淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507200915143100
中文論文名稱 酸化/鹼化對淨水場污泥減量與脫水性之影響
英文論文名稱 Effect of Acidification/Alkalization on Water Treatment Plant Sludge Reduction and Dewaterability
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 彭文良
研究生英文姓名 Wen-Liang Peng
電子信箱 kimizro@yahoo.com.tw
學號 696480200
學位類別 碩士
語文別 中文
口試日期 2009-06-19
論文頁數 104頁
口試委員 指導教授-康世芳
委員-李奇旺
委員-黃文鑑
中文關鍵字 淨水污泥、酸化、混凝劑回收、污泥減量、脫水 
英文關鍵字 water treatment sludge, acidification, coagulant recovery, sludge reduction, dewatering 
學科別分類 學科別應用科學環境工程
中文摘要 本研究探討酸化/鹼化對淨水污泥減量與脫水性之影響,實驗用淨水污泥採至台北自來水事業處公館淨水場污泥濃縮槽。以鋁鹽回收率、鋁鹽溶出效率、污泥固體物與體積減量評估污泥減量,以毛細汲取時間(CST)及過濾比阻抗試驗值(SRF)表示污泥脫水性。此外,以Roberts沉降公式評估污泥沉降性。污泥酸化/鹼化實驗採瓶杯試驗。
研究結果顯示污泥酸化與鹼化最適pH分別為2、12,鋁鹽回收率與污泥減量於酸化比鹼化佳。酸化pH=2之鋁鹽回收率、鋁鹽溶出溶度、污泥固體物與污泥體積減量分別為78%、1,092 mg/L、12.3% 及32%。然而,鹼化時溶解性有機物(DOC)溶出濃度為310 mg/L高於酸化時之溶出DOC為75 mg/L,此乃由於原水中天然有機物如腐植酸易溶解於鹼性。酸化於pH 1時鋁鹽回收率雖達最高為97%,但因鋁鹽溶出效率(以單位氫莫耳溶出鋁鹽莫耳數表示)為0.009低於pH 2時之 0.098最佳,故污泥減量酸化之最佳pH 為2。
污泥酸化/鹼化對污泥沉降性影響之研究結果顯示,酸化/鹼化皆可提高污泥沉降性,沉降速度於酸性範圍隨pH減少而增加,相對地,於鹼性範圍隨pH增加而增加。污泥酸化對污泥脫水性SRF值影響不顯著,但鹼化使污泥脫水性隨鹼化pH增加而變差,換言之SRF值隨pH增加而增加。此外,污泥先酸化後再調整污泥至中性(原濃縮污泥pH 7),SRF值降低30%,顯示再調整pH可改善污泥脫水性。故污泥減量、鋁鹽回收與後續脫水處理之最適pH可分別控制2與7。
英文摘要 The objectives of this study are to investigate the effects of acidification and alkalization on water treatment sludge reduction and dewaterability. The sludge was sampled from a sludge thickener tank at the Gongguan water treatment plant of Taipei Water Department. The parameters such as aluminum recovery rate, aluminum dissolution efficiency, reduction of solid and volume were used to evaluate the efficiencies of sludge reduction. Moreover, the sludge dewaterability was measured by the capillary suction time (CST) and specific resistance value (SRF). The sludge settleabiltiy was evaluated by Roberts’ equation. The sludge reduction experiments were conducted by the Jar test.
The results showed that the optimum pH of sludge acidification and alkalization were 2 and 12, respectively. Both aluminum recovery rate and sludge reduction by acidification were better than that by alkalization. Sludge acidification at pH 2, the aluminum recovery rate, aluminum dissolution concentration, and reduction of solid and reduction were 78%, 1,092 mg/L, 12.3% and 32%, respectively. However, the dissolution of dissolved organic carbon (DOC) by alkalization was higher than that by acidification. The DOC dissolution concentrations were 75 mg/L and 310 mg/L at pH 2 and pH 12, respectively. This is due to natural occurring matters, such as humic acid highly dissolves at alkali conditions but acidic conditions. Furthermore, aluminum recovery rate reached up to 97% at pH 1, whereas the aluminum dissolution efficiency (expressed by mol of aluminum dissolution per mol of hydrogen ion) was 0.009, which was lower than that of 0.098 at pH 2. Therefore, the optimum pH for sludge acidification was 2.
The results of effect of acidification/alkalization on sludge settleability showed that both acidification and alkalization can raise sludge settleability. The sludge settlement velocity increased with the decrease of pH at acidic conditions. In contract, it increased with the increase of pH at basic conditions. The sludge dewaterability expressed by SRF values were insignificantly affected by acidification. However, SRF values increased with the increase with pH. This implied that the sludge dewaterability became worse by alkalization. In addition, when sludge pH was adjusted to pH 7 (pH of thickened sludge) again after sludge acidification, it observed that SRF value reduced about 30%. It concluded that the optimum pH for aluminum recovery, sludge reduction and the followed-up dewatering can be controlled at pH 2, and 7, respectively.
論文目次 目錄 I
圖目錄 IV
表目錄 VI
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 污泥特性 4
2-1-1 淨水污泥特性及來源 4
2-1-2 淨水污泥產量與處理現況 7
2-1-3 淨水污泥資源化技術 10
2-2 污泥調理 13
2-2-1 污泥調理方法 13
2-2-2 污泥調理之影響因素 15
2-2-3 污泥酸化、鹼化對混凝劑回收之技術 18
2-2-4 國內外污泥酸化、鹼化研究及實例 23
2-3 污泥脫水特性 26
2-3-1 污泥脫水影響因素 26
2-3-2 污泥沈降與脫水特性評估 30
第三章 實驗材料與方法 34
3-1 實驗材料 34
3-1-1 淨水污泥 34
3-1-2 實驗試劑 36
3-1-3 實驗設備 37
3-2 實驗方法 39
3-2-1 污泥調理瓶杯試驗 41
3-2-2 污泥沉降及脫水試驗 42
3-2-3 水質及污泥特性分析 44
第四章 結果與討論 52
4-1 PH對污泥有機物與重金屬溶出之影響 52
4-1-1 pH對有機物溶出之影響 52
4-1-2 pH對金屬溶出濃度之影響 57
4-1-3 pH對鋁鹽回收率之影響 62
4-1-4 pH對鋁鹽溶出效率之影響 65
4-2 PH對污泥減量之影響 70
4-2-1 pH對污泥體積減量之影響 70
4-2-2 pH對污泥重量減量之影響 71
4-2-3 pH對污泥沉降性之影響 74
4-2-4 pH對污泥濃縮性之影響 79
4-3 污泥過濾及脫水性之影響 81
4-3-1 pH對污泥脫水性及過濾性之影響 81
4-3-2 pH對移除上澄液後的底泥過濾及脫水性之影響 85
4-3-3 pH對酸化/鹼化後底泥過濾性及脫水性 87
4-3-4 CST與SFR值之相關性 91
4-3-5 污泥過濾性及脫水性綜合評估 93
4-4 酸化/鹼化綜合評估 95
第五章 結論 100
參考文獻 101

圖目錄
圖2 - 1 淨水流程 5
圖2 - 2 世界上各國淨水污泥餅產量 8
圖2 - 3 世界上各國單位面積淨水污泥餅負荷量 8
圖2 - 4 氫氧化鋁溶解度圖 19

圖3 - 1毛細汲取時間實驗設備 38
圖3 - 2 布氏(Buchner)漏斗試驗裝置 39
圖3 - 3 實驗流程圖 41

圖4 - 1 pH對有機物溶出之影響 55
圖4 - 2 化學需氧量與溶解性有機物之相關性 56
圖4 - 3 pH對污泥溶出液濁度及色度之影響 58
圖4 - 4 pH對鋁鹽溶出濃度之影響 60
圖4 - 5 pH對鋁鹽回收率之影響 65
圖4 - 6 污泥不同pH所需添加氫及氫氧根離子莫耳量 69
圖4 - 7 酸化、鹼化對鋁鹽溶出效率之影響 70
圖4 - 8 酸化與鹼化對污泥重量減量及體積減量之影響 74
圖4 - 9 污泥重量減量與體積減量之相關性 74
圖4 - 10 污泥固體物減量與鋁鹽及DOC溶出之相關性 75
圖4 - 11 污泥酸化之沉降曲線 77
圖4 - 12 污泥鹼化之沉降曲線 77
圖4 - 13 酸化對淨水污泥Roberts沉降式之影響 78
圖4 - 14 鹼化對淨水污泥Roberts沉降式之影響 78
圖4 - 15 pH對Roberts沉降常數k值之影響 79
圖4 - 16 pH對污泥濃縮性及污泥體積減量之影響 81
圖4 - 17 酸化/鹼化對污泥及底泥脫水性及過濾性之影響 84
圖4 - 18酸化/鹼化底泥之pH調整對過濾性及脫水性之影響 90
圖4 - 19 過濾比阻抗與毛細汲取時間之相關性 94


表2 - 1 全台淨水污泥再利用現況 9
表2 - 2 污泥比組抗與過濾難易程度之關係 31

表3 - 1 濃縮污泥基本特性 34
表3 - 2 濃縮污泥上澄液基本特性 35

表4 - 1 不同pH金屬溶出量 62
表4 - 2 不同pH條件下鋁鹽溶出量 65
表4 - 3 Roberts沉降常數k值迴歸相關性 79
表4 - 4 酸化/鹼化後污泥及底泥過濾性及脫水性之改善 85
表4 - 5 pH對酸化/鹼化後底泥過濾性及脫水性之改善 91
表4 - 6 酸化/鹼化污泥綜合評估表 97
表4 - 7 污泥酸化/鹼化對污泥上澄液及底泥之影響 99
表4 - 8 硫酸鋁用於飲用水處理品質管制標準 100

參考文獻 [1] Abdo M. S. E., Ewida, K. T. and Youssef, Y. M. (1993) “Recovery of Alum from Wasted Sludge Produced from Water Treatment Plants”, Journal of Environmental Science Health, A28(6), 1205-1216.
[2] Babatunde, A. O. and Y. Q. Zhao (2007) “Constructive Approaches toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses” , Environmental and Science and Technology, 37, 129-164.
[3] Bishop M. M., Cornwell D. A. and Bailey T. L. (1991) “Mechanical Dewatering of Alum Solids and Acidified Solids: an evaluation. J. Am. ” Journal AWWA, 83(9), 50-56.
[4] Bishop M. M., Rolan A. T., Bailey T. L.and Cornwell D. A.,(1987)“Testing of Alum Recovery for Soilds Reduction and Reuse” , Journal AWWA, 79(6), 76-83.
[5] Chen Y., Yang H. and Gu G ., (2001) “Effect of Acid and Surfactant Treatment on Activated Sludge Dewatering and Settling” , Water Research, 35(11), 2645-2620.
[6] Chu W., (1999) “ Lead metal removal by recycled alum sludge”, Water Research. 33(13), 3019-3025.
[7] Cornwell, D. A., and Susan, J. A., (1979) “Characteristics of Acid Treated Alum Sludges ”, Journal AWWA, 71 (10), 604-608.
[8] Huisman, M., Delft, and Neth, (1998) “Consolidation Theory Applied to the Capillary Suction Time (CST) apparatus”, Water Science and Technology, 37(6-7), 117-124.
[9] Lai, J.Y., and Liu, J.C. (2004) “Co-conditioning and dewatering of alum sludge and waste activated sludge”, Water Science and Technology, 50(9), 41–48.
[10] Lee, D. J., and Hus, Y. H., (1992) “Fluid Flow in Capillary Apparatus”, Industrial & Engineering Chemistry Research , 31(10), 2379-2385.
[11] Li C.W., Lin J.L., Kang S.F. and Liang C.L. (2005) “Acidification and Alkalization of Textile Chemical Sludge: Volume/Solid Reduction, Dewaterability, and Al (III) Recovery”, Separation and Purification Technology, 42(1), 31-37.
[12] Li P. and Sengupta A. K. (1995) “Selective Recovery of Alum from Clarifier Sludge Using Composite Ion-Exchange Membranes”, Proceedings of the 27th Mid-Atlantic Industrial Waste Conference at Lehigh University, July 9-12, 33-43.
[13] Masschelein,W.J., Devleminck, R., and Genot, J. (1985) “The feasibility of coagulant recycling by alkaline reaction of aluminium hydroxide sludge”, Water Research, 19(11), 1363–1368.
[14] Michael L. Goldman 1/ Frederick Watson, (1975) “Feasibility of alum sludge reclamation”, Water Resources Research Center Washington Technical Institute Washington, D. C. 20008.
[15] Panswad, T. and Chamnan, D. (1992) “Aluminum Recovery from Industrial Aluminum Sludge”, Water Supply, 10(4), 159-166.
[16] Papavasilopoulos, E. N., and Bache, D. H., (1998) “On the Role of Aluminium Hydroxide in the Conditioning of an Alum Sludge”, Water Science and Technology, 38(2), 33-40.
[17] Petruzzelli, D., Volpe, A., Limoni, N., and Passino, R., (2000) “Coagulants Removal and Recovery from Water Clarifier Sludge”, Water Research, 34(7), 2177-2182.
[18] Pigeon P. E., Linstedt K. D. and Bennett E. R. (1978) “Recovery and reuse Iron Coagulants in Water Treatment”, Journal AWWA, 70(7), 397-403.
[19] Vesilind, P. A., and David, H. A. (1988) “Using the Capillary Suction Time Device for Characterizing Sludge Dewaterability”, Water Science and Technology, 20(1), 203-205.
[20] Wu, C. C., and Wu, J. J. (2001) “Effect of Charge Neutralization on the Dewatering Performance of Alum Sludge by Polymer Conditioning”, Water Science and Technology, 44 (10), 315-319.
[21] 朱敬平 (2004),「污泥脫水減量技術」,財團法人中興工程顧問社。
[22] 台灣自來水公司 (2008) , 「自來水公司淨水污泥自資資源化之研究報告」。
[23] 林正芳 (2002) ,「無機污泥材料化技術報告」,行政院環保署。
[24] 林志麟 (2003) ,「酸化處理對染整化學污泥減量及其脫水性之影響」,淡江大學水資源及環境工程研究所碩士論文。
[25] 姜佳伶 (2007) ,「淨水場沉澱及過濾單元濁度去除及其衍生廢污量之研究」,國立中央大學環境工程研究所碩士論文。
[26] 張鈞維 (2006) ,「淨水污泥及鐵氧化物吸附劑去除水庫」,國立成功大學環境工程研究所碩士論文。
[27] 陳信宏 (2008) ,「污水廠廢水處理單元之成效與廢水回收再利用及現場污濕脫水之研究」,中山大學環境工程研究所碩士論文。
[28] 曾迪華,顏笠安,范姜仁茂 (2008) ,「台灣淨水場污泥產量特性之探討」,第二十五屆自來水研究發表會論文集。
[29] 楊萬發譯 (1999),「水及廢水處理化學」,茂昌圖書。
[30] 經濟部工業污染防治技術服務團,工業污染防治技術手冊[14]-污泥脫水處理技術。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信