淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1506200623371300
中文論文名稱 X光吸收光譜對氮與硼摻雜奈米鑽石薄膜之研究
英文論文名稱 X-ray Absorption Spectroscopy Study of Nitrogen- and Boron-doped Nanocrystalline Diamond (NCD) Thin Films
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 94
學期 2
出版年 95
研究生中文姓名 邱晉儀
研究生英文姓名 Chin-Yi Chiu
學號 693180357
學位類別 碩士
語文別 中文
口試日期 2006-06-06
論文頁數 60頁
口試委員 指導教授-張經霖
委員-林諭男
委員-陳洋元
中文關鍵字 X光吸收光譜  奈米鑽石 
英文關鍵字 XANES  NCD  Nanocrystalline Diamond 
學科別分類 學科別自然科學物理
中文摘要 本論文研究以偏壓輔助微波電漿化學氣相沈積法(MPECVD),在矽的基板上所合成的P型與N型半導化的奈米鑽石薄膜。 X光吸收近邊緣結構(X-ray Absorption Near Edge Structure),對奈米鑽石薄膜之鍵結與電子結構來做分析,並找出摻雜元素在奈米鑽石膜中所造成的的影響。
我們發現在微米鑽石系列與奈米鑽石系列,在掺雜氮(或硼)時,sp2與sp3變化會因晶粒尺寸改變,此現象對應到場發射特性上,可以推測微米鑽石系列與奈米鑽石系列掺雜機制不同,場發射改善的原因也不同,在此論文中我們將深入討論。
英文摘要 Nitrogen- and Boron-doped Nanocrystalline Diamond (NCD) Thin Films were deposited on silicon substrate using a Microwave plasma-enhanced chemical vapor deposition (MPECVD) method. X-ray absorption near-edge structure (XANES), measurements have been performed chemical structure and bonding configuration for a variety of Nitrogen- doped、Boron-doped and undoped Nanocrystalline diamond Thin films.
We find that sp2 and sp3 in microcrystalline diamond series and
Nanocrystalline diamond series are different, when the grain size is reducing. The phenomenon is corresponding to the field emission properties. We suggest that doping in MCD and NCD have different mechanism. We will discuss in this paper.
論文目次 致謝………………………………………………………………I
中文摘要…………………………………………………………II
英文摘要…………………………………………………………III
目錄………………………………………………………………IV
圖表目錄…………………………………………………………VI
第一章 緒論…………………………………………………1
1-1 簡介…………………………………………………1
1-2 鑽石的特性…………………………………………3
1-2.1 碳的結構……………………………………………3
1-2.2 鑽石的特色…………………………………………5
1-2.3 鑽石的負電子親和力………………………………6
1-2.4 半導體鑽石…………………………………………7
1-2.5 奈米鑽石…..………………………………………10
1-3 鑽石薄膜製造原理與應用………………………11
第二章 X光吸收譜簡介……………………………………12
2-1 X光吸收近邊緣結構(XANES)……………………16
2-2 數據分析…………………………………………19
第三章 實驗設備與量測方法……………………………24
3-1 X光光源……………………………………………24
3-2 單色儀(monochromator)…………………………26
3-3 光譜測量方式……………………………………29
3-4 樣品提供與實驗設備……………………………32
第四章 實驗結果分析……………………………………34
X光吸收光譜近邊緣結構 (XANES)…………34
第五章 結論………………………………………………55
參考文獻……………………………………………………56

圖表目錄
圖1-1 鑚石結晶型態………………………………………………4
圖1-2 石墨結晶型態………………………………………………4
圖1-3 掺硼(I)與掺氮(II)之場發射效果比較……………………...9
圖2-1 物質吸收截面與能量之關係圖…………………………….14
圖2-2 XANES 與EXAFS 分界圖………………………………….15
圖2-3 光電子平均自由路徑與能量關係………………………….17
圖2-4 單一散射與多重散射之圖示……………………………….17
圖2-5 吸收光譜與電子末態關係示意圖………………………….18
圖2-6 X 光吸收光譜之數據分析流程…………………………….19
圖2-7 選擇能量底限E0 值的不同方法……………………………21
圖3-1 X 光吸收光譜實驗示意圖………………………………....27
圖3-2 穿透式………………………………………………………..28
圖3-3 X 光通過物質之強度衰減…………………………………...28
圖3-4 螢光式………………………………………………………..29
圖3-5 電子逸出式…………………………………………………..30
圖3-6 光子吸收過程………………………………………………..31
圖 4-1 歸一化後鑽石薄膜C K-edge 光譜圖…………………….35
圖 4-2 未摻雜系列鑽石薄膜C K-edge 光譜圖…………………37
圖 4-3 摻雜氮系列鑽石薄膜C K-edge 光譜圖…………………..38
圖 4-4 摻雜硼系列鑽石薄膜C K-edge 光譜圖…………………..39
圖4-5 MCD 系列鑽石薄膜C K-edge 光譜圖……………………..41
圖4-6 Sub-mircon size 系列鑽石薄膜C K-edge 光譜圖……..43
圖4-7 NCD 系列鑽石薄膜C K-edge 光譜圖………..………...….44
圖4-8 在sp2 部分取一適當高斯函數為背景……….…………....47
圖4-9 在sp3 部分其前後各取一適當高斯函數為背景…....…….47
圖4-10 未摻雜系列扣除適當高斯函數之sp2………………..…......48
圖4-11 摻雜氮系列扣除適當高斯函數之sp2…………………..…..48
圖4-12 摻雜硼系列扣除適當高斯函數之sp2…………………..…..49
圖4-13 MCD 系列扣除適當高斯函數之sp2…………………........49
圖4-14 Sub-MCD 系列扣除適當高斯函數sp2…………………….50
圖4-15 NCD 系列扣除適當高斯函數之sp2………………………..50
圖4-16 分別對尺寸變化其(a) sp2;(b) sp3 空軌域面積作積分後之積
值..............................................................................................................52
圖4-17 分別對未掺雜、氮掺雜與硼掺雜其(a) sp2;(b) sp3 空軌域面
積作積分後之積分值…………………………......................................53
表1-1 天然鑽石、鑽石膜及類鑽石膜之特性質比較………………..2
表3-1 樣品清單………………………………………………………32
參考文獻 [1] J. E. Field, The Properties of Diamonds, Academic,
London, (1979).
[2] A. L. Lavoisier, Memoire Academie des Sciences,
564 (1882).
[3] P. W. Bridgman, "Synthetic diamonds", Scient. Am.,
193, 42 (1955).
[4] W. G. Eversole, U.S. Patent No. 3,030,188, (1962).
[5] J. C. Angus, H. A. Will and W. S. Stanko,“Growth of
Diamond Seed Crystals by Vapor Deposition”, J.
Appl. Phys., 39, 2915 (1968).
[6] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin,
J. Cryst. Growth, 52, 219(1981).
[7] N. Kumar, H. Schmidt and C. Xie, Solid State
Technology, p.71~74 (1995).
[8] J. van der weide and R. J. Nemanich, “Angle-
resolved photoemission of diamond (111) and (100)
surfaces; negative electron affinity and band
structure measurements”, J. Vac. Sci. Technol. B, 12
(4),2475 (1994).
[9] B. B. Pate, P.M. Stefan, C. Binns, P. J. Jupiter, M.
L. Shek, I. Lindau, and W. E. Spicer,“Formation of
surface states on the (111) surface of diamond”, J.
Vac. Sci. Technol., 19(3), 349 (1981).
[10] J. van der Weide, Z. Zhang, P. K. Baumann, M. G.
Wensell, J. Bernholc and R. J. Nemanich ,“Negative-
electron-affinity effects on the diamond (100)
surface”, Phys. Rev. B, 50, 5803 (1994).
[11] J. E. Yater, A. Shih,“Secondary electron emission
characteristics of single-crystal and
polycrystalline diamond”, J. Appl. Phys., 87, 8103
(2000).
[12] C. F. Shih, K. S. Liu, I. N. Lin, “Effect of
nitrogen doping on the electron field emission
properties of chemical vapor deposited diamond
films”, Diamond Relat. Mater., 9, 1591 (2000).

[13] Michael Shur; Physis of semiconductor
Devices ,prentice-Hall (1990).
[14] W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, D. C.
Jacobson, M. McCormack,and A. E. White,“Electron
field emission from ion-implanted diamond”, Appl.
Phys. Lett., 67 (8),1157 (1995).
[15] D. Hong and M. Aslam,“Field emission from p-type
polycrystalline diamond films”, J. Vac. Sci.
Technol. B, 13, 427 (1995).
[16] K. Okano and K. K. Gleason,“Electron emission from
phosphorus- and boron-doped polycrystalline diamond
films”, Electronics Letters, 31 (1), 74 (1995).
[17] T. K. Ku, S. H. Chen, and H. C. Cheng ,“Enhanced
electron emission from phosphorus-doped diamond-clad
silicon field emitter arrays”, IEEE ELECTRON DEVICE
LETTERS, 17 (5), 208 (1996).
[18] J. W. Glesener, and A. A. Morrish ,“Investigation
of the temperature dependence of the field emission
current of polycrystalline diamond films”, Appl.
Phys. Lett., 69 (6), 785 (1996).
[19] M. W. Geis, J. C. Twichell, and T. M. Lyszczarz,
“Comparison of electric field emission from nitrogen-
doped, type Ib diamond, and boron-doped diamond”,
Appl. Phys. Lett., 68 (16), 2294 (1996).
[20] I. T. Han, N. Lee, S. W. Lee, S. H. Kim, and D.
Jeon,“Field emission of nitrogen-doped diamond
films”, J. Vac. Sci. Technol. B, 16, 2052, (1998).
[21] K. Okano, Satoshi Koizumi, S. Ravi P. Silva, Gehan
A. J. Amaratunga,“Low-threshold cold cathodes made
of nitrogen-doped chemical-vapour-deposited
diamond”, Nature, 381, 140 - 141 (09 May 2002).
[22] I. N. Lin, Kuoguang Perng, Lien-Hsin Lee, Chuan-Feng
Shih, and Kuo-Shung Liu,“Comparison of the effect
of boron and nitrogen incorporation on the
nucleation behavior and electron-field-emission
properties of chemical-vapor-deposited diamond
films”, Appl. Phys. Lett., 77, 1277 (2000).
[23] S. A. Kajihara, A. Antonelli, J. Bernhole and R. Car,
“Nitrogen and potential n-type dopants in diamond”,
Phys. Rev. Lett., 66, 2010 (1991).
[24] R. Samienski, C. Haug, and R. Brenn,“Incorporation
of nitrogen in chemical vapor deposition diamond”,
Appl. Phys. Lett., 67, 2798 (1995).
[25] http://www.sciam.com.tw 科學人雜誌網站
[26] Y. K. Chang, H. H. Hsieh, W. F. Pong, M.-H. Tsai, F.
Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K.
H. Chen, D. M. Bhusari,J. R. Yang, and S. T. Lin,
“Quantum Confinement Effect in Diamond Nanocrystals
Studied by X-Ray-Absorption Spectroscopy”,Phys.
Rev. Lett., 82, 5377 (1999).
[27] James Birrell, J. E. Gerbi and O. Auciello ,
“Bonding structure in nitrogen doped
ultrananocrystalline diamond”, J. Appl. Phys., 93,
5606 (2003).
[28] James Birrell, J. A. Carlisle, O. Auciello, and D.
M. Gruen,“Morphology and electronic structure in
nitrogen-doped ultrananocrystalline diamond”, Appl.
Phys. Lett., 81, 2235 (2002).
[29] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol
and R. P. H. Chang, “The effect of nitrogen
addition to Ar/CH4 plasmas on the growth, morphology
and field emission of ultrananocrystalline
diamond”, Diamond Relat. Mater., 11, 43 (2002).
[30] “Synchrotron Radiation Research”, edit by H.
Winick, S. Doniach (1980).
[31] "X-Ray Absorption : Principles, Application,
Techniques of EXAFS, SEXAFS, SEXAFS and XANES" ,
edited by D. C. Koningsberger, and R. Prins, Chem.
Analysis Vol.92 (Wiley 1988).
[32] “EXAFS, Basic Principle and Data Analysis”, edited
by B. K. Teo (Springer-Verlay, 1986).
[33] “安全訓練手冊”, 新竹同步輻射中心
[34] 王其武編著, X射線吸收精細結構及其應用, 科學出版社
[35] H. H. Hsieh, Y. K. Chang, and W. F. Pong, “X-ray-
absorption studies of boron-doped diamond films”,
Appl. Phys. Lett., 75, 2229 (1999).
[36] Y. D. Chang, A. P. Chiu, and W. F. Pong,
“Electronic properties of the diamond films with
nitrogen impurities: An x-ray absorption and
photoemission spectroscopy study”, Appl. Phys.
Lett., 77, 4362 (2000).
[37] Y. K. Chang, H. H. Hsieh, W. F. Pong, M.-H. Tsai, F.
Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H.
Chen, D. M. Bhusari, J. R. Yang, and S. T. Lin,
“Quantum Confinement Effect in Diamond Nanocrystals
Studied by X-Ray-Absorption Spectroscopy”, Phys.
Rev. Lett., 82, 5377 (1999).
[38] A. Hoffman , G. Comtet, L. Hellner, and G. Dujardin,
“Surface near-edge x-ray adsorption fine structure
of hydrogenated diamond films and Di(100) surfaces
studied by H + and H – ion desorption”, Appl.
Phys. Lett., 73, 1152 (1998).
[39] R. Graupner, J. Ristein, and L. Ley, “Surface-
sensitive K-edge absorption spectroscopy on clean
and hydrogen-terminated diamond (111) and (100)
surfaces”, Phys. Rev. B, 60, 17023 (1999).
[40] J. F. Morar, F. J. Himpsel, G. Hollinger, J. L.
Jordon, G. Hughes, and F. R. McFeely, “C 1s
excitation studies of diamond (111). II. Unoccupied
surface states”, Phys. Rev. B, 33, 1346 (1986).
[41] L. J. Huang, I. Bello, and W. M. Lau,“Synchrotron
radiation x-ray absorption of ion bombardment
induced defects on diamond (100)”, J. Appl. Phys.,
76,7483 (1994).
[42] M. Lübbe, P. R. Bressler, D. Drews, W. Braun and D.
R. T. Zahn,“Study of hydrogen and methane
modification of CVD diamond by XAS at the carbon
K-edge ”, Diamond Relat. Mater., 7, 247 (1998).
[43] James Birrell, J. E. Gerbi and O. Auciello ,
“Bonding structure in nitrogen doped
ultrananocrystalline diamond”, J. Appl. Phys., 93,
5606 (2003).
[44] Y. D. Chang, A. P. Chiu, and W. F. Pong,
“Electronic properties of the diamond films with
nitrogen impurities: An x-ray absorption and
photoemission spectroscopy study”, Appl. Phys.
Lett., 77, 4362 (2000).
[45] H. H. Hsieh, Y. K. Chang, and W. F. Pong, M.-H.
Tsai, F. Z. Chien and P. K. Tseng, I. N. Lin, and H.
F. Cheng, X-ray-absorption studies of boron-doped
diamond films, Appl. Phys. Lett., 75, 2229 (1999).
[46] T. Sharda and M. Umeno,“Strong adhesion in
nanocrystalline diamond films on silicon
substrates”, J. Appl. Phys., 89, 4874 (2001).
[47] James Birrell, J. A. Carlisle, O. Auciello, and D.
M. Gruen, “Morphology and electronic structure in
nitrogen-doped ultrananocrystalline diamond”,
Appl. Phys. Lett., 81, 2235 (2002).
[48] James Birrell, J. E. Gerbi and O. Auciello ,
“Bonding structure in nitrogen doped
ultrananocrystalline diamond”, J. Appl. Phys., 93,
5606 (2003).
[49] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol
and R. P. H. Chang, “The effect of nitrogen
addition to Ar/CH4 plasmas on the growth,
morphology and field emission of
ultrananocrystalline diamond”,Diamond Relat.
Mater., 11, 43 (2002).
[50] Y. H. Chen et al., Defect structure and electron
field-emission properties of boron-doped diamond
films, Appl. Phys. Lett., 75, 2857 (1999).
[51] X. Xiao, O. Auciello, H. Cui, D.H. Lowndes, V.L.
Merkulov and J. Carlisle,Diamond Relat. Mater.,
“Synthesis and field emission properties of hybrid
structures of ultrananocrystalline diamond and
vertically aligned carbon nanofibers”, 15, 244
(2006).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-06-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-06-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信