淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1506200915192900
中文論文名稱 結合Fenton氧化及生物反應槽處理含聚乙二醇之研磨廢水
英文論文名稱 Combined Fenton oxidation and biological process for treating PEG-containing wastewater from chemical mechanical polishing process
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 陳玠源
研究生英文姓名 Jie-Yuan Chen
電子信箱 lumen0426@gmail.com
學號 696480705
學位類別 碩士
語文別 中文
口試日期 2009-05-20
論文頁數 81頁
口試委員 指導教授-李奇旺
委員-陳孝行
委員-李柏青
中文關鍵字 聚乙二醇  Fenton  BOD/COD  氫氧自由基  生物降解 
英文關鍵字 PEG  Fenton  BOD/COD  Hydroxyl radicals  biodegradation 
學科別分類 學科別應用科學環境工程
中文摘要 聚乙二醇PEG被大量應用於再生能源太陽能板的製程中,作為研磨晶圓板潤滑液的主要成分,PEG的難分解性和親水性使得晶圓廠洩放廢水中COD值過高,雖然晶圓廠針對洩放廢水評估許多物化和生物處理單元,希望降低洩放廢水中的COD,但除了處理成效不盡理想之外,也因經濟層面考量而無法於實場上應用;故洩放廢水COD值仍高達1000~1500 mg/L,無法符合晶圓廠的COD放流水標準100 mg/L。故本研究致力於研究一套能有效處理含PEG廢水的操作單元,並將此單元的操作成本降至最低。
經由參考文獻的研讀可以得知PEG以濕式氧化法WAO、H2O2/UV等高級氧化處理程序降解後,除了可以礦化去除PEG之外,亦可提高PEG的生物降解性;但是因為其不經濟且耗能的缺點,所以無法於實場上應用。針對此一缺點,本研究改以具有能源消耗低及操作簡便優點的Fenton氧化來處理PEG,以Fenton產生的氫氧自由基將PEG分子鍵結破壞。如此一來不僅可以達到WAO的處理效果,也可解決WAO處理程序的缺點。
經由Fenton處理後的PEG水樣其生物降解性指標可大為提升,BOD/COD可由原先的0提升至0.5;此結果顯示PEG經由Fenton處理後,即可以好氧微生物進行降解,有效的解決晶圓廠放流水中COD值過高的問題。
英文摘要 PEG (Polyethylene glycol) is applied extensively in the manufacturing process of solar panels as liquid lubricant. Due to recalcitrant and hydrophilic characteristics of PEG, wafer factory are constantly struggle of meeting discharge limit for COD. COD value of the dicharge wastewater can reach as high as 1000~1500 mg/L and is much higher the effluents standard of 100 mg/L set by Taiwan EPA. Although wafer factories have assessed many physico-chemical and biological processes for wastewater treatment, treatment efficiencies of these processes are not as promising as they expect. In addition, the processes can’t be applied for actual operation because of the economic considerations.
Past studies showed that PEG can be degraded by using advanced oxidation
processes such as wet oxidation WAO and H2O2/UV. The advanced oxidation processes can not only mineralize but also increase the biodegradability of PEG; however, these AOPs are too energy-consuming to be practically employed in actual treatment. Thus, this study would adopt Fenton process to oxidize PEG, taking the advantages of Fenton such as low energy consumption and easy operation. Hydroxyl radicals generated from Fenton would oxidize PEG’s molecular bond, achieving the same effect as WAO without the energy-consuming problem of WAO process.
After PEG treated by Fenton, its biological degradability indicated by BOD/COD ratio significantly increased from 0 to 0.5. The result showed that after Fenton pretreatment PEG can be degraded by aerobic biological treatment, and Fenton process followed by aerobic biological treatment can be an effective solution for wafer factory effluents with excessively high COD value.
論文目次 圖目錄 III
表目錄 VIII
第一章、前言 1
1-1研究緣起 1
1-2研究目的 3
第二章、文獻回顧 6
2-1 以生物、物理及化學程序處理PEG 6
2-2 Fenton and Fenton-like reactions 7
2-2-1 Fenton 反應機制 8
2-2-2 影響Fenton反應的參數 9
2-3以Fenton法處理含PEG廢水 11
第三章、材料與方法 14
3-1實驗材料與設備 14
3-1-1實驗材料 14
3-1-2實驗設備 25
3-2實驗步驟 25
3-2-1 Fenton process 25
3-2-2 BOD process 26
3-3分析方法 28
3-3-1過氧化氫的分析方法 28
3-3-2亞鐵離子的分析方法 28
3-3-3 COD的分析方法 29
3-3-4 PEG的分析方法 30
3-3-5 BOD的量測方法 40
3-3-6 DO的量測方法 41
3-3-7 TOC的分析方法 42
3-3-8 PEG的混凝方法 44
3-3-9 SS的量測方法 45
3-3-10 濁度的量測方法 46
第四章、結果與討論 47
4-1 pH值對Fenton反應的影響 47
4-2 Effect of time of PEG on Fenton 48
4-3 Effect of MW of PEG on Fenton 50
4-4 Fenton dosage 56
4-5 Biodegradiability after Fenton reaction 60
4-6 Treating real wastewater 63
第五章、結論與建議 76
5-1結論 76
5-2建議 77
參考文獻 78
表目錄
Table 1. 參考文獻中以Fenton 處理其他汙染物的H2O2 和Fe2+mole 濃度比 ....... 10
Table 2. Result of T-test for COD value in Figure 5 by using EXCEL. ...................... 22
Table 3. Result of T-test for PEG4000 and PEG20000 value in Figure 6 by using
EXCEL. ........................................................................................................................ 24
Table 4. 實驗儀器設備表 ........................................................................................... 25
Table 5. 濃度為100ppm 的PEG4000 其BOD 值 .................................................... 60

圖目錄
Figure 1. Molecular structure of PEG. ........................................................................... 6
Figure 2. Speciation diagram of Iron, Total Fe3+ = 10-3 M .......................................... 11
Figure 3. COD variation of PEG in real wasteliquid after coagulation under various
treatment by using membrane and Ferric. Initial COD = 2240000 mg/L. ................... 19
Figure 4. COD variation of real wastewater treatment by Fenton and coagulation
measured by wafer manufacturer. ................................................................................ 20
Figure 5. COD variation of real wastewater treatment by coagulation and
sedimentation. Samples for wastewater were 2000X diluted. ..................................... 21
Figure 6. Concentration of PEG in real wastewater treatment by coagulation and
sedimentation. Measurement by using PEG4000 and PEG20000 standard curve
respectively. Samples for wastewater were 2000X diluted. ......................................... 23
Figure 7. Schematic diagram of Fenton treatment process1. ....................................... 25
Figure 8. Schematic diagram of Fenton treatment process2. ....................................... 26
Figure 9. Aerated and scoured system ......................................................................... 27
Figure 10. Standard curve for H2O2 analysis. .............................................................. 28
Figure 11. Standard curve for Fe(II) analysis. ............................................................. 29
Figure 12. TOC as a function of PEG concentration for PEG4000 and PEG20000. ... 31
Figure 13. Carbon weight ratio in PEG molecule for different repeat unit (%). ......... 31
Figure 14. Standard curve for PEG4000 by using TOC analyzer. ............................... 32
Figure 15. Standard curve for PEG20000 by using TOC analyzer. ............................. 32
Figure 16. Absorbance of PEG4000 under different concentration and wavelength.
(use low Dragendorff concentration) ........................................................................... 34
VII
Figure 17. Absorption of PEG4000 under different concentration and wavelength. ... 34
Figure 18. Standard curve for PEG4000 (use low Dragendorff concentration).
Absorption wavelength = 537 nm. ............................................................................... 36
Figure 19. Standard curve for PEG4000 (use high Dragendorff concentration) ......... 36
Figure 20. Comparison of standard curves obtained using Dragendorff reagents with
high and low concentrations. ....................................................................................... 37
Figure 21. Absorbance of PEG20000 under different concentration and wavelength.
(use low Dragendorff concentration) ........................................................................... 38
Figure 22. Absorbance of PEG20000 under different concentration and wavelength.
(use high Dragendorff concentration) .......................................................................... 38
Figure 23. Standard curve for PEG20000 (use low Dragendorff concentration).
Absorption wavelength = 537 nm. ............................................................................... 39
Figure 24. Comparison of PEG4000 and PEG20000 standard curves . (use low
Dragendorff concentration). ......................................................................................... 40
Figure 25. Color appearance for varied concentrations of PEG20000 in dissolved
oxygen experiment. ...................................................................................................... 41
Figure 26. Comparison of PVC and Teflon material aeration process in case of
dissolution TOC. .......................................................................................................... 42
Figure 27. TOC of PEG20000 detected by TOC analyzer using different concentration
of sodium persulfate. CPEG20000=100ppm,H2O2=750 ppm and Fe2+=329 ppm. ........... 43
Figure 28. Schematic diagram of PEG coagulated treatment processes by FeCl3.6H2O.
..................................................................................................................................... 45
Figure 29. The pH profile during Fenton reaction for various H2O2/Fe2+ mole ratio. . 47
Figure 30. The concentration of hydrogen ion profile during Fenton reaction for
various H2O2/Fe2+ mole ratio. ...................................................................................... 48
VIII
Figure 31. TOC as a function of Fenton reaction time for PEG 20000,CPEG20000=100
ppm, CH2O2=750 ppm(41.67 mmole), CFe2+=329 ppm(5.875 mmole) ......................... 49
Figure 32. TOC as a function of Fenton reaction time for PEG 20000,CPEG20000=100
ppm, CH2O2=750 ppm(41.67 mmole), CFe2+=329 ppm(5.875 mmole) ......................... 50
Figure 33. TOC as a function of Fenton reaction time for PEG 4000. ........................ 53
Figure 34. Concentration profile of PEG4000 as a function of Fenton reaction time
(mg/L) .......................................................................................................................... 53
Figure 35. PEG and TOC decrease rate of PEG4000. ................................................. 54
Figure 36. TOC variation of PEG 4000 after coagulation under various pH conditions.
Initial TOC = 50.6 mg/L. ............................................................................................. 55
Figure 37. Concentration variation of PEG 4000 after coagulation under various pH
conditions. Initial PEG = 129.2 mg/L. ......................................................................... 55
Figure 38. Dependence of mineralization of PEG4000 on time under various H2O2
dosing rate. Experimental conditions: CPEG4000 = 100ppm, CFe
2+ = 329 ppm (5.9
mmole) ......................................................................................................................... 57
Figure 39. Time variation of the mineralization of PEG4000 under various Fe2+
concentration. Experimental conditions: CPEG4000 = 100ppm,CH2O2 = 750 ppm (41.7
mmole) ......................................................................................................................... 58
Figure 40. Dependence of mineralization of PEG20000 on time under various H2O2
dosing rate.Experimental conditions: CPEG20000 = 100ppm,CFe
2+ = 658 ppm (11.7
mmole) ......................................................................................................................... 58
Figure 41. Time variation of the mineralization of PEG20000 under various Fe2+
concentration. Experimental conditions: CPEG20000 = 100ppm,CH2O2 = 750 ppm (41.7
mmole) ......................................................................................................................... 59
IX
Figure 42 The TOC decrease rate of PEG4000 and PEG20000 by Fenton
treatment.CPEG4000=CPEG20000=100 ppm and H2O2/Fe2+=3.5/1. .................................... 60
Figure 43. BOD、COD and BOD/COD variation of PEG 20000 after Fenton under
various time conditions. CFe2+=658 ppm, CH2O2=750 ppm, CH2O2/Fe2+=3.5. ................ 62
Figure 44. BOD、COD and BOD/COD variation of PEG 4000 after Fenton under
various time conditions.CFe2+=329 ppm, CH2O2=750 ppm, CH2O2/Fe2+=7.1. ................. 63
Figure 45. Mineralization of real wastewater by Fenton reaction as a function of time
under fixed H2O2/Fe2+ molar ratio. Initial CTOC in real wastewater = 50.8 ppm. Fe2+
concentration varied from 11.8 mmole to 0.7 mmole. Samples for TOC analysis were
12.5X diluted. Samples for wastewater were 10000X diluted. .................................... 65
Figure 46. Mineralization of real wastewater by Fenton reaction as a function of time
under fixed H2O2/Fe2+ molar ratio. Initial CTOC in real wastewater = 58.2 ppm. Fe2+
concentration varied from 11.8 mmole to 0.7 mmole. Samples for TOC analysis were
5X diluted. Samples for wastewater were 10000X diluted. ......................................... 66
Figure 47. TOC decrease rate of real wastewater by Fenton reaction as a function of
time under fixed H2O2/Fe2+ molar ratio. Initial CTOC in real wastewater = 58.2 ppm. Fe2+
concentration varied from 11.8 mmole to 0.7 mmole. Samples for TOC analysis were
5X diluted. Samples for wastewater were 10000X diluted. ......................................... 67
Figure 48. BOD、COD and BOD/COD variation of real wastewater after Fenton
treatment under various time conditions.CFe2+=164 ppm, CH2O2=187.5 ppm,
H2O2/Fe2+=3.5. Samples for wastewater were 10000X diluted. .................................. 68
Figure 49. BOD、COD and BOD/COD variation of real wastewater after Fenton
treatment under various time conditions.CFe2+=41 ppm, CH2O2=46.9 ppm,
H2O2/Fe2+=3.5. Samples for wastewater were 10000X diluted. .................................. 69
X
Figure 50. PEG4000 concentration of real wastewater by Fenton reaction as a function
of time under fixed H2O2/Fe2+ molar ratio. Fe2+ concentration varied from 11.8 mmole
to 0.7 mmole. Samples for wastewater were 10000X diluted. .................................... 70
Figure 51. PEG20000 concentration of real wastewater by Fenton reaction as a
function of time under fixed H2O2/Fe2+ molar ratio. Fe2+ concentration varied from
11.8 mmole to 0.7 mmole. Samples for wastewater were 10000X diluted. ................ 70
Figure 52. PEG4000、PEG20000 and COD variation of real wastewater after Fenton
treatment under various time conditions.CFe2+=41 ppm, CH2O2=46.9 ppm,
H2O2/Fe2+=3.5. Samples for wastewater were 2000X diluted. .................................... 72
Figure 53. BOD、COD and BOD/COD variation of real wastewater after Fenton
treatment under various time conditions.CFe2+=41 ppm, CH2O2=46.9 ppm,
H2O2/Fe2+=3.5. Samples for wastewater were 2000X diluted, and reaction time is 0.5
hour. ............................................................................................................................. 73
Figure 54. BOD、COD and BOD/COD variation of real wastewater after Fenton
treatment under various time conditions.CFe2+=41 ppm, CH2O2=46.9 ppm,
H2O2/Fe2+=3.5. Samples for wastewater were 2000X diluted, and reaction time is 1
hour. ............................................................................................................................. 74
Figure 55. BOD、COD and BOD/COD variation of real wastewater after Fenton
treatment under various time conditions.CFe2+=205 ppm, CH2O2=234.5 ppm,
H2O2/Fe2+=3.5. Samples for wastewater were 2000X diluted, and reaction time is 0.5
hour. ............................................................................................................................. 75

參考文獻 1. 台灣電力公司 電源開發計畫. http://www.taipower.com.tw/
2. Chang, C. Y.; Chen, Y. H.; Li, H.; Chiu, C. Y.; Yu, Y. H.; Chiang, P. C.; Ku, Y.; Chen, J. N., Kinetics of decomposition of polyethylene glycol in electroplating solution by ozonation with UV radiation. Journal of Environmental Engineering 2001, 127, (10), 908-915.
3. Chiou, C. S.; Chang, C. F.; Chang, C. Y.; Wu, Y. P.; Chang, C. T.; Li, Y. S.; Chen, Y. H., Mineralization of polyethylene glycol in aqueous solution by hydrogen peroxide with basic oxygen furnace slag. Environmental Technology 2004, 25, (12), 1357-1365.
4. Chiou, C. S.; Chen, Y. H.; Chang, C. Y.; Shie, J. L.; Liu, C. C.; Chang, C. T., Photochemical oxidation of polyethylene glycol in aqueous solution by UV/H2O2 with steel waste. Journal of the Chinese Institute of Chemical Engineers 2006, 37, (4), 321-328.
5. Mantzavinos, D.; Lauer, E.; Sahibzada, M.; Livingston, A. G.; Metcalfe, I. S., Assessment of partial treatment of polyethylene glycol wastewaters by wet air oxidation. Water Research 2000, 34, (5), 1620-1628.
6. Zhao, X.; Urano, K.; Ogasawara, S., Adsorption of polyethylene glycol from aqueous solution on montmorillonite clays. Colloid & Polymer Science 1989, 267, (10), 899-906.
7. Chang, C. Y.; Tsai, W. T.; Ing, C. H.; Chang, C. F., Adsorption of polyethylene glycol (PEG) from aqueous solution onto hydrophobic zeolite. Journal of Colloid and Interface Science 2003, 260, (2), 273-279.
8. Emilia Otal; Mantzavinos, D.; Delgado, M. V.; Hellenbrand, R.; Lebrato, J.; Metcalfe, I. S.; Livingston, A. G., Integrated wet air oxidation and biological treatment of polyethylene glycol-containing wastewaters. Journal of Chemical Technology & Biotechnology 1997, 70, (2), 147-156.
9. Otal, E.; Lebrato, J., Anaerobic treatment of polyethylene glycol of different molecular weights. Environmental Technology 2002, 23, (12), 1405-1414.
10. Otal, E.; Mantzavinos, D.; Lebrato, J.; Livingston, A. G., Degradation of polyethilene glycol by the integration of chemical and biological treatment. Degradacion de polietilenglicol 10.000 mediante tratamiento integrado qu)acimico-biologico 2001, 21, (210), 55-62.
11. Dwyer, D. F.; Tiedje, J. M., Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia. Applied and Environmental Microbiology 1983, 46, (1), 185-190.
12. Dwyer, D. F.; Tiedje, J. M., Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp. Applied and Environmental Microbiology 1986, 52, (4), 852-856.
13. Kawai, F., Microbial degradation of polyethers. Applied Microbiology and Biotechnology 2002, 58, (1), 30-38.
14. Kawai, F.; Kimura, T.; Fukaya, M., Bacterial oxidation of polyethylene glycol. Applied and Environmental Microbiology 1978, 35, (4), 679-684.
15. Watson, G. K.; Jones, N., The biodegradation of polyethylene glycols by sewage bacteria. Water Research 1977, 11, (1), 95-100.
16. Erdal, Z. K.; Erdal, U. G.; Randall, C. W., Biochemistry of enhanced biological phosphorus removal and anaerobic COD stabilization. In Water Science and Technology, 2005; Vol. 52, pp 557-567.
17. Otal, E.; Lebrato, J., Anaerobic degradation of polyethylene glycol mixtures. Journal of Chemical Technology and Biotechnology 2003, 78, (10), 1075-1081.
18. Otal, E.; Mantzavinos, D.; Delgado, M. V.; Hellenbrand, R.; Lebrato, J.; Metcalfe, I. S.; Livingston, A. G., Integrated wet air oxidation and biological treatment of polyethylene glycol-containing wastewaters. Journal of Chemical Technology and Biotechnology 1997, 70, (2), 147-156.
19. Giroto, J. A.; Teixeira, A. C. S. C.; Nascimento, C. A. O.; Guardani, R., Photo-Fenton removal of water-soluble polymers. Chemical Engineering and Processing: Process Intensification 2008, 47, (12), 2361-2369.
20. Huang, Y. L.; Li, Q. B.; Deng, X.; Lu, Y. H.; Liao, X. K.; Hong, M. Y.; Wang, Y., Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes. Process Biochemistry 2005, 40, (1), 207-211.
21. Obradors, N.; Aguilar, J., Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Applied and Environmental Microbiology 1991, 57, (8), 2383-2388.
22. Lunar, L.; Sicilia, D.; Rubio, S.; Pérez-Bendito, D.; Nickel, U., Degradation of photographic developers by Fenton's reagent: Condition optimization and kinetics for metol oxidation. Water Research 2000, 34, (6), 1791-1802.
23. Walling, C., Fenton's reagent revisited. Accounts of Chemical Research 1975, 8, (4), 125-131.
24. Burbano, A. A.; Dionysiou, D. D.; Suidan, M. T.; Richardson, T. L., Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research 2005, 39, (1), 107-118.
25. Chen, S.; Sun, D.; Chung, J.-S., Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment. Journal of Hazardous Materials 2007, 144, (1-2), 577-584.
26. Haseneder, R.; Fdez-Navamuel, B.; Hartel, G., Degradation of polyethylene glycol by Fenton reaction: A comparative study. In Water Science and Technology, 2007; Vol. 55, pp 83-87.
27. Lin, S. H.; Lo, C. C., Fenton process for treatment of desizing wastewater. Water Research 1997, 31, (8), 2050-2056.
28. Lopez, A.; Pagano, M.; Volpe, A.; Di Pinto, A. C., Fenton's pre-treatment of mature landfill leachate. Chemosphere 2004, 54, (7), 1005-1010.
29. Tantak, N. P.; Chaudhari, S., Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment. Journal of Hazardous Materials 2006, 136, (3), 698-705.
30. Zhang, H.; Heung, J. C.; Huang, C. P., Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials 2005, 125, (1-3), 166-174.
31. Wanpeng, Z.; Zhihua, Y.; Li, W., Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater. Water Research 1996, 30, (12), 2949-2954.
32. 放流水標準. In 水汙染防治法, 行政院環保署: Taiwan, 民國 96 年 09 月 03 日 修正; Vol. 第七條.
33. 朱平輝 中美矽晶製品竹南分公司廢水COD實驗報告; 台灣竹南, 民國96年4月7日, 2007.
34. Siedel, A. F., Practical Business Statistics. 新文京開發出版股份有限公司.
35. Politzer, P.; Kammeyer, C. W.; Bauer, J.; Hedges, W. L., Polar properties of carbon monoxide. Journal of Physical Chemistry 1981, 85, (26), 4057-4060.
36. Almkvist, G.; Persson, I., Fenton-induced degradation of polyethylene glycol and oak holocellulose. A model experiment in comparison to changes observed in conserved waterlogged wood. Holzforschung 2008, 62, (6), 704-708.
37. Mantzavinos, D.; Livingston, A. G.; Hellenbrand, R.; Metcalfe, I. S., Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical biological wastewater treatment. Chemical Engineering Science 1996, 51, (18), 4219-4235.


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-06-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-06-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信