§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1507200513555400
DOI 10.6846/TKU.2005.00295
論文名稱(中文) 具有軸流泵功能之開關式磁阻馬達設計
論文名稱(英文) Design of a Switched Reluctance Motor-Pump
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 林宏育
研究生(英文) Hung-Yu Lin
學號 692342693
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-07-08
論文頁數 92頁
口試委員 指導教授 - 楊勝明
委員 - 劉添華
委員 - 葉廷仁
關鍵字(中) 開關式磁阻馬達
軸流式泵
馬達泵
關鍵字(英) SRM
Axial flow pump
Skew rotor
第三語言關鍵字
學科別分類
中文摘要
開關式磁阻馬達為一種構造簡單、結構強健,具有高轉速高轉矩適合在惡劣環境下工作的馬達。當轉子扭轉時,其結構類似軸流式泵之抽水葉片,本文在此觀點下提出一磁阻馬達軸流式泵的構想及其設計方法,首先設計一傳統6/4極磁阻馬達,接著以同樣的角度扭轉定子及轉子,並分析不同轉子形狀及凸極齒寬的電感波型,並選取與原始磁阻馬達輸出轉矩比較下降最少者為最終設計,最後以實驗驗證磁阻馬達軸流泵之設計。
英文摘要
Switch reluctance motor is a simple structured and rugged motor; it has high torque and speed capabilities, and is suitable to operate in harsh environment. When the rotor of a SRM is skewed, its structure resembles the impeller of an axial flow pump. Based on this observation, a switch reluctance motor-pump is proposed and its design method is presented in this paper. A conventional 6/4 pole SRM is designed first. Then, the stator and rotor are skewed with the same angle. Inductance waveforms for various rotor shape and tooth thickness are analyzed. A final design is selected with the least reduction in torque capability comparing to the original SRM. Finally, experimental results have verified the feasibility of motor-pump design.
第三語言摘要
論文目次
目錄

中文摘要……………………………………………………………….……….I
英文摘要………………………………………………………………………II
目錄…………………………………………………………………………...III
圖目錄…………………………………………………….…………………...V
表目錄……………………………………………….……………………...VIII
符號說明……………………………………………….……………………..IX
第一章 緒論……………………………………….…………………………..1
1.1背景與目的…………………………………………………….……...1
1.2文獻回顧……………………………………….……………………...5
1.3大綱………………………….…..………………………………….…9
第二章 開關式磁阻馬達與軸流式泵簡介.…………………….……...……11
2.1開關式磁阻馬達簡介……….…………………….………....………11
2.2軸流式泵的基本設計…………………………………….…….……20
第三章 開關式磁阻馬達軸流式泵設計………………………………...…..28
3.1原始開關式磁阻馬達設計……..……………………………………28
3.2馬達軸流式泵設計構想…………………………………………….35
3.3轉子葉片改良………………………...……………………………..43
3.4結果討論………………..…………………………………………...59
第四章 控制系統.………………....……………………………..…………..60
4.1驅動器簡介………………………………………..……...…………60
4.2控制系統……………………………………..……………………...62
4.3動態分析……………..……………………………………….……..65
第五章 實驗結果…………………………………………………………….69
5.1馬達製作過程……………………………………………….………69
5.2實驗系統介紹……………………………………………………….71
5.3系統參數量測……………………………….………………………74
5.4速度控制實驗結果………………………….………………………77
5.5流量及揚程量測………………………….………………………….81
5.6結果討論…………………………………….……………………….84
第六章 結論與未來工作………………………………………….…………85
6.1結論……………………………………………………….….………85
6.2未來工作方向…………………………………………………….….85
附錄一  6/4三相開關式磁阻馬達軸流式泵組合圖……..……….……......87
參考文獻……………………………………………………………….. .…...88

圖目錄

圖1.1	典型的軸流式泵結構	3
圖1.2	典型的離心式泵結構	3
圖1.3	軸流式泵特性曲線	6
圖1.4	文獻[9]所提出之軸流式泵	6
圖1.5	文獻[16]所提出之軸流式泵結構	7
圖1.6	文獻[18]提出之軸流式泵結構	8
圖2.1	典型的6/4三相開關式磁阻馬達結構圖	12
圖2.2	定子、轉子角度與電感之關係圖	16
圖2.3	產生正轉矩之電流電感關係示意圖	18
圖2.4	典型的6/4極開關式磁阻馬達之電感、電流與轉矩關係圖	19
圖2.5	軸流式泵設計流程	22
圖2.6	比速率與馬達內外徑之關係圖	23
圖2.7	比速率與係數ku之關係圖	24
圖2.8	葉片角度示意圖	26
圖2.9	N.A.C.A.翼型性能 線圖	27
圖3.1	6/4極開關式磁阻馬達結構參數之定義	30
圖3.2	SRM設計流程圖	34
圖3.3	定子與轉子同時扭轉後之6/4極SRM	36
圖3.4	圖3.3之SRM的電感與轉角圖	37
圖3.5	三段式定子與扭轉轉子之設計	38
圖3.6	原始的磁阻馬達繞線圖	39
圖3.7	扭轉後繞線示意圖	39
圖3.8	扭轉後定子、轉子角度與電感之關係圖	40
圖3.9	扭轉後馬達之理想電感、電流與轉矩關係圖	42
圖3.10	葉片改良流程圖	44
圖3.11	FEA單片電感波型	46
圖3.12	FEA之單相電感波型	46
圖3.13	扭轉後重疊顯示電感值	47
圖3.14	扭轉後完整電感值	48
圖3.15	未削薄轉子凸極磁通密度圖	48
圖3.16 轉子扭轉後齒寬削薄5度之重疊顯示電感值	49
圖3.17	轉子扭轉後齒寬削薄5度之FEA電感值	50
圖3.18	轉子齒寬削薄5度之磁通密度圖	50
圖3.19	凸極齒寬削薄10度單片並列電感圖	51
圖3.20	轉子扭轉後再將凸極齒寬削薄10度FEA電感圖	52
圖3.21	轉子齒寬削薄10度磁通密度圖	52
圖3.22	凸極齒寬削薄15度的單片並列電感圖	54
圖3.23	轉子扭轉凸極齒寬削薄15度FEA電感圖	54
圖3.24	轉子齒寬削薄15度磁度密度圖	55
圖3.25	凸極齒寬削薄15度的機構圖	56
圖3.26	凸極齒寬船錨形狀的初版設計圖	56
圖3.27	錨型凸極轉子磁通密度圖	57
圖3.28凸極齒寬船錨形狀的二版設計圖	58
圖3.29	改良後錨型凸極轉子磁通密度圖	58
圖4.1	基本的三相SRM驅動電路	61
圖4.2	基本的SRM開關切換模式	61
圖4.3	電流控制驅動時系統的方塊圖	63
圖4.4	磁滯型電流控制驅動方塊圖	63
圖4.5	磁滯型電流控制上下限	64
圖4.6	Maxwell EM2D控制電路圖	65
圖4.7	6/4極磁阻馬達電流波型圖	66
圖4.8	6/4極磁阻馬達輸出轉矩圖	66
圖4.9	6/4極磁阻馬達電流波型圖	67
圖4.10	轉子扭轉、轉子凸極為錨型設計之動態轉矩圖	68
圖5.1	實作轉子機構	70
圖5.2	隔離環葉片	70
圖5.3	馬達定子機構	71
圖5.4	TMS320F240 DSP控制器	72
圖5.5	磁阻馬達驅動器	73
圖5.6	程式流程圖	73
圖5.7	實際測量之電感值	74
圖5.8  馬達轉矩量測示意圖	76
圖5.9	馬達轉矩量測電路圖	76
圖5.10	1000rpm無載運轉速度及電流波型	78
圖5.11	2000rpm無載運轉速度及電流波型	79
圖5.12	3000rpm無載運轉速度及電流波型	80
圖5.13	抽水設備圖	81
圖5.14	流量圖	82
圖5.15	揚程圖	82
圖5.16	1000rpm抽水運轉電流波型	83
圖5.17 2000rpm抽水運轉電流波型	83
圖5.18	3000rpm抽水運轉電流波型	84

表目錄

表1.1 泵之分類…………………………….……………………………2
表3.1 軸流式泵輸出性能表…………………………………………...29
表3.2 馬達性能參數表………………………………………………...29
表3.3馬達結構參數表……………………………………………....…31
表3.4馬達設計參數表……………………………………..….…….....35
表5.1 馬達三相電阻………...………………………………………....75
參考文獻
參考文獻

[1] 梶原滋美, “泵及其使用方法”, 臺隆書店, 1982年2月.
[2] 桂人傑, “磁阻馬達與其展望”, 機械工業雜誌, 1999年4月, pp. 173-188.
[3] T. J. E. Miller, Switched Reluctance Motors and Their Drives, Oxford, 1993.
[4] 楊建裕, “流體機械”, 高立圖書有限公司, 1980年7月.
[5] L. P. Taylor, L. Blanc, W. J. C. Pieter, K. C. Butler, and T. R. Maher, “Implantable electric axial-flow blood pump”, America Patent, No: 5588812, Dec. 1996.
[6] R. J. Benkowski, C. Kiris, D. Kwak, B. J. Rosenbaum, J. W. Bacak and M. E. DeBakey, “Rotary blood pump”, America Patent, No: 5947892, Sep. 1999.
[7] R. Jarvik, “High reliability cardiac assist system”, America Patent, No: 5613935, Mar. 1997.
[8] 陳明祥, “單軸主動式磁浮軸承在軸流式心室輔助器之設計與控制”, 淡江大學機械工程學系碩士論文, 民國93年6月.
[9] M. Goldowsky, “Mini hemoreliable axial flow LVAD with magnetic bearing, part1,2: historical overview and concept advantages”, ASAIO Journal 48(1), Jan./Feb. 2002, pp.96-100.
[10] M. Goldowsky, ”Magnetic suspension blood pump” America Patent, No: 6527699 B1, Mar. 2003.
[11] J. F. Antaki, B. Paden, G. Burgreen and N. J. Groom, “Magnetically suspended miniature fluid pump and method of designing the same”, America Patent, No: 6447265 B2, Sep. 2002.
[12] J. F. Antaki, B. Paden, G. Burgreen and N. J. Groom, “Blood pump having a magnetically suspended rotor”, America Patent, No: 6447266 B2, Sep. 2002.
[13] 籃重凱, “軸流風扇翼型與角度對性能曲線之影響”, 國立清華大學工程與系統科學所碩士論文, 民國93年6月.
[14] 蔡孟勳, “不同旋轉葉片之軸流推進系統”, 華梵大學機電工程所碩士論文, 民國92年6月.
[15] 林彥宏, “軸流式泵旋轉葉片及導流葉片區域之流場分析”, 華梵大學機電工程所碩士論文, 民國93年6月.
[16] R. J. Bozeman, J. W. Akkerman, G. S. Aber, G. A. Van Damm, J. W. Bacak, P. A. Svejkovsky, R. J. Benkowski “Method for reduce pump damage to blood”, America Patent, No: 5678306, Oct. 1997.
[17] G. S. Aber, “Blood pump bearing system”, America Patent, No: 5957672, Sep. 1999.
[18] Toshiyasu Takura, Yoshifumi Tanabe, “Electric pump”, America Patent, No: 6109887, Aug. 2000.
[19] T. J. E. Miller, “Optimal design of switched reluctance motor”, IEEE Trans. on industrial Electronics, vol. 49, no.1, Feb.2002, pp.15-27.
[20] M.N. Anwar, I. Husain and A.V. Radun, “A comprehensive design methodology for switched reluctance machines”, IEEE Trans. On Industry Applications vol. 37, no. 6, Nov/Dec. 2001,pp. 1684-1694.
[21] B. Fahimi, G. Suresh and M. Ehsani, “Design considerations of switched reluctance motors: vibration and control issues”, IEEE IAS Annual Meeting, vol. 4, 1999, pp. 2259-226.
[22] R. B. Fahimi and M. Ehsani, “Spatial distribution of acoustic noise caused by radial vibration in switched reluctance motors”, IEEE Industry Applications Conference, vol. 1, 2000, pp. 114 –118.
[23] M.N. Anwar and I. Husain, “Design perspectives of a low acoustic noise switched reluctance machine”, IEEE Industry Applications Conference, vol. 1, 2000, pp. 99-106.
[24] W. Cai, P. Pillay and A. Onekanda, “Analytical formulae for calculating SRM modal frequencies for reduced vibration and acoustic noise design”, IEEE Industry Applications Conference, 2001, pp. 203-207.
[25] Yifan Tang, “Characterization, numerical analysis and design of switched reluctance motor for improved material productivity and reduced noise ”, IEEE IAS Annual Meeting, vol. 2, Oct. 1996, pp. 715 -722.
[26] J. Mahn, D. Williams, P. Wung, G. Horst, J. Lloyd and S. Randall, “A systematic approach toward studying noise and vibration in switched reluctance machines: preliminary results”, IEEE IAS Annual Meeting, vol. 2, Oct. 1996, pp. 779 -785.
[27] M.N. Anwar, I. Husain, S. Mir and T. Sebastian, “Experimental evaluation of acoustic-noise and mode frequencies with design variations of switched reluctance machines”, IEEE IAS Annual Meeting , vol. 1, 2001, pp. 3-10.
[28] W. Cai and P. Pillay, “Resonance frequencies and mode shapes of switched reluctance motors”, International Electric Machine and Drives Conference, May 1999, pp. 44-47.
[29] P. Pillay and W. Cai, “An investigation into vibration in switched reluctance motors”, IEEE Trans. on Industry Applications, vol. 35, no. 3, May/Jun 1999, pp. 589-596.
[30] R.S. Colby, F.M. Mottier and T.J.E. Miller, “Vibration modes and acoustic noise in a four-phase switched reluctance motor”, IEEE Trans. on Industry Applications, vol. 32, no. 6 , Nov/Dec 1996, pp. 1357 –1364.
[31] R.S. Colby, F.M. Mottier and T.J.E. Miller, “Vibration modes and acoustic noise in a 4-phase switched reluctance motor ”, IEEE IAS Annual Meeting, vol. 1 , Oct .1995, pp. 441 -447.
[32] A. Michaelides and C. Pollock, “Reduction of noise and vibration in switched reluctance motors: new aspects”, IEEE IAS Annual Meeting, vol. 2, Oct. 1996, pp.771 -778.
[33] M. Sanada, S. Morimoto, Y. Takeda and N. Matsui, “Novel rotor pole design of switched reluctance motors to reduce the acoustic noise”, IEEE Industry Applications Conference, vol. 1, 2000, pp. 107-113.
[34] M. Besbes, C. Picod, F. Camus and M. Gabsi, “Influence of stator geometry upon vibratory behaviour and electromagnetic performances of switched reluctance motors”, IEE Proceedings, Electric Power Applications, vol. 145, no. 5 , Sep 1998, pp. 462 -468.
[35]	H. M. B. Metwally, W. R. Anis, ”Performance analysis of photovoltaic-powered water-pumping system using switched reluctance motor drives”, Journal of power sources 52,Elsevier,Jun.1994,pp.141-147.
[36] H. Vasquez, J. K. Parker, ”A new simplified mathematical model for a switched reluctance motor in a variable speed pumping application”, Mechatronics 14, Elsevier, Apr. 2004, pp. 1055-1068.
[37] Yamai, H, Kaneda, M, Ohyama, K, Takeda, Y, Matsui, N, ” Optimal switched reluctance motor drive for hydraulic pump unit”, IEEE Industry Applications Conference, Oct 2000, pp. 1555-1562.
[38]	Hendershot, Jr., ”Polyphase split-phase switched reluctance motor”, America Patent, No: 5652493, Jul.1997.
[39]	Tsai Mi-Ching, Huang Chien-Chin, Huang Zheng-Yi, ” A new two-phase homopolar switched reluctance motor for electric vehicle applications”, Journal of Magnetism and Magnetic Materials, Dec. 2003, pp.173-181
[40] 鍾守安, “通風機與泵之設計”, 五洲出版社, 1974年6月.
[41] R. Krishnan, Switched reluctance motor drivers, CRC Press, 2001.
[42] 馬玉龍, “12/8極開關式磁阻馬達之徑向力分析”, 淡江大學機械工程學系碩士論文, 民國92年6月.
[43] A. V. Rajarathnam, K. M. Rahman, and M. Ehsani, “Improvement of hysteresis control in switched reluctance motor drives”, IEEE Industry Applications Conference, 9-12 May 1999, pp. 537 – 539.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信