| 系統識別號 | U0002-1506201209455600 |
|---|---|
| DOI | 10.6846/TKU.2012.00579 |
| 論文名稱(中文) | 關於導數為有界的函數的Hermite-Hadamard型不等式的研究 |
| 論文名稱(英文) | Inequalities of Hermite-Hadamard type for functions whose derivatives in absolute values are quasi-convex |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 中等學校教師在職進修數學教學碩士學位班 |
| 系所名稱(英文) | Executive Master's Program In Mathematics for Teachers |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 100 |
| 學期 | 2 |
| 出版年 | 101 |
| 研究生(中文) | 謝瑾瑜 |
| 研究生(英文) | Chin-Yu Hsieh |
| 學號 | 799190078 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | 英文 |
| 口試日期 | 2012-06-09 |
| 論文頁數 | 53頁 |
| 口試委員 |
指導教授
-
楊國勝
委員 - 李武炎 委員 - 曾貴麟 |
| 關鍵字(中) |
Hermite-Hadamard 不等式 準凸函數 |
| 關鍵字(英) |
Hermite-Hadamard inequality Quasi-convex function. |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
本研究的主要目的為建立有關導數為有界且為準凸函數(quasi-convex function)的 Hermite-Hadamard 不等式之推廣,以及估計一般化的中點公式誤差的界限。所得到的研究結果可應用於藉由中點公式去估計積分之近似誤差。 |
| 英文摘要 |
The main purpose of this paper is to establish some inequalities of Hermite-Hadamard type for functions whose derivatives in absolute values are quasi-convex , and some error estimates for the generalized midpoint formula . The obtained results can be used to give estimates for the approximation error of the integral by the use of the midpoint formula . |
| 第三語言摘要 | |
| 論文目次 |
中文摘要 i 英文摘要 ii 目 次 iii 一、 前言 1 二、 主要的結果 5 三、 中點公式之應用 19 參考文獻 25 附錄 1. Introduction 27 2. Main results 31 3. Applications to the midpoint formula 46 References 52 |
| 參考文獻 |
[1] M , Alomari , M.Darus , and S.S. Dragomir , Inequlities of ermite-Hadamard’s
type for function , whose derivatives absolute values are quasi-convex ,
Punjab University J.Math.submitted .
[2] S.S. Dragomir , Two mappings in connection to Hadamard’s inequalities , J.
Math. Anal. Appl. , 167 (1992) , 49-56.
[3] S.S. Dragomir and R.P. Agarwal , Two inequalities for differentiable mappings
and applications to special means of real numbers and to trapezoidal formula ,
Appl. Math. Lett , 11(1998) , 91-95.
[4] S.S. Dragomir , Y.J. Cho and S.S. Kim, Inequalities of Hadamard’s type for
Lipschitzian mappings and their applications , J. Math. Anal. Appl. 245(2000) ,
489-501.
[5] S.S. Dragomir and S. Wang , A new inequality of Ostrowski’s type in
norm and applications to some special means and for some numerical
quadrature rule , Tamkang J. Math , 28(1997) , 239-244 .
[6] S.S. Dragomir and S. Wang . Applications of Ostrowski’s inequality to the
estimation of error bounds for some special means and for some numerical
quadrature rule , Appl. Math. Lett . , 11(1998) ,105-109 .
[7] D.A. Ion, Some estimates on the Hermite-Hadamard inequality through
quasi-convex functions , Annals of University of Craiova , Math. Comp. Sci.
Ser. , 34(2007) , 82-87 .
[8] U.S. Kirmaci , Inequalities for differentiable mappings and applications to
special means of real numbers to midpoint formula , Appl. Math. Comp.,
147(2004) , 137-146.
[9] U.S. Kirmaci and M.E. Ozdemir , On some inequalities for differentiable
mappings and applications to special means of real numbers and to midpoint
formula , Appl. Math. Comp. 153(2004) , 361-368 .
[10] M.E. Ozdemir , Atheorem on mappings with bounded derivatives with
applications to quadrature rules and means, Appl. Math . Comp, 138(2003) ,
425-434
[11] C.E.M. Pearce and J. Pecaric , Inequalities for differectiable mappings with
application to special means , Appl. Math. Comp. 13(2000) , 51-55.
[12] G.S. Yang , D.Y. Hwang and K.I.. Tseng , Some inequalities for differentiable
convex and concave mappings , Comp. Math. Appl. , 47(2004), 207-216.
|
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信