淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1506201115145000
中文論文名稱 蒸汽腔體均溫板之研製與測試
英文論文名稱 FABRICATION AND TEST OF VAPOR CHAMBER HEAT SPREADER
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 蔡孟昌
研究生英文姓名 Meng-Chang Tsai
電子信箱 channingtsai@gmail.com
學號 893340074
學位類別 博士
語文別 英文
口試日期 2011-05-24
論文頁數 124頁
口試委員 指導教授-康尚文
委員-楊錫杭
委員-陳增源
委員-楊龍杰
委員-陳育堂
中文關鍵字 蒸汽腔體  均溫板  平板熱管 
英文關鍵字 Vapor Chamber  Heat Spreader  Plate Heat Pipe 
學科別分類
中文摘要 本論文對蒸汽腔體均溫板(Vapor Chamber Heat Spreader, VCHS)提出廣泛性的研究工作。研製多種規格的均溫板,探討工作流體充填率與其熱傳性能的變化。並透過實驗數據分析均溫板在電子冷卻應用的影響。
研究改變五個不同的均溫板傾斜角(0°, 45°, 90°, 135°, 180°),結果顯示在不同的傾斜角度重力對均溫板熱傳性能的影響不大,僅在90°垂直擺放時有些微差距,顯示均溫板有很好的抗重力效果。
實驗設計將傳統單一的整體熱阻,分成擴散熱阻、一維傳導熱阻與冷凝熱阻,測試結果顯示擴散熱阻是影響性能的一個主導因子,可以有效代表均溫板的性能特性。另外,研究顯示無論是在空冷或水冷的測試條件下,都可以有效的利用均溫板來提升系統的性能。
本研究針對具發展潛能的工業應用提出均溫板的設計,數值分析與測試,結果顯示均溫板在多熱源的條件下,有良好的均溫效果,可有效取代刀鋒伺服器,通訊系統與LED的散熱模組。
英文摘要 This dissertation presents a comprehensive research work on the vapor chamber heat spreader (VCHS). Base on the experimental data this study try to regarding parametric effects of VCHS to the electronic cooling applications. A series of prototype vapor chamber heat spreaders with different working fluid filling ratios have been fabricated and tested their thermal performances.
To investigate the influence of the gravity on the VCHS performance, some tests were conducted under 0, 45, 90, 135, and 180 degree, five different tilt angles. It was shown that they have almost the same performance, and with little difference for the case of vertical install. The results also showed that the spreading resistance has the same trend with total thermal resistance which is a combination of the one-dimension, spreading, and condensing resistance. The spreading resistance is the dominating factor in determining the overall thermal resistance of a vapor chamber. VCHS can enhance the system performance both in air and water cooling tests.
In this research, several VCHS with heat sink design and simulation works have been done for potential industrial applications. VCHS shows great performance under multiple heat sources condition and replaces traditional cooling modules in Blade Server, Communication System and multiple LED chips effectively.
論文目次 Table of Contents
Acknowledgements i
Table of Contents viii
List of Figures xi
List of Tables xv
NOMENCLATURE xvi

Chapter 1 Introduction 1
1.1 Rationale for implementation of VCHS 1
1.2 Micro Channel Heat Pipe 2
1.3 Review of Characteristic Experiments on VCHS 9
1.4 Review of Simulation Works on VCHS 14
1.5 Spreading Resistance on VCHS 20
1.6 Motivation and Contents of the Study 24

Chapter 2 General Structure, Theory and Application 26
2.1 General structure of VCHS 26
2.2 Theory 28
2.2.1 General VCHS structure 28
2.2.2 Static Condition 30
2.2.3 Capillary pressure in porous 34
2.2.4 General Equation 44
2.2.5 Limits of VCHS 46
2.3 Applications 47
2.3.1 Factories in the world 47
2.3.2 Industrial applications 51

Chapter 3 Experimental Setup and Methodology 55
3.1 Thermal Performance Test 55
3.2 Variable Gravity Experiments 66
3.3 The Effect of a Cooling System with VCHS 71
3.3.1 Air cooling condenser testing 72
3.3.2 Water cooling condenser testing 74
3.3.3 VCHS enhanced the performance of heat sink 75

Chapter 4 Potential Industrial Applications 76
4.1 VCHS Size Effect in Blade Server System 76
4.2 Unsymmetrical Heat Sources with different level 79
4.3 Simulation of Intel 1366 CPU and BX924 CPU 82
4.3.1 VCHS-Heat Sink application on Intel 1366 CPU 82
4.3.2 VCHS-Heat Sink application on BX924 CPU 88
4.4 LED Lighting Applications 89
4.5 Low Cost VCHS 95

Chapter 5 Conclusions and Future Work 97
5.1 Vapor Chamber Heat Spreader 97
5.1.1 Domination of spreading resistance 97
5.1.2 Little effect on different orientations 97
5.1.3 Performance Enhancement by VCHS 98
5.1.4 VCHS for industrial application 99
5.1.5 Simulation work 99
5.2 Anticipated Benefits 100
5.3 Directions for Future Research Work 101
5.3.1 Multiple Heat Sources Solution 101
5.3.2 Heat transfer on thin film heat evaporation of VCHS 106
5.3.3 Instant Temperature used on PCR machine 107

Bibliography 109
Personal Publication 122


List of Figures
Figure 1 Flat plate micro heat spreader 5
Figure 2 Fabrication of micro heat spreader by Kovar metal 5
Figure 3 Radial grooved micro heat pipes (MHPs) 6
Figure 4 Flat miniature heat pipes with micro capillary grooves 6
Figure 5 A roll bond heat pipe (RBHP) which have 24 capillary grooves 6
Figure 6 Mesh screen and micro channel plate heat pipe 7
Figure 7 Film type heat pipe (FTHP) 7
Figure 8 Mesh screen and channels heat spreader 7
Figure 9 Observation of three layer vapor chamber heat spreader 8
Figure 10 High performance vapor chamber with triangular grooves 8
Figure 11 Schematic of pulsating/oscillation heat spreader 8
Figure 12 Wire mini heat pipe 11
Figure 13 Ultra-thin sheet-shaped heat pipe 11
Figure 14 Photograph of the experimental setup and dimensions 11
Figure 15 Top view and cross section of the vapor chamber 12
Figure 16 Photograph of the aluminum VCHS with cored-wires (RCW) 12
Figure 17 Schematic of a micro channel with sintered wicks VCHS 12
Figure 18 The correlation between evaporation resistance and water film 13
Figure 19 Mathematical model and boundary condition 15
Figure 20 Transformation of square into circular geometry 21
Figure 21 Non-square thermal spreader plate geometry 23
Figure 22 Simplified cross section schematic of the VCHS module 26
Figure 23 The exploded view of a VCHS feature 27
Figure 24 Manufacturing Process Flow Chart 27
Figure 25 Disc planner vapor chamber heat spreader structure 29
Figure 26 Dimensionless chat of VCHS sizing at 70 C 33
Figure 27 Typical capillary wick structure 41
Figure 28 Friction coefficients for laminar flow in trapezoidal ducts 43
Figure 29 Friction coefficients for laminar flow in circular segment ducts 43
Figure 30 Therma-Base™ heat sinks (Thermacore, Inc.) 48
Figure 31 Vapor Chamber products (Fujikura Ltd.) 48
Figure 32 Nanospreader™ (Celsia Technologies Inc.) 48
Figure 33 Liquid ChamberR (Vapro Inc.) 49
Figure 34 Tail-free vapor chamber (Acmecools Electronic Technology Inc.) 49
Figure 35 Vapor Chamber products (Taiwan Microloops Corp.) 49
Figure 36 Vapor SpreaderTM Foretherma Advanced Technology Co. Ltd. 50
Figure 37 Amec thermasol flat cool pipes 50
Figure 38 VCHS used on a Server system 51
Figure 39 VCHS used on a graphics processing unit (GPU) 51
Figure 40 Simulaion of multiple LEDs cooling solution 52
Figure 41 Complex vapor chamber communication devices 53
Figure 42 The assembly of the flat plate heat pipe 54
Figure 43 The top and bottom measurement points of the VCHS and heater 56
Figure 44 Cooling plate measurement points of the VCHS 57
Figure 45 The measurement points of the vapor chamber 58
Figure 46 Temperature and power density versus time diagram on 0.5 kg/cm2 and 30 C cooling water 59
Figure 47 Temperature and power density versus time diagram on 0.5 kg/cm2 and 40 C cooling water 60
Figure 48 Temperature and power density versus time diagram on 1.26 kg/cm2 and 30 C cooling water 60
Figure 49 Temperature and power density versus time diagram on 1.26 kg/cm2 and 40 C cooling water 61
Figure 50 Heat gain from electrical power 61
Figure 51 Thermal resistances versus time diagram of the VCHS on 0.5 kg/cm2 and 30 C cooling water. 63
Figure 52 Thermal resistances versus time diagram of the VCHS on 0.5 kg/cm2 and 40 C cooling water. 63
Figure 53 Thermal resistances versus time diagram of the VCHS on 1.26 kg/cm2 and 30 C cooling water. 64
Figure 54 Thermal resistances versus time diagram of the VCHS on 1.26 kg/cm2 and 40 C cooling water. 64
Figure 55 Comparison of the heat transfer rate of the VCHS 65
Figure 56 The orientation testing apparatus 66
Figure 57 The total resistance of different angle 67
Figure 58 Heat transfer rate change with different angle 68
Figure 59 Heat transfer rate on steady state region from 33 W to 35 W 68
Figure 60 Traditional heat pipe against gravity figure 70
Figure 61 The schematic of VCHS in 0, 90, and 180 degree position 70
Figure 62 Experimental apparatus of air and water cooling 71
Figure 63 Apparatus of the heating device 72
Figure 64 The maximum evaporator temperature as a function of time with different filling ratio (input power 73W, air cooling) 73
Figure 65 Thermal resistance with different filling ratio on 73 W input power 73
Figure 66 The maximum evaporator temperature trend from 20 to 262 W 74
Figure 67 Thermal resistance trend from 20 to 262 W 74
Figure 68 HP base cooling module 77
Figure 69 VCHS base cooling module unit for 12-Core 4 Chips Blade Server 78
Figure 70 Double size VCHS cooling module use for two CPU directly 78
Figure 71 The schematic of 4 chips blade server system 78
Figure 72 Temperature description and radar chat on 4 CPU chips 79
Figure 73 Multi level and complex vapor chamber heat spreader 80
Figure 74 The ICEPAK model for the special complex VCHS 80
Figure 75 The temperature description on heat sources and VCHS 81
Figure 76 The ICEPAK model for Intel 1366 CPU 82
Figure 77 Cross cut view of VCHS and copper base with 48 fins copper sink 84
Figure 78 Flow direction temperature description 84
Figure 79 Temperature description of VCHS and Copper Base with Cu fin 84
Figure 80 Heat Source Temperature by Copper base thermal module with various thickness aluminum and copper fins 87
Figure 81 Heat Source Temperature of VCHS base thermal module with various thickness aluminum and copper fins 87
Figure 82 Schematic of the thermal module setup 88
Figure 83 The ICEPAK model for BX924 CPU 88
Figure 84 Cross cut view of Copper Base and VCHS with sink at 95W 89
Figure 85 The temperature description with copper and VCHS base 89
Figure 86 Fan-less design on high power LEDs application 90
Figure 87 LED testing position diagram 91
Figure 88 LED apparatus and setup 91
Figure 89 Equivalent Heater Measure Position 92
Figure 90 The temperature trade on 4 LED chips by the distance change 93
Figure 91 (a) The pressure drop with various distance and (b) simulation results of LEDs array 93
Figure 92 Schematic of VCHS with radial grooved structure 95
Figure 93 Diffusion bonding results before polishing and after 95
Figure 94 The temperature change with the time by different filling rate 96
Figure 95 The Thermal resistance change with the time by different filling rate 96
Figure 96 Temperature variation in an internally heated conductor 102
Figure 97 Double heat sources in a plane wall temperature description 102
Figure 98 Conduction in a wall with uniform heat generation 103
Figure 99 Temperature distribution of two heater from center move to the side. 105
Figure 100 An evaporating region 106
Figure 101 PCR Cycler and PCR reaction mixtures 108


List of Tables
Table 1 Individual gas constants 31
Table 2 Different temperatures related to the equilibrium configuration 32
Table 3 Expressions for permeability and effective pore radius 42
Table 4 Wick permeability for several wick structure 43
Table 5 Temperature description with cooling temperature and pressure 59
Table 6 The average temperature and thermal resistance gradient with 50 W power and 40 °C cooling water. 69
Table 7 Copper and VCHS Base with 48 piece copper and aluminum fin 83
Table 8 The highest temperature of difference thermal modules with copper and VCHS base at various thickness and pieces of Fins 86
Table 9 Specification of the LED module(s)/array(s) 92
Table 10 The temperature distribution on different LED distance position 94
Table 11 The temperature distribution during Equivalent Heater 94
Table 12 The Correlation factor of different materials 94
參考文獻 [1] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, G. I. Bourianoff, “Limits to binary logic switch scaling – a Gedanken model,” Proceedings of the IEEE , 2003, vol. 9, no. 11., pp. 1934-1939.
[2] T. P. Cotter, “Principles and prospects for micro heat pipe,” Proceedings of the 5th International Heat Pipe Conference, 1984, Tsukuba, Japan, pp. 328-335.
[3] B. R. Babin, G. P. Peterson, D. Wu, “Analysis and Testing of a Micro Heat Pipe During Steady-State Operation,” Journal of Heat Transfer, 1989, vol. 110, pp. 655-665.
[4] S. W. Kang, D. Huang, “Fabrication of star grooves and rhombus grooves micro heat pipe,” Journal of Micromechanics and Microengineering, 2002, vol. 12, no. 5, pp. 525-531.
[5] D. A. Benson, R. T. Mitchell, M. R. Tuck, D. R. Adkins and D. W. Palmer, “Micro-machined Heat Pipes in Silicon MCM Substrates,” Proceedings of IEEE Multichip Module Conference, 1996, Santa Cruz, CA, pp. 6-7.
[6] D. A. Benson, R. T. Mitchell, M. R. Tuck, D. W. Palmer, and G. P. Peterson, “Ultrahigh-capacity micro machined heat spreaders,” Microscale Thermophys. Engin., 1998, vol. 2, pp. 21-30.
[7] D. A. Benson, C. V. Robino, “Design and testing of metal and silicon heat spreaders with embedded micromachined heat pipes, Advances in Electronic Packaging, 1999, vol. 26-2, pp. 1957-1964.
[8] S. W. Kang, S. H. Tsai, H. C. Chen, “Fabrication and test of radial grooved micro heat pipes,” Applied Thermal Engineering, 2002, vol. 22, issue 14, pp. 1559-1568.
[9] Novel Concepts, Inc. http://www.novelconceptsinc.com/.
[10] R. Hopkins, A. Faghri, D. Khrustalev, ”Flat miniature heat pipes with micro capillary grooves,” Journal of Heat Transfer, 1999, vol. 121, pp. 102-109.
[11] K. Take, Y. Furukawa, S. Ushioda, “Fundamental investigation of roll bond heat pipe as heat spreader plate for notebook computers,” IEEE Trans on components and packaging technologies, 2000, vol. 23, pp. 80-85.
[12] Y. Wang, K. Vafai, “An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe,” International Journal Heat Mass Transfer, 2000, vol. 43, pp. 2657-2668.
[13] C. B. Sobhan, S. V. Garimella, V. V. Unnikrishnan, “A computational model for the transient analysis of flat heat pipes,” IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, 2000, vol. 2, pp. 106-113.
[14] Y. Cao, M. Gao, “Wickless network heat pipes for high heat flux spreading applications,” International Journal of Heat and Mass Transfer, 2002, vol45, pp. 2539-2547.
[15] S. W. Kang, M. C. Tsai, Y. H. Lin, “Fabricationof Film Type Heat Pipe,” The 7th International Heat Pipe Symposium, 2003, October, pp. 294-299.
[16] S. W. Kang , S. H. Tsai , M. H. Ko, “Metallic Micro Heat Pipe Heat Spreader Fabrication,” Applied Thermal Engineering, 2004, vol. 24, pp.299-309.
[17] S. H. Tsai, S. W. Kang, Y. T. Chen, “A comparison between Triangular Grooves, Star Grooves and Rhombus Grooves in Micro Heat Pipe,” Journal of Chinese Society of Mechanical Engineer, 2006, vol.27, pp. 1-5.
[18] Jie Wei, “Measurement of Vapor Chamber Performance,” Proceeding of 19th IEEE SEMI-THEW Symposium, 2003, pp. 191-194.
[19] Y. Koito, K. Motomatsu, H. Imura, M. Mochizuki, Y. Saito, “Fundamental Investigations on Heat Transfer Characteristics of Heat Sinks with a Vapor Chamber,” Proceeding of 7th International IHPS, 2003, Korea, pp.247-251.
[20] J. S. Go, “Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling,” Sensors and Actuators , 2005, A 121, pp. 549-556.
[21] F. Kiyooka, Y. Saito, M. Mochizuki, T. Nguyen, Y. kawahara, “A novel thermal solution using vapor chamber technology for cooling high performance desktop CPU in notebook PC,” Proceeding of 8th International Heat Pipe Symposium, 2006, Kumamoto, pp. 222-225.
[22] Y. Koito, H. Imura, M. Mochizuki, S. Torii, F. Kiyooka, “Thermal management of high-power microprocessor units using vapor chamber technology,” Proceeding of 13th International Heat Transfer Conference, 2006b, Syendy, HEX-31, 11 pages.
[23] Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber,” Applied Thermal Engineering, 2006, Vol. 26, pp. 1669-1676.
[24] U. Vadakkan, G. M. Chrysler, J. Maveety and M. Tirumala, “A Novel Carbon Nano Tube based Wick Structure for Heat Pipes/Vapor Chambers,” Proceeding of 23rd IEEE SEMI-THERM Symposium, 2007, pp.102-104.
[25] X. P. Wu, M. Mochizuki, T. Nguyen,Y. Saito, “Low Profile-High Performance Vapor Chamber Heat Sinks For Cooling High-Density Blade Servers,” Proceeding of 23rd IEEE SEMI-THERM Symposium, 2007, pp.174-178.
[26] Y. Koito, H. Imura, “Transient Thermal Characteristics of a Vapor Chamber,” Proceeding of 14th International Heat Pipe Conference, Brazil, 2007, pp.233-238.
[27] S. Oliveira Alexandre, B. H. Mantelli Marcia, H. Milanez Fernando, “Use of Vapor Chamber on Electronic Devices to Eliminate Hot Spot Under Fin Heat Sink,” Proceeding of 14th International IHPC, 2007, Brazil, pp. 239-244.
[28] M. C. Tsai, K. C. Chien, C. Y. Huang, S. W. Kang, “Thermal Performance of a Vapor Chamber,” The 9th International Heat Pipe Symposium, 2008, November, Malaysia, pp.86-89.
[29] Y. H. Lin, K. T. Chen, P. H. Cheng, S. W. Kang, “PCP Pulsating Heat Pipe,” The 9th International Heat Pipe Symposium, 2008, Malaysia, pp. 121-125.
[30] M. Mochizuki, Mashiko, K., Goto, K., Saito, Y., Nagata, M., Eguchi, K., Nguyen, T., “Cactus-type heat pipe for cooling CPU,” Proceefing of 5th International Heat Pipe Symposium, Melbourne, 1996, pp. 194-198.
[31] V. Wuttijumnong, M. Mochizuki, K. Mashiko, I. Sauciuc, T. Nguyen, “The Optimum Working Fluids Ratio for Vapor Chamber,” Proceeding of 6th Internatioinal Heat Pipe Symposium, 2000, pp.159-163.
[32] T. Nguyen, M. Mochizuki, K. Mashiko, and Y. Saito, “Use of heat pipe/heat sink for thermal management of high performance CPUs,” 16th IEEE SEMI-THERMTM Symposium, 2000, pp.76-79.
[33] Y. Koito, K. Motomatsu, H. Imura, M. Mochizuki, Y. Saito, “Fundamental Investigations on Heat Transfer Characteristics of Heat Sinks with a Vapor Chamber,” Proceeding of 7th International Heat Pipe Symposium, 2003, pp. 247-251.
[34] F. Kiyooka, Y. Saito, M. Mochizuki, T. Nguyen, Y. Kawahara, “A novel thermal solution using vapor chamber technology for cooling high performance desktop CPU in notebook PC,” Proceedings of the 8th International Heat Pipe Symposium, 2006, Kumamoto, Japan, pp. 339-342.
[35] M. Mochizuki, T. Nguyen, Y. Saito, Y. Horiuchi, K. Mashiko, T. Sataphan, Y. Kawahara, “Latest vapor chamber technology for computer,” Proceedings of the 8th International Heat Pipe Symposium, 2006, Kumamoto, Japan, pp. 349-353.
[36] M. B. H. Mantelli, A. J. A. Buschinelli, R. M. Nascimento, K. V. Paiva, “Diffusion welding of wire micro heat pipe array,” 12th International Heat Pipe Conference, 2002, Moscow-Kostrona-Moscow, Russia, 6p.
[37] S. Launay, V. Sartre, M. B. H. Mantelli, K. V. Paiva, “Investigation of a wire plate micro heat pipe array,” International Journal of thermal science, 2004, vol.43, Issue 5, pp. 499-507.
[38] K. V. Paiva, M. B. H. Mantelli, A. J. A. Buschinelli, R. M. Nascimento, “Experimental Study of a Wire Mini Heat Pipe for Microgravity Test ”, 13th IHPC, 2004, Shanghai, China, vol. 1, pp. 163-169.
[39] K. V. Paiva, M. B. H. Mantelli, R. Gohr, M. A. Correa, “Wire mini heat pipe under microgravityconditions,” 14th International Heat Pipe Conference, 2007, Florianopolis-SCBrazil, pp. 214-219.
[40] K.V. Paiva, L.K. Longo, R. Gohr, V.B. Nicolau, “Experimental tests of wire mini heat pipe under microgravity conditions aboard suborbital rockets,” Proceeding of the 9th International Heat Pipe Symposium, 2008, Kuala Lumpur, Malaysia, pp.261-268.
[41] Y. Sasaki, Y. Kimura, K. Namba, ”The ultra-thin sheet shaped heat pipe “Pera-flex”,” 13th International Heat Pipe Conference, , 2004, pp250-255.
[42] H. Aoki, N. Shioya, M. Ikeda, Y. Kimura, “Development of ultra thin plate-type heat pipe,” Proceeding of 15th International Heat Pipe Conference, 2010, Clemson, USA.
[43] Y. Koito, T. Zaizen, H. Imura, M. Mochizuki, M. Touge, “Fluid flow visualization in a vapor chamber,” proceeding of 9th International Heat Pipe Symposium, 2008, pp. 90-95.
[44] S. W. Kang, Y. H. Hung, “Feasibility study of an aluminum vapor chamber,” proceeding of 9th International Heat Pipe Symposium, 2008, pp. 103-106.
[45] C. M. Chiang, Y. C. Chiang, S. L. Chen, “Experimental Investigation on thermal performance of the vapor chamber module,” proceeding of 9th International Heat Pipe Symposium, 2008, pp. 96-102.
[46] I. Sauciuc, G. Chrysler, R. Mahajan, R. Prasher, “Spreading in the heat sink base: phase change system or solid metals??,” IEEE Transactions on components and packaging technologies, 2002, vol. 25, no. 4, pp.621-628.
[47] A. S. Oliveira, M. B. H. Mantelli, F. H. Milanez, “Use of vapor chamber on electronic devices to eliminate hot spot under fin heat sinks,” 14th International Heat Pipe Conference, 2007, Florianopolis, Brazil, 22-27.
[48] S. C. Wong, S. F. Huang, K. C. Hsieh, “Performance tests on novel vapor chambers charged with water, methanol or acetone,” 15th International Heat Pipe Conference, 2010, Clemson, USA.
[49] S. C. Wong, K. C. Hsieh, J. D. Wu, W. L. Han, “Performance tests on novel vapor chambers,” International Journal of Heat and Mass Transfer, 2010, vol. 53, issues 11-12, Pages 2377-2384.

[50] S. C. Wong, Y. C. Lin, J. H. Liou, “Visualization and evaporation resistance measurement in operating flat-plate heat pipes charged with water, methanol or acetone, ” 15th International Heat Pipe Conference, 2010, Clemson, USA.
[51] S. C. Wong, J. H. Liou, C. W. Chang, “Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes,” International Journal of Heat and Mass Transfer, September 2010, vol. 53, Issues 19-20, pp. 3792-3798.
[52] J. H. Liou, C. W. Chang, C. Chao, S. C. Wong, “Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes,” International Journal of Heat and Mass Transfer, March 2010, vol. 53, Issues 7-8, pp. 1498-1506.
[53] M. M. Chan and A. Faghri, “An analysis of the vapor flow and the heat conduction through theliquid-wick and pipe wall in a heat pipe with single or multiple heatsources,” International Journal of Heat and Mass Transfer (ISSN 0017-9310), Sept. 1990, vol. 33, pp. 1945-1955.
[54] A. Faghri and M. Buchko “Experimental and Numerical Analysis of Low-Temperature Heat Pipes with Multiple Heat Sources,” Transaction of ASME: Journal of Heat Transfer, 1991, vol. 113, pp. 728-734.
[55] K. Vaifi, W. Wang, “Analysis of flow and heat transfer characteristics of an asymmetrical flat plate heat pipe,” Int. J. Heat and Mass Transfer, 1992, vol. 35, pp. 2087-2099.
[56] K. Vaifi, N. Zhu, W. Wang, “Analysis of asymmetrical disk-shaped and flat-plate heat pipes,” ASME, J. Heat Transfer, 1995, vol. 117, 209-218.
[57] N. Zhu, N. K. Vaifi, “Analytical modeling of the startup characteristics of asymmetrical disk-shaped and flat-plate heat pipes,” Int. J. Heat and Mass Transfer, 1998, vol. 41, pp. 2619-2637.
[58] Koito, Y., Imura, H., Mochizuki, M. and Torii, S., “Numerical Analysis on Fluid Flow and Heat Transfer in a Vapor Chamber,” Proc. 1st Int. Symposium on Micro & Nano Technology, XXII-C-02 (CD-ROM), (2004).
[59] Koito, Y., Imura, H., Mochizuki, M., Saito, Y. and Torii, S., “Numerical Analysis on Thermal Transport Phenomena in Plate-Type Heat Pipes,” Proc. 10th APCChE Congress, 3I-06 (CD-ROM), (2004).
[60] Koito, Y., Imura, H., Mochizuki, M., Saito, Y. and Torii, S., “Theoretical Study on Heat Transfer Characteristics of a Vapor Chamber,” Thermal Science & Engineering, Vol.13, No.1 (2005), pp.23-30.
[61] A. Faghri, “Heat pipe science and technology,” Taylor & Francis, Washington, 1995.
[62] Japan Association for Heat Pipes (JAPH), “Jitsuyou Heat Pipe,” second edition, Nikkan Kogyo Shimbun, Ltd., p.31, 2011 (In Japanese).
[63] Koito, Y., Imura, H., Mochizuki, M. Saito, Y., “Heat transfer analysis of a vapor chamber,” Proceeding of the 1st International Forum on Heat Transfer, November 24-26, Kyoto, Japan.
[64] Y. S. Chen, K. H. Chien, Y. M. Ferng, C. C. Wang, T. C. Hung, and B. S. Pei, “Numerical Simulation of a Heat Sink Embedded with a Vapor Chamber and Calculation of Effective Thermal Conductivity of Vapor Chamber,” Applied Thermal Engineering, Vol. 29, pp. 2655-2664, 2009.
[65] Zhang M, Liu Z, Ma G. “The experimental and numerical investigation of a grooved vapor chamber,” Applied Thermal. Engineering, 2009, 29(2,3): 422-430.
[66] Yovanovich, M. M., Muzychka, Y. S., Culham, J. R., 1988, “Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Channels,” Journal of Thermophysics and Heat Transfer, Vol. 13, pp. 495–500.
[67] M. Michael Yovanovich, J. Richard Culham, and Pete Teertstra, “Analytical Modeling of Spreading Resistance in Flux Tubes, Half Spaces,” and Compound Disks, IEEE Transactions on Components, Packaging, and Manufacturing Technology—part A, Vol. 21, no. 1, MARCH 1998.
[68] Y. S. Muzychka, M. M. Yovanovich† and J. R. Culham, “Influence of Geometry and Edge Cooling on Thermal Spreading Resistance,” Journal of Thermophysics and Heat Transfer, Vol. 20, No. 2, April–June 2006.
[69] S. Lee, S. Song, V. Au, and K. P. Moran, “Constriction/Spreading Resistance Model for Electronic Packaging,” Proceedings of ASME/JSME Engineering Conference, Vol. 4, 1995.
[70] R. E. Simons, “Simple formulas for estimating thermal spreading resistance,” Electron Cool 10 (2) (2004).
[71] Y.S. Muzychka, M.M. Yovanovich, and J.R. Culham, “Thermal Spreading Resistance in Compound and Orthotropic Systems,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 18, 2004, pp. 45-51.
[72] M. Mochizuki, Th. Nguyen, K. Mashiko, Y. Saito, Ti. Nguyen, V. Wuttijumnong, X. Wu, “Practical application of heat pipe and vapor chamber for cooling high performance personal computer,” Proceedings of the 13th International Heat Pipe Conference, (2004) 448-454.
[73] M. Mochizuki, Yuji Saito, Fumitoshi Kiyooka, Tang Nguyen, “High power cooling chips by heat pipes and advanced heat spreader,” Proceedings of the 8th International Heat Pipe Symposium, September 24-26, 2006, Kumamoto, Japan, pp. 331-338.
[74] M. Mochizuki, Y. Saito, F. Kiyooka, T. Nguyen, X.P. Wu, T. Nguyen, V. Wuttijumnong, “Advanced cooling chip by heat pipes and vapor chamber for personal computers,” Proceedings of the 14th International Heat Pipe Conference, Florianopolis, Brazil, April 22–27, 2007, pp. 221-226.
[75] M. Mochizuki, , K. Mashiko, Y. Saito, Thang Nguyen, Xiao Ping Wu, Tien Nguyen, V. Wuttijumnong, “Thermal management in high performance computers by use of heat Pipes and vapor chambers,” Proceedings of the 9th International Heat Pipe Symposium, Malaysia, November, 2008, pp.39-48.
[76] Mochizuki, M.; Nguyen, T.; Mashiko, K.; Saito, Y.; Xiao Ping Wu; Wuttijumnong, V.; “Thermal management in high performance computers by use of heat Pipes and vapor chambers,” and the challenges of global warming and environment, Microsystems, Packaging, Assembly and Circuits Technology Conference, 2009. IMPACT 2009. 4th International, pp. 191 – 194.
[77] Mochizuki, M.; Nguyen, T.; Mashiko, K.; Saito, Y.; Nguyen T., Wuttijumnong, V., “Challenges of heat pipe application for global warming,” Proceedings of the 15th International Heat Pipe Conference, Clemson, South Carolina, April 25–30, 2010.
[78] T. P. Cotter, “Theory of Heat Pipes,” Los Alamos Scientific Laboratory Report No. LA-3246-MS, 1965.
[79] Amir Faghri, “Heat Pipe Science and Technology,” Taylor & Francis, 1 edition, 1995.
[80] W. M. Kays, and M. E. Crawford, “Convective Heat and Mass Transfer,” MaGraw-Hill, New York., 1980.
[81] R. K. Shah and M. S. Bhatti, “Laminar Convective Heat Transfer in Ducts,” in Handbook of Single Phase Convective Heat Transfer, Wiley, New York, 1987.
[82] G. P. Peterson, “An Introduction to Heat Pipes: Modeling, Testing, and Applications,” John Wiley & Sons, Inc., 1994.
[83] B. D. Marcus, “Theory and Design of Variable Conductance Heat Pipe,” Report No. NASA CR, 2018, National Aeronautics and Space Administration, Washington, D.C. April, 1972.
[84] S. W. Chi, “Heat Pipe Theory and Practice,” McGraw-Hill, New York, 1976.
[85] Frank Kreith, Mark S. Bohn, “Principles of Heat Transfer,” 6th Ed.,”CL Engineering, September 20, 2000.
[86] D. A. Reay, P. A. Kew, “Heat Pipes Theory,” Design and Applications, 5th Edition, 2006.
[87] R. Boukhanouf, A. Haddad, M.T. North, C. Buffone, “Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera,” Applied Thermal Engineering, vol. 20, pp. 2148–2156, 2006.
[88] Kandlikar, S. G., Kuan, W. K., and Mukherjee, A., 2005, “Experimental Study of Heat Transfer in an Evaporating Meniscus on a Moving Heated Surface,” ASME J. Heat Transfer, 127, pp. 244–252.
[89] Chun Sheng Yu, Shung Wen Kang, Ming Tai Weng , “Effective thermal management of multiple electronic components,” Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International , pp.1-4.
[90] B. K. Tan, X. Y. Huang, T. N. Wong, and K. T. Ooi, “A study of Multiple Heat Sources on a Flat Plate Heat Pipe Using a Point Source Approach,” Int. Journal of Heat Mass Transfer, vol. 43, pp. 3755-3764, 2000.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信