淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507200909362800
中文論文名稱 轉子式史特靈循環引擎研製與分析
英文論文名稱 Fabrication and Simulation of Stirling Cycle Engine Employing the Rotary Wankel Mechanism
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 周彥志
研究生英文姓名 Yen-Chih Chou
學號 894340032
學位類別 博士
語文別 英文
口試日期 2009-07-10
論文頁數 121頁
口試委員 指導教授-康尚文
委員-鄭金祥
委員-李永明
委員-蔡建雄
委員-楊龍杰
中文關鍵字 史特靈引擎  轉子引擎  太陽能  FLUENT 
英文關鍵字 Stirling engine  Wankel mechanism  solar energy  FLUENT 
學科別分類
中文摘要 節能與環保議題已日漸成為全球性之研究與重點發展項目,其中太陽能應用為再生能源中的重要指標;以歐美為主發展之太陽能熱電系統結合史特靈引擎(Stirling Engine),其效率於近年越趨提升並計畫性快速拓展,史特靈引擎系統扮演其中首要關鍵之熱電轉換角色。本文主要基於過往於往復活塞式史特靈引擎之相關研究,結合溫格爾(Wankel)轉子引擎之機械結構設計,整合出新型態轉子式史特靈循環引擎,並分析其內部熱流場,進行初步研製與測試。其主要優點在於保留史特靈引擎低污染,結構較內燃機簡易,熱源多樣化等優勢,並可同時減少一般活塞式引擎機構於連桿結構之機械傳輸損耗。
  研究結果係對於轉子式史特靈循環引擎,藉由計算流體力學模擬軟體,FLUENT,進行各項參數分析;包含熱源輸入、操作壓力變化、轉速與轉子相位角、孔隙率於再生器結構等,於系統中所造成效能差異比較。模擬分析結果顯示,隨輸入熱源溫度提高,亦或提升操作壓力可令效能提升;轉速變化與轉子相位角之效應也在本文中進行討論。本研究亦針對再生器之孔隙率進行探討,隨孔隙率降低亦即填充物質於再生器中之填充率越高,效能也將提升。
  本文針對設計結合模擬結果,實際將轉子式史特靈循環引擎加工製造並進行初步測試,部分模擬條件係利用實驗獲得之參數與極限進行修正。透過測試結果,包含考量材料物理特性,簡化機構與加工製程之限制,本研究最終整合研製過程中之經驗與模擬分析數據,提出未來應用此類型機構之設計建議與改良方式,亦可應用於太陽能熱電系統領域中。
英文摘要 Energy and environmental protection issues have become the most important targets of global investigation and development. The solar energy can be collected in a variety of different ways and it also called Concentrating Solar Power (CSP) systems emerging as one of the most promising sources of renewable energy. Some of them combined with Stirling engines as the key component to transfer energy and generate electricity. On this dissertation the author discusses the technical advantages of a technology with Stirling cycle engine which may combine to the solar-thermal-electric or CSP technology. Furthermore, it focuses on integrating the Wankel mechanism of rotary internal combustion engine with Stirling cycle in order to fabricate a new engine type. Some advantages like there exists no waste gas discharged for the system in working and it won’t contaminate the environment. It could be also according to the variety of heat source and with simpler mechanism as general Stirling engines. Besides, the shaft transmission is without using the crank.
This dissertation includes the simulation analysis by FLUENT CFD software. It could relate to the design initially and provide criterions for improving the prototype by analyzing the factors of heat source temperature, operate pressure, phase angle of rotors, rotation speed, and porosity of regenerator. The simulation results show that better efficiency of system related to the higher temperature of heat input and higher operation pressure. Phase angle of rotors, and rotate speed effects are also discussed in this dissertation. In addition, the effect of porosity on regenerators shows efficiency increases with fill rate increased and decreased with porosity.
The author additionally fabricated the prototypes and performed the preliminary test. Some factors of boundary conditions for simulation should be modified by comparing with the experimental data. Considering the physical properties of materials and manufacture limits, the experience of procedure from design to fabrication with results of simulation could bring up a suitable Rotary Stirling Cycle Engine (RSE) design. It can be helpful for future similar work and apply to solar-thermal-electric power generator scopes.
論文目次 Contents

Acknowledgements I
Abstract
English abstract II
Chinese abstract IV
List of Figures IX
List of Tables XIII
Nomenclature XIV

Chapter 1
Introduction 1
1.1 Application of Solar-Thermal Systems 1
1.2 Application of Solar-Electric Systems 6
1.3 Application of Solar-Thermal-Electric and CSP Systems 10
1.4 Thesis Configurations and Contribution 15
Chapter 2
Stirling Engine for Power System 16
2.1 Introduction 16
2.2 General Types of Stirling Engine 17
2.3 SWOT of Stirling Engine for Power Systems 27
Chapter 3
Stirling Cycle and Wankel Mechanism 30
3.1 Introduction of Stirling Cycle 31
3.2 Introduction of Wankel Mechanism 33
3.3 Heat Transfer by Quasi-Steady Flow 35
3.3.1 Heat Exchangers (Heater and Cooler) 36
3.3.2 Regenerator Effectiveness 37
3.3.3 Conduction Loss 39
3.3.4 The Oscillatory Flow 40
3.4 Define the Stirling Cycle with Wankel Mechanism 41
3.4.1 Geometry of Epitrochoid Motion 41
3.4.2 Displacement and Compression Ratio 43
3.4.3 Types and Flow Motion Design 48
3.5 Objectives of Stirling Engine Employing Wankel Mechanism 52
Chapter 4
Simulation of Rotary Stirling Cycle Engine (RSE) 54
4.1 Introduction of CFD (FLUENT) 55
4.2 Setting for Simulation 58
4.2.1 Compressible Flow and Modeling Turbulence 58
4.2.2 Boundary Conditions 62
4.2.3 Dynamic Mesh Theory 63
4.2.4 Porous Media Conditions 64
4.3 Transient Simulation for RSE Type 65
4.3.1 Geometry Modeling and Dynamic Mesh Generation 66
4.3.2 Setting of Boundary Conditions 70
4.3.3 Results of Analysis 72
4.4 Discussion 85
Chapter 5
Fabrication of Rotary Stirling Cycle Engine (RSE) 88
5.1 Design of Prototype 88
5.1.1 Dimensions and Materials 90
5.1.2 Rotor and Eccentric Shaft 93
5.1.3 Epitrochoid Housing and Heat Exchangers 95
5.1.4 Regenerator 97
5.2 Fabrication and Adjustment 98
5.3 Prototype Operation Testing 103
5.4 Discussion 104
Chapter 6
Conclusions 106
6.1 Conclusions and Improved Design 106
6.2 Future Work 108

Bibliography 110

A. Reference 110
B. Technical Drawings 116
Publication List 121
參考文獻 Reference

[1] http://www.eere.energy.gov U.S. Department of Energy / Energy Efficiency and Renewable Energy
[2] http://www.buderussolar.com Buderus Solar Technology
[3] http://www.tenco.us Tenco Solar
[4] http://www.sunmaxxsolar.com SunMaxx Solar
[5] R. Haas, “Market deployment strategies for photovoltaics: an international review,” Renewable and Sustainable Energy Reviews, Vol. 7, pp. 271-315, 2003
[6] N. Barreau, “Indium sulfide and relatives in the world of photovoltaics,” Solar Energy, Vol. 83, No. 3, pp. 363-371, 2009
[7] http://sharp-world.com Sharp Corporation
[8] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne and J. Poortmans, “Fabrication and characterization of highly efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization,” Thin Solid Films, Vol. 516, pp. 6984-6988, 2008
[9] A.E. Abken, D.P. Halliday, and K. Durose, “Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition,” Journal of Applied Physics, Vol. 105, 064515, 2009
[10] http://www.uni-solar.com Uni-Solar
[11] D. Pysch, J. Ziegler, J.P. Becker, D. Suwito, S. Janz, S.W. Glunz and M. Hermle, “Stretched-exponential increase in the open-circuit voltage induced by thermal annealing of amorphous silicon-carbide heterojunction solar cells,” Applied Physics Letters, Vol. 94, 093510, 2009
[12] A. Jacobson1, R.D. Duke, and D.M. Kammen1, “Amorphous silicon PV panels: Are they a good value for the money?” SolarNet Magazine, Vol. 2, No. 2, 2000
[13] A. Parretta, C. Privato, G. Nenna, A. Antonini, and M. Stefancich, “Monitoring of concentrated radiation beam for photovoltaic and thermal solar energy conversion applications,” Applied Optics, Vol. 45, No. 30, 2006
[14] http://www.solfocus.com SolFocus 2009
[15] http://tesserasolar.com Tessera Solar
[16] T.B. Chang and M.S. Ko, “Optimizing the power generation of a radiation driven Stirling engine used in the combustion chamber of an incinerator,” Journal of the Chinese Institute of Engineers, Vol. 32, No. 1, pp. 141-147, 2009
[17] S.T. Hsu, F.Y. Lin and J.S. Chiou, “Heat-transfer aspects of Stirling power generation using incinerator waste energy,” Renewable Energy, Vol. 28, No. 1, pp. 59-69, 2003
[18] Y.C. Hsieh, T.C. Hsu and J.S. Chiou, “Integration of a free-piston Stirling engine and a moving grate incinerator,” Renewable Energy, Vol. 33, No. 1, pp. 48-54, 2008
[19] J. Harrison, “Microgeneration & micro CHP,” 2008
[20] J. Harrison, “Micro Combined Heat & Power,” 2002
[21] http://www.whispergen.com WhisperGen
[22] D.M. Clucas and J.K. Raine, “Development of a hermetically sealed Stirling engine battery charger,” Institution of Mechanical Engineers, Vol. 208, pp. 357-366, 1994
[23] K. Hirata, “Schmidt theory for Stirling engines,” www.bekkoame.ne.jp, 1997
[24] Berchowitz, et al., “Multiple-cylinder, free-piston, alpha configured stirling engines and heat pumps with stepped pistons,” United States Patent No. 7171811, 2007
[25] H. Karabulut, F. Aksoy and E. Ozturk, “Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever,” Renewable Energy, Vol. 34 pp. 202-208, 2009
[26] N. Parlak, A. Wagner, M. Elsner, H.S. Soyhan, “Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions,” Renewable Energy, Vol. 34 pp. 266-273, 2009
[27] J.G. Wood, N.W. Lane and W.T. Beale, “Preliminary design of a 7 kWe free-piston Stirling engine with rotary generator Output,” 10th International Stirling Engine Conference (ISEC), 2001
[28] S.Y. Kim, J. Huth and J.G. Wood, “Performance characterization of Sunpower free-piston Stirling engines,” 3rd International Energy Conversion Engineering Conference (IECEC), 2005
[29] S.Y. Kim and D.M. Berchowitz, “Specific Power Estimations for Free-Piston Stirling Engines,” 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), AIAA 2006-4199, 2006
[30] A.D. Minassians and S.R. Sanders, “Multi free-piston Stirling engine for solar-thermal-electric power generation application,” 5th International Energy Conversion Engineering Conference and Exhibit (IECEC), AIAA 2007-4722, 2007
[31] H.W. Brandhorst Jr. and P.A. Chapman Jr., “New 5 kW free-piston Stirling space convertor developments,” Acta Astronautica, Vol. 63 pp. 342-347, 2008
[32] J.A. Riofrio, K.A. Dakkan, M.E. Hofacker and E.J. Barth, “Control-based design of free-piston stirling engines,” 2008 American Control Conference, pp. 1533-1538, 2008
[33] N. Isshiki, L. Raggi, S. Isshiki, K. Hirata and H. Watanabe, “Regenerative rotary displacer Stirling engine,” 31st Intersociety Energy Conversion Engineering Conference (IECEC), Vol. 2, 96311, pp. 1249-1254, 1996
[34] L. Raggi, M. Katsuta, N. Isshiki and S. Isshiki, “Theoretical and experimental study on regenerative rotary displacer Stirling engine,” 32nd Intersociety Energy Conversion Engineering Conference (IECEC), Vol. 2, 97179, pp. 1017-1022, 1997
[35] Dieter, “Stirling engine having slidable piston,” United States Patent, Pub. No. 2006/0156721 A1, 2006
[36] http://quasiturbine.promci.qc.ca Quasiturbine Vapeur Inc.
[37] Ellison, Jr. et al., “Stirling cycle refrigerator or engine employing the rotary Wankel mechanism,” United States Patent No. 6,109,040, 2000
[38] B. Kongtragool and S. Wongwises, “A review of solar-powered Stirling engines and low temperature differential Stirling engines,” Renewable and Sustainable Energy Reviews, Vol.7 pp.131-154, 2003
[39] G. Walker, Stirling engines, Oxford: Clarendon Press, ISBN: 0198562098, 1980
[40] I. Urieli and D.M. Berchowitz, Stirling cycle engine analysis, Adam Hilger Ltd, Bristol, ISBN: 0852744358, 1984
[41] R. F. Ansdale, The Wankel RC engine, South Brunswick, N.J.: A. S. Barnes, ISBN: 0592006255, 1969
[42] Y. Fujimoto, et al., "Present and prospective technologies of rotary engine," Society of Automotive Engineers (SAE), 870446, 1987
[43] B. Long, RX-7: Mazda's rotary engine sports car, Veloce Publishing, ISBN: 1904788033, 2004
[44] http://www.carbibles.com Carbibles
[45] http://rotarynews.com Rotary News
[46] J.G. Rizzo, The Stirling engine manual, Somerset: Camden miniature steam services, 1997
[47] A.J. Organ, The regenerator and the Stirling engine, Mechanical Engineering Publication, ISBN: 1860580106, 1997
[48] M. Tanaka, I. Yamashita and F. Chisaka, “Flow and heat transfer characteristics of the stirling engine regenerator in an oscillating flow,” JSME International Journal, vol. 33, series 2, no. 2, pp. 283-289, 1990
[49] Y. Chen, E. Luo and W. Dai, “Heat transfer characteristics of oscillating flow regenerator filled with circular tubes or parallel plates,” Cryogenics, Vol. 47, pp. 40-48, 2007
[50] T. S. Zhao and P. Cheng, “Oscillatory pressure drops through a woven-screen packed column subjected to a cyclic flow,” Cryogenics, Vol. 36, No. 5, pp. 333-341, 1996
[51] R.F. Ansdale, The Wankel RC engine: design and performance, South Brunswick, N.J.: A. S. Barnes, ISBN: 0592006255, 1969
[52] D.E. Cole, “The Wankel engine,” Scientific American, Vol. 227, No. 2, pp. 14-23, 1972
[53] K.C. Weston, “Computer simulation of a Wankel Rotary engine-Analysis and graphics,” Proceedings of the Conference of the Society for Computer Simulation, pp. 213-216, 1986
[54] R.E. Mount and G.A. LaBouff, “Advanced stratified-Charge rotary engine design,” Society of Automotive Engineers Paper 890324, 1989
[55] J.B. Hege, “Wankel Rotary Engine: A History,” McFarland & Company, ISBN: 0786411775, 2002
[56] FLUENT 6.3 user guide, 2006
[57] B.E. Launder and D.B. Spalding, “Lectures in mathematical models of turbulence,” Academic Press, London, England, 1972.
[58] V. Yakhot and S.A. Orszag, “Renormalization group analysis of turbulence: I. Basic Theory,” Journal of Scientific Computing, Vol.1 No. 1, pp. 1-51, 1986
[59] D. Choudhury, “Introduction to the renormalization group method and turbulence modeling,” Fluent Inc. Technical Memorandum TM-107, 1993
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信