淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507200500284000
中文論文名稱 含可控制參數及服務水準限制式的連續性檢查存貨模型之研究
英文論文名稱 A study of continuous review inventory models involving controllable parameters with service level constraint.
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 93
學期 2
出版年 94
研究生中文姓名 林光奎
研究生英文姓名 Kuang-Kuei Lin
學號 692560674
學位類別 碩士
語文別 中文
口試日期 2005-06-03
論文頁數 68頁
口試委員 指導教授-歐陽良裕
委員-吳坤山
委員-廖瑞容
中文關鍵字 存貨  前置時間  服務水準  品質 
英文關鍵字 Inventory  Lead Time  Service Level  Quality 
學科別分類 學科別社會科學管理學
中文摘要 從1970年初,及時(JIT)生產管理系統開始在日本製造業引起廣泛的重視後,由於它對於消除浪費,提高生產力及提升產品品質有極卓越的表現,引起歐美及台灣製造公司爭相仿效與研究。其理念乃是認為透過持續不斷的學習與努力可改進系統中造成浪費的因素,進而使浪費減至最低。欲達成JIT的目標,投資資金以降低訂購成本、縮短前置時間、改善製程品質水準等活動,被認是可行且有效的方法。因此,在以往文獻探討中常被視為不可控制的參數,如訂購成本、製程的品質水準及前置時間等,在實務中其實是可以透過投資資金加以控制的。另一方面,在實際的存貨問題中,缺貨成本常包含契約規定的缺貨懲罰成本,顧客因缺貨造成不便而對銷售商要求數量折扣,商譽的損失以及失去潛在顧客而引起的損失等。這些因為缺貨而引起的諸多成本及損失往往難以精確的估計。
本論文係研究在採用服務水準限制式替代目標函數的缺貨成本項下,探討訂購成本、製程品質水準如何透過投資資金加以控制,以及降低訂購成本與縮短前置時間兩者之間的關係並非獨立,建構六個存貨決策模型,其中共同的決策變數有訂購數量、請購點與前置時間。第二章將目標函數中的缺貨成本項以服務水準限制式替代,討論投資資金以降低訂購成本與縮減前置時間的存貨模型。第三章建構一個含服務水準限制式,在製程不完備的情形下,討論如何改善製程品質水準及縮短前置時間的存貨模型。第四章建立含服務水準限制式及在製程不完備的情形下,考慮訂購成本的降低與前置時間有關(包含訂購成本與前置時間之間的關係為線性關係和對數關係)的存貨模型。在每一章利用演算法找出使全年期望總成本有最小值的最適解。
英文摘要 The Japanese experience of using Just-In-Time (JIT) production shows that there are advantages and benefits associated with their efforts to control lead time. Japanese manufacturers are known for their strong and lasting partnership with their suppliers. This helps reduce lead time and is one of the sources of success of their JIT philosophy. The successful JIT is through the various effects and continuous improvements that efficient usage of resources the high quality products in the most economical manner, so as to gain the competitive advantages for business enterprise. Many activities, such as reducing the setup cost, shorting the lead time, and improving the quality of production processes and products, are recognized as the feasible and effective ways to achieve the goal of JIT. In other viewpoints, the factors (setup cost, lead time, and quality) mentioned above are often assumed as fixed constant and uncontrollable in the traditional inventory models, but are controllable in practice. On the other hand, in many practices, the stockout cost often includes intangible components such as loss of goodwill and potential delay to the other parts of the inventory system, and hence it is difficult to determine an exact value for the stockout cost.
In this thesis, we employ a service level constraint to replace the shortage cost in the objective function, and discuss the problem. In chapter 2, we discuss the problem the problem of investing capital in reducing setup cost, where the setup cost is treated as one of the decision variables in the model. In chapter 3, we further consider the possible relationship between quality and lot size, and investigate the quality improvement problem in which the quality level is viewed as a controllable factor and is one of the decision variables. In chapter 4, we assume lead time and ordering cost reductions act dependently, and discuss the same problem as in chapter 3. For all models proposed in this thesis, we utilize the numerical examples to illustrate the effects of inventory systems associated with investing capital in changing the values of parameters.
論文目次 目錄

表目錄 IV
使用符號一覽表 V
基本假設 VI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討 4
1.3 研究架構 7
第二章 含服務水準限制式及縮減前置時間與降低訂購成本的經濟訂購量模型 9
2.1 前言 9
2.2 符號與假設 11
2.3 模型建立 12
2.3.1 前置時間內需求量為常態分配的模型 14
2.3.2 前置時間內需求量為分配自由的模型 18
2.4 數值範例 22
2.5 結論 25
第三章 含服務水準限制式、縮減前置時間及改善製程品質水準的經濟訂購量模型 26
3.1 前言 26
3.2 符號與假設 27
3.3 模型建立 28
3.3.1 前置時間內需求量為常態分配的模型 29
3.3.2 前置時間內需求量為分配自由的模型 33
3.4 數值範例 36
3.5 結論 39
第四章 含服務水準限制式、降低訂購成本與縮短前置時間有關及改善製程品質水準的經濟訂購量模型 41
4.1 前言 41
4.2 符號與假設 42
4.3 模型建立 43
4.3.1 訂購成本與前置時間呈線性關係的模型 44
4.3.2 訂購成本與前置時間呈對數相關的模型 48
4.4 數值範例 51
4.5 結論 58
第五章 結論 59
5.1 主要研究結果 59
5.2 未來研究方向 61
參考文獻 63


表目錄
表2.1 前置時間內各成分的相關資料 22
表2.2 前置時間內的需求量服從常態分配下最適解的求解過程 23
表2.3 範例1的最適解彙整表 23
表2.4 前置時間內需求量的機率分配為未知下最適解的求解過程 24
表2.5 範例2的最適解彙整表 24
表3.1 前置時間內的需求量服從常態分配下最適解的求解過程 37
表3.2 範例3的最適解彙整表 38
表3.3 前置時間內需求量的機率分配為未知下最適解的求解過程 38
表3.4 範例4的最適解彙整表 39
表4.1 訂購成本與前置時間為線性關係模型下最適解的求解過程 53
表4.2 訂購成本與前置時間為線性關係模型下不同 值和 值組合的最適解 54
表4.3 訂購成本與前置時間為對數關係模型下最適解的求解過程 56
表4.4 訂購成本與前置時間為線性關係模型下不同 值和 值組合的最適解 57

參考文獻 [1] Ben-Daya, M. and Raouf, A. (1994), “Inventory Models Involving Lead Time as Decision Variable,” Journal of the Operational Research Society, Vol. 45, No. 5, pp. 579-582.
[2] Candace, A. Y. (1987), “Planned Leadtimes for Serial Production System,” IIE Transactions, Vol. 19, No. 3, pp. 300-307.
[3] Chung, K. J. and Chiu, P. P. (1998), “Economic Production Quantity Model Involving Lead Time as a Decision Variable,” Master thesis, National Taiwan University of Science and Technology.
[4] Gallego, G. and Moon, I. (1993), “The Distribution Free Newsboy Problem: Review and Extensions,” Journal of the Operational Research Society, Vol. 44, No. 8, pp. 825-834.
[5] Hariga, M. and Ben-Daya, M. (1999), “Some Stochastic Inventory Models with Deterministic Variable Lead Time,” European Journal of the Operational Research, Vol. 113, pp. 42-51.
[6] Hall, R. W. (1983), Zero Inventories, Dow Jones-Irwin, Homewood, Illinois.
[7] Hadely, G. and Whitin, T. M. (1963), Analysis of Inventory Systems, Prentice-Hall, New Jersey.
[8] Hong, J. D. and Hayya, J. C. (1995), “Joint Investment in Quality Improvement and Setup Reduction,” Computers & Operations Research, Vol. 22, No. 6, pp. 567-574.
[9] Kalro, A. H. and Gohil, M. M. (1982), “A Lot Size Model with Backlogging when the Amount Received is Uncertain,” International Journal of Production Research, Vol. 20, No. 6, pp. 775-786.
[10] Keller, G. and Noori, H. (1988a), “Justifying New Technology Acquisition Through its Impact on the Cost of Running an Inventory Policy,” IIE Transactions, Vol. 20, No. 3, pp. 284-291.
[11] Keller, G. and Noori, H. (1988b), “Impact of Investing in Quality Improvement on the Lot Size Model,” OMEGA The International of Management Science, Vol. 16, No. 6, pp. 595-601.
[12] Liao, C. J. and Shyu, C. H. (1991), “An Analytical Determination of Lead Time with Normal Demand,” International Journal of Operations and Production Management, Vol. 11, No. 9, pp. 72-78.
[13] Montgomery, D. C., Bazaraa, M. S. and Keswani, A. K. (1973), “Inventory Models with a Mixture of Backorders and Lost Sales,” Naval Research Logistics Quarterly, Vol. 20, No. 2, pp. 255-263.
[14] Moon, I. and Choi, S. (1998), “A Note on Lead Time and Distributional Assumptions in Continuous Review Inventory Models,” Computers and Operations Research, Vol. 25, No. 11, pp. 1007-1012.
[15] Naddor, E. (1966), Inventory System, John Wiley, New York.
[16] Nasri, F., Affisco, J. F. and Paknejad, M. J. (1990), “Setup Cost Reduction in an Inventory Model with Finite-Range Stochastic Lead Times,” International Journal of Production Research, Vol. 28, No. 1, pp. 199-212.
[17] Ouyang, L. Y., Yeh, N. C. and Wu, K. S. (1996), “Mixture Inventory Model with Backorders and Lost Sales for Variable Lead Time,” Journal of the Operational Research Society, Vol. 47, No. 6, pp. 829-832.
[18] Ouyang, L. Y. and Wu, K. S. (1997), “Mixture Inventory Model Involving Variable Lead Time with a Service Level Constraint,” Computers & Operations Research, Vol. 24, No. 9, pp. 875-882.
[19] Ouyang, L. Y., Chen, C. K. and Chang, H. C. (1999), “Lead Time and Ordering Cost Reductions in Continuous Review Inventory System with Partial Backorders,” Journal of the Operational Research Society, Vol. 50, pp. 1272-1279.
[20] Ouyang, L. Y. and Chuang, B. R. (2000), “Stochastic Inventory Model Involving Variable Lead Time with a Service Level”, Yugoslav Journal of Operations Research, Vol. 10, No. 1, pp. 81-98.
[21] Ouyang, L. Y., Chen, C. K. and Chang, H. C. (2001), “A Continuous Review Inventory Model with Ordering Cost Dependent on Lead Time”, International Journal of Information and Management Sciences, Vol. 12, No. 3, pp. 1-13.
[22] Ouyang, L. Y., Chen, C. K. and Chang, H. C. (2002), “Quality Improvement, Setup Cost and Lead-time Reductions in Lot Size Reorder Point Models with an Imperfect Production Process”, Computers & Operations Research, Vol. 29, pp. 1701-1717
[23] Paknejad, M. J., Nasri, F. and Affisco, J. F. (1995), “Defective Units in a Continuous Review (s,Q) System,” International Journal of Production Research, Vol. 33, No. 10, pp. 2767-2777.
[24] Porteus, E. L. (1985), “Investing in Reduced Setups in the EOQ Model,” Management Sciences, Vol. 31, No. 8, pp. 998-1010.
[25] Porteus, E. L. (1986a), “Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction,” Operations Research, Vol. 34, No. 1, pp. 137-144.
[26] Porteus, E. L. (1986b), “Investing in New Parameter Values in the Discounted EOQ Model,” Naval Research Logistics Quarterly, Vol. 33, No. 1, pp. 39-48.
[27] Ravindran, A., Phillps, D. T. and Solberg, J. J. (1987), Operations Research: Principles and Practice, John Wiley, New York.
[28] Rosenblatt, M. J. and Lee, H. L. (1986), “Economic Production Cycles with Imperfect Production Processes,” IIE Transactions, Vol. 18, No. 1, pp. 48-51.
[29] Sarker, B. R. and Coates, E. R. (1997), “Manufacturing Setup Cost Reduction under Variable Lead Time and Finite Opportunities for Investment,” International Journal of Production Economics, Vol. 49, pp. 237-247.
[30] Shih, W. (1980), Optimal Inventory Policies when Stockouts Result from Defective Products,” International Journal of Production Research, Vol. 18, No. 6, pp. 677-686.
[31] Silver, E. A. (1976), “Establishing the Order Quantity when the Amount Received is Uncertain,” INFOR, Vol. 14, No. 1, pp.32-39.
[32] Silver, E. A., Pyke, D. F. and Peterson, R. (1998), Inventory Management and Production Planning and Scheduling, John Wiley, New York.
[33] Subramanyam, E. S. and Kumaraswamy, S. (1981), “EOQ Formula under Varying Marketing Policies and Conditions,” IIE Transactions, Vol. 19, No.13, pp. 312-314.
[34] Tersine, R. J. (1994), Principles of Inventory and Materials Management, Prentice-Hall, New Jersey.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-07-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-07-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信