peroxide on the standard COD test Water Res., 1992, 26(1),pp. 107-110.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信