淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507200915042500
中文論文名稱 三價鐵與Fenton混凝處理色度廢水之比較
英文論文名稱 Comparisons of Treatment of Colored Wastewater between Ferric and Fenton Coagulation
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 黃建維
研究生英文姓名 Jian-Wei Huang
學號 696480994
學位類別 碩士
語文別 中文
口試日期 2009-06-19
論文頁數 86頁
口試委員 指導教授-康世芳
委員-李柏青
委員-黃文鑑
中文關鍵字 鐵鹽混凝  Fenton  Fenton-like  脫色 
英文關鍵字 Coagulation  Fenton  Fenton-like  Decolorization 
學科別分類 學科別應用科學環境工程
中文摘要 本研究以Evercion Red H-E3B反應性染料配製100 mg/L人工色度廢水,以鐵鹽(亞鐵及三價鐵)與過氧化氫加藥量、pH等為操作變數,研究目的為探討鐵鹽(三價鐵)混凝、Fenton、Fenton-like程序去除色度與溶解性有機物(DOC),同時比較各處理程序色度、DOC之去除機制。所有實驗採瓶杯試驗,人工色度廢水含色度及DOC分別為6,500單位(以ADMI方法表示)及16.5 mg/L。此外,各程序去除色度與DOC機制比較實驗之皆控制pH 4。
研究結果顯示Fe3+混凝與Fenton混凝去除色度、DOC之最佳pH分別為pH 3~5與pH 2~4,色度去除率可達80%以上。Fenton及Fenton-like混凝脫色效果較鐵鹽混凝佳,其單位鐵鹽色度去除量為Fe3+混凝之10.5倍,但鐵鹽混凝、Fenton、Fenton-like 程序於DOC效果上,無明顯差異。Fenton及Fenton-like程序同時具有氫氧自由基氧化及混凝效果,氫氧自由基氧化可有效脫色,但無法礦化DOC。於低鐵鹽加藥量時,脫色主要機制為氧化,色度去除率可達90%以上,DOC主要為氧化去除,但僅有約25%去除率。
於高鐵鹽加藥量時,Fenton及Fenton-like混凝去除率約90%,主要為混凝去除,而非氫氧自由基氧化。比較Fenton及Fenton-like混凝去除色度機制,顯示Fenton程序氧化與混凝脫色比率約4 : 1,相對地Fenton-like程序氧化與混凝脫色比率約為1 : 4。高鐵鹽加藥量時,Fenton及Fenton-like混凝去除色度機制之主要分別為氧化與混凝去除。故Fenton及Fenton-like程序較適用於脫色處理而非去除DOC。
英文摘要 The purposes of this study are to investigate the removals of color and dissolved organic carbon (DOC) by ferric coagulation, the Fenton and Fenton-like coagulation processes, to compare the removal mechanisms of color and DOC among three processes. The synthetic colored wastewater samples were prepared from 100 mg/L of a red reactive azo dyestuff, Red H-E3B, and contained color and DOC were 6,500 uint (expressed by ADMI method) and 16.5 mg/L, respectively. The experimental variables studied include dosages of iron salts (ferrous and ferric) and hydrogen peroxide (H2O2), pH. All experiments were conducted by the Jar test. Furthermore, the experiments for comparing the removal mechanisms among three processes were controlled at pH of 4.
The result showed that optimum pH for color removal occurred at pH 3-5 and at pH 2-4 by ferric coagulation and the Fenton coagulation, respectively. The color removal can reach more than 80% by both ferric and the Fenton coagulation processes. The color removals by the Fenton and Fenton-like coagulation were markedly better than ferric coagulation. The ratio of color removal efficiency, expressed by color removed per iron dosage, between the Fenton, Fenton-like and ferric coagulation was 10.5. However, the DOC removals were the same among three processes. Since the Fenton and Fenton-like coagulation have dual functions of the hydroxyl radical(OH●) oxidation and ferric coagulation, the OH● oxidation can effectively remove color, but the removal of DOC was poor. In the presence of low iron dosages, more than 90% of color can be removed mainly by the OH● oxidation, whereas, only 25% of DOC was poorly removed by the Fenton and Fenton-like coagulation processes.
In the presence of high dosages, the DOC removals can reach to more than 90% by both the Fenton and Fenton-like coagulation processes. Moreover, it was observed that the removal of DOC was mainly by ferric coagulation but the OH● oxidation. Besides, comparing the color removal mechanisms between the Fenton and Fenton-like coagulation processes, the ratio of color removal by the OH● oxidation and ferric coagulation was 4 to 1 for the Fenton coagulation. In contract, it was 4 to 1 for the Fenton-like coagulation. Therefore, it demonstrated that the color removal was mainly by the OH● oxidation and ferric coagulation, respectively, by the Fenton and Fenton-like coagulation. It is concluded that the DOC was mainly removed by ferric coagulation but the OH● oxidation. Both the Fenton and Fenton-like coagulation processes were better used for color removal but DOC removal.
論文目次 目錄
目錄 Ⅰ
表目錄 Ⅴ
圖目錄 Ⅶ
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 染整廢水與化學污泥基本特性 4
2-1-1染料廢水特性 4
2-1-2 染整化學污泥特性 8
2-2 化學混凝處理染整廢水 10
2-2-1化學混凝理論 10
2-2-2化學混凝法處理染整廢水 14
2-3 Fenton程序處理染整廢水 16
2-3-1 Fenton程序理論 16
2-3-2 Fenton程序影響因素 18
2-3-3 Fenton程序處理染整廢水 20
2-4污泥酸化與污泥脫水特性 23
2-4-1化學污泥酸化原理 23
2-4-2污泥脫水特性 24
第三章 實驗材料與方法 28
3-1 實驗材料 28
3-1-1 人工色度廢水 28
3-1-2人工污泥 31
3-1-3 實驗藥品 32
3-1-4實驗設備 33
3-2 實驗方法 36
3-2-1 三價鐵與Fenton程序混凝瓶杯試驗 36
3-2-2 污泥調理瓶杯試驗 39
3-2-3 污泥過濾SRF試驗 40
3-2-4 污泥脫水CST試驗 41
3-3 水質分析 42
第四章 結果與討論 44
4-1 鐵鹽混凝處理人工色度廢水 44
4-1-1 pH 對鐵鹽混凝去除色度與DOC之影響 44
4-1-2 鐵鹽加藥量對鐵鹽混凝去除色度與DOC之影響 45
4-2 Fenton/Fenton-like程序處理人工染整廢水之影響 48
4-2-1 pH對Fenton混凝去除色度與DOC之影響 48
4-2-2 鐵鹽加藥量對Fenton/Fenton-like混凝去除色度與DOC之影響 50
4-2-3 H2O2加藥量對Fenton/Fenton-like混凝去除色度與DOC之影響 53
4-2-4 鐵鹽混凝與Fenton / Fenton-like混凝處理人工色度廢水綜合比較 58
4-3 鐵鹽混凝與Fenton / Fenton-like混凝去除色度及DOC機制 62
4-3-1鐵鹽混凝與Fenton / Fenton-like混凝去除色度機制之比較 62
4-3-2 鐵鹽混凝與Fenton/Fenton-like混凝去除DOC機制之比較 66
4-3-3 H2O2加藥量對Fenton/Fenton-like混凝去除色度與DOC機制之影響 68
4-4 人工色度污泥酸化及脫水性 71
4-4-1 酸化對污泥體積及固體物減量影響 72
4-4-2 酸化對鐵鹽溶出濃度、回收率與效率之影響 75
4-4-3酸化對上澄液色度、有機物的影響 78
4-4-4酸化對污泥脫水性之影響 80
第五章 結論 83
參考文獻 84

圖目錄

圖3- 1 Evercion Red H-E3B 偶氮染料之UV-VIS光譜圖 30
圖3- 2六連式瓶杯試驗機 33
圖3- 3布氏(Buchner)漏斗試驗裝置 35
圖3- 4毛細汲取時間(CST)試驗設備 35
圖3- 5 鐵鹽化學混凝之實驗流程 38
圖3- 6 Fenton / Fenton-like之實驗流程 38
圖3- 7 Fe 檢量線 43
圖4- 1 pH對鐵鹽混凝去除色度及DOC之影響(Fe3+=50 mg/L) 45
圖4- 2鐵鹽加藥量對鐵鹽混凝去除色度與DOC之影響 47
圖4- 3鐵鹽加藥量對鐵鹽混凝污泥產量之影響(pH 4) 47
圖4- 4 pH對Fenton混凝去除色度及DOC之影響 49
圖4- 5鐵鹽加藥量對Fenton程序處理人工色度廢水之影響 52
圖4- 6鐵鹽加藥量對Fenton程序處理人工色度廢水之影響 52
圖4- 7 H2O2單獨氧化去除色度與DOC之影響( Fe2+=0 ) 56
圖4- 8 H2O2對Fenton / Fenton-like混凝去除色度與DOC之影響(Fe2+ / Fe3+ =5 mg/L) 56
圖4- 9 H2O2對Fenton / Fenton-like混凝去除色度與DOC之影響 57
圖4- 10 Fe3+混凝、Fenton/ Fenton-like混凝經溶出後色度殘留率之比較(H2O2=100 mg/L) 64
圖4- 11鐵鹽混凝與Fenton / Fenton-like混凝色度溶出率之比較( H2O2=100 mg/L) 65
圖4- 12 Fe3+混凝與Fenton/ Fenton-like混凝經溶出後DOC殘留率之比較 (H2O2=100 mg/L) 67
圖4- 13鐵鹽混凝與Fenton / Fenton-like程序DOC溶出率之比較(H2O2=100 mg/L) 68
圖4- 14 Fenton/ Fenton-like色度及DOC溶出率比較 70
圖4- 15 Fenton/ Fenton-like色度及DOC溶出率比較 70
圖4- 16 酸化對鐵鹽污泥重量及體積減少之影響 73
圖4- 17 酸化對Fenton污泥重量及體積減少之影響 73
圖4- 18鐵鹽、Fenton污泥酸化調理後上澄液鐵含量 77
圖4- 19鐵鹽、Fenton污泥酸化調理後鐵回收率 77
圖4- 20鐵鹽、Fenton污泥酸化調理後上澄液色度濃度 79
圖4- 21鐵鹽、Fenton污泥酸化調理後上澄液DOC濃度 80
圖4- 22 酸化對鐵鹽污泥脫水特性之影響 81
圖4- 23 酸化對Fenton污泥脫水特性之影響 82

表目錄

表2- 1典型紡織染整廢水的特性 7
表2- 2 我國目前印染整業規範之放流水標準 8
表2- 3污泥比阻抗與過濾難易程度之關係 26
表3- 1反應性偶氮染料Evercion Red H-E3B基本資料 29
表4- 1鐵鹽混凝與Fenton / Fenton-like混八於低鐵鹽加藥量時去除色度及DOC之比較 (Fe3+、Fe2+ = 5 mg/L) 60
表4- 2鐵鹽混凝與Fenton / Fenton-like混凝於高鐵鹽加藥量時去除色度及DOC之比較(Fe3+、Fe2+ = 50 mg/L) 61
表4- 3 鐵鹽加藥量對人工色度廢水 ( 0.5、50L )之色度與DOC去除效果(pH 4) 71
表4- 4 鐵鹽、Fenton污泥酸化後之減量及鐵溶出特性 74

參考文獻 Aldershof, B.K., Dennis, R.M., Kunitsky, C.J., 1997. Study of the decomposition of four commercially available hydrogen peroxide solutions by Fenton's reagent. Water Environment Research 69, 1052-1056.
2. Benitez, F.J., Acero, J.L., Real, F.J., Rubio, F.J., Leal, A.I., 2001. The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research 35, 1338-1343.
3. Bishop, M.M., Rolan, A.T., Bailey, T.L., Cornwell, D.A., 1987. Testing of alum recovery for solids reduction and reuse. Journal / American Water Works Association 79, 76-83.
4. Chen, Y., Yang, H., Gu, G., 2001. Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Research 35, 2615-2620.
5. Ciotti, C., Baciocchi, R., Tuhkanen, T., 2009. Influence of the operating conditions on highly oxidative radicals generation in Fenton's systems. Journal of Hazardous Materials 161, 402-408.
6. Correia, V., Stephenson, T., Judd, S.J., 1994. Characterisation of textile wastewaters - A review. Environmental Technology 15, 917-929.
7. Duesterberg, C.K., Mylon, S.E., Waite, T.D., 2008. pH effects on iron-catalyzed oxidation using Fenton's reagent. Environmental Science and Technology 42, 8522-8527.
8. Gallard, H., De Laat, J., 2000. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Research 34, 3107-3116.
9. Gao, B.-Y., Wang, Y., Yue, Q.-Y., Wei, J.-C., Li, Q., 2007. Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by ployferric chloride and polydimethyldiallylammonium chloride. Separation and Purification Technology 54, 157-163.
10. Hsueh, C.L., Huang, Y.H., Wang, C.C., Chen, C.Y., 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58, 1409-1414.
11. Huisman, M., Van Kesteren, W.G.M., 1998. Consolidation theory applied to the capillary suction time (CST) apparatus. Water Science and Technology 37, 117-124.
12. Hwa, T.J., Jeyaseelan, S., 1997. Conditioning of oily sludges with municipal solid wastes incinerator fly ash. Water Science and Technology 35, 231-238.
13. Johnson, P.N., Amirtharajah, A., 1981. Ferric chloride and alum as single and dual coagulants. AWWA, 497-515.
14. Kang, S.-F., Liao, C.-H., Chen, M.-C., 2002. Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46, 923-928.
15. Kang, S.F., Chang, H.M., 1997. Coagulation of textile secondary effluents with Fenton's reagent. Water Science and Technology 36, 215-222.
16. Kim, T.-H., Park, C., Yang, J., Kim, S., 2004. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials 112, 95-103.
17. Kuo, W.G., 1992. Decolorizing dye wastewater with Fenton's reagent. Water Research 26, 881-886.
18. Kurt, U., Avsar, Y., Talha Gonullu, M., 2006. Treatability of water-based paint wastewater with Fenton process in different reactor types. Chemosphere 64, 1536-1540.
19. Lee, D.J., Hsu, Y.H., 1992. Fluid flow in Capillary Suction Apparatus. Industrial & Engineering Chemistry Research 31, 2379-2385.
20. Li, C.-W., Lin, J.-L., Kang, S.-F., Liang, C.-L., 2005. Acidification and alkalization of textile chemical sludge: volume/solid reduction, dewaterability, and Al(III) recovery. Separation and Purification Technology 42, 31-37.
21. Liao, C.-H., Kang, S.-F., Wu, F.-A., 2001. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere 44, 1193-1200.
22. Lindsey, M.E., Tarr, M.A., 2000. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere 41, 409-417.
23. Ma, X.-J., Xia, H.-L., 2009. Treatment of water-based printing ink wastewater by Fenton process combined with coagulation. Journal of Hazardous Materials 162, 386-390.
24. Pigeon, P.E., Linstedt, K.D., Bennett, E.R., 1978. Recovery and reuse of iron coagulants in water treatment. Journal / American Water Works Association 70, 397-403.
25. Ramírez Zamora, R.M., Orta de Velásquez, M.T., Durán Moreno, A., Malpica De La Torre, J., 2002. Characterisation and conditioning of Fenton sludges issued from wastewater treatment. Water Science and Technology 46, 43-49.
26. Ramirez, J.H., Duarte, F.M., Martins, F.G., Costa, C.A., Madeira, L.M., 2009. Modelling of the synthetic dye Orange II degradation using Fenton's reagent: From batch to continuous reactor operation. Chemical Engineering Journal 148, 394-404.
27. Wang, S., 2008. A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments 76, 714-720.
28. 康世芳, 楊振昇, 陳宇陽, 2000. Fenton程序改善染整廢水有機物特性之研究. 第二十五屆廢水處理技術研討會論文集.
29. 楊萬發, 1986. 染整工廠廢水污染防治.
30. 楊萬發, 1987. 水及廢水處理化學. 茂昌圖書, 第207-254 頁.
31. 環保署, 2003. 「印染整理業」、「農藥業」、「印刷電路板業」及「晶圓製造及半導體製造業」等四行業之廢水中特定物質前處理及管理制度評估計畫. 第4-1~4-57頁.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信