§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1502201100001600
DOI 10.6846/TKU.2011.00467
論文名稱(中文) 滲透蒸發分離程序於乙醇-水溶液純化之研究
論文名稱(英文) The study on the purification of ethanol-water mixtures by pervaporation processes.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 1
出版年 100
研究生(中文) 王俊為
研究生(英文) Chun-Wei Wang
學號 697400785
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-01-12
論文頁數 119頁
口試委員 指導教授 - 何啟東
委員 - 鄭東文
委員 - 萬文彬
關鍵字(中) 滲透蒸發
濃度極化
脫水
乙醇-水溶液
溶解擴散模式
阻力串聯模式
關鍵字(英) pervaporation
batch device
concentration polarization
dehydration
ethanol-water mixed solution
solution-diffusion model
resistance-in-series model
第三語言關鍵字
學科別分類
中文摘要
由於近年來石油價格飆漲,產業界的經營成本相對提高,連帶影響了民眾在日常生活上的開銷,因此開發可再生的輔助性能源,以減少石化燃料的消耗,是目前科技發展的目標之一。生質酒精是目前主要替代石化汽油的燃料,且必須是重量百分率達99.5%以上的無水酒精,才可按照一定比例和汽油混合,成為替代性的生質燃料。本研究旨在使用滲透蒸發技術去除乙醇水溶液中之水分以改善傳統蒸餾法高能量的需求。本研究探討的滲透蒸發系統分為批次與連續式兩種,使用溶解-擴散模式描述薄膜緻密層的質傳行為,並使用阻力串聯模式,計算出系統總阻力,其中批次滲透蒸發系統之數學模擬部分,本研究推導出對時間及一維的濃度分佈式,而連續式滲透蒸發系統則推導出二維的濃度分佈式,並以有限差分將偏微分方程式簡化成常微分方程式,最後利用四階Runge-Kutta數值方法求解,得到通道內的濃度分佈及理論滲透通量,並與參考文獻之實驗比較。其中,飽和溶液之飽和蒸氣壓在不同溶液組成及溫度下的組成是以UNIversal Functional Activity Coefficient (UNIFAC)法估計。本研究探討在固定進料流體溫度下,不同進料溶液濃度、進料體積流率及滲透蒸發膜材下對滲透通量與濃度極化係數之影響。其結果顯示,滲透通量會隨著進料溶液之酒精濃度增加、進料體積流率上升、薄膜緻密層厚度增加而降低,但進料溶液溫度升高,可提升滲透通量;當進料酒精濃度下降,濃度極化係數會越接近1。
英文摘要
The mass transport of ethanol solvent dehydration process by using pervaporation (PV) modules has been investigated theoretically.  Pervaporation modules were employed instead of the traditional ethanol-solution distillation process which was known as a high energy consuming process.  Two operation systems were studied in the present study such as batch and continuous systems.  The solution-diffusion model was used to describe the mass transfer behavior in dense membrane layer.  Accordingly, the overall mass-transfer resistance from the feed stream to the permeate side was thus calculated with the aid of resistance-in-series model.  A mathematical treatment in two-dimensional partial differential equations (PDEs) has been developed by making the differential mass balance in the continuous PV system.  The partial differential equations can be transformed into an ordinary differential equations (ODEs) system using finite difference technique and then solved by using the fourth-order Runge-Kutta method.  The activity coefficient on ethanol/water mixture were estimated by UNIversal Functional Activity Coefficient (UNIFAC) method to obtain the partial pressure of non-ideal binary mixture for predicting the permeate flux across membrane.  The influences of feed solution concentration, feed volumetric flow rate, and membrane material under fixed feed temperature on the mass flux across the membrane were obtained and the concentration polarization phenomena in the feed stream were also discussed.
第三語言摘要
論文目次
中文摘要I
英文摘要II
圖目錄V
表目錄XI
第一章緒論1
1-1前言1
1-2萃取蒸餾脫水3
1-3共沸蒸餾脫水4
1-4分子篩吸附脫水5
1-5滲透蒸發系統簡介6
第二章文獻回顧9
第三章理論分析11
3-1滲透蒸發系統之質量傳送機制分析11
3-2濃度極化20
3-3批次滲透蒸發系統21
3-4連續式滲透蒸發系統24
3-5數值計算流程28
3-6水力損耗30
3-7活性係數-UNIFAC法31
第四章範例計算37
4-1PVDF膜用於水-乙醇之批次滲透蒸發系統37
4-2CS-PVA/PAN複合膜用於水-乙醇之連續式滲透蒸發系統40
4-3PEVP/CMCNa複合膜用於水-乙醇之連續式滲透蒸發系統43
4-4NaAlg-PNIPAAm膜用於水-乙醇之連續式滲透蒸發系統45
4-5zeolite膜用於水-乙醇之連續式滲透蒸發系統47
第五章結果與討論49
5-1批次滲透蒸發系統49
5-2連續式滲透蒸發系統67
第六章結論105
符號說明108
參考文獻112

圖目錄
圖1-1萃取蒸餾法酒精脫水流程圖3
圖1-2共沸蒸餾法酒精脫水流程圖4
圖1-3分子篩吸附法酒精脫水流程圖5
圖3-1質量傳送之阻力串聯模式12
圖3-2溶解-擴散模式示意圖13
圖3-3滲透蒸發系統濃度分佈圖14
圖3-4滲透蒸發系統之熱力學平衡示意圖16
圖3-5濃度極化示意圖21
圖3-6批式滲透蒸發系統示意圖22
圖3-7批式滲透蒸發系統Runge-kutta方法分割示意圖23
圖3-8連續式滲透蒸發系統示意圖24
圖3-9連續式滲透蒸發系統Runge-kutta方法分割示意圖27
圖3-10薄膜表面濃度計算流程圖29
圖4-1 ethanol/water 混合溶液之批次滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖(Ye , 1998) 39
圖4-2 ethanol/water 混合溶液之批次滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖 (Li et al., 2006) 41
圖4-3 ethanol/water 混合溶液之批次滲透蒸發系統在不同薄膜厚度下,進料乙醇濃度與水的滲透通量關係圖(Li et al., 2006)42
圖4-4 ethanol/water 混合溶液之連續式滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖(Jin et al., 2010) 44
圖4-5 ethanol/water 混合溶液之連續式滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖(Teli et al., 2007) 46
圖4-6 ethanol/water 混合溶液之連續式滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖(Ahn et al., 2006) 48
圖5-1批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度10 wt% (Ye , 1998) 51
圖5-2批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度30 wt% (Ye , 1998) 52
圖5-3批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度50 wt% (Ye , 1998) 53
圖5-4批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度60 wt%(Ye , 1998) 54
圖5-5批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度70 wt%(Ye , 1998) 55
圖5-6批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度80 wt%(Ye , 1998) 56
圖5-7批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度90 wt%(Ye , 1998) 57
圖5-8批次滲透蒸發系統徑向濃度分佈圖乙醇進口濃度95 wt%(Ye , 1998) 58
圖5-9批次滲透蒸發系統膜面濃度與操作時間關係圖乙醇進口濃度10 wt%至60 wt%(Ye , 1998) 60
圖5-10批次滲透蒸發系統膜面濃度與操作時間關係圖乙醇進口濃度70 wt%至95 wt%(Ye , 1998) 61
圖5-11批次滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖(Ye , 1998) 63
圖5-12批次滲透蒸發系統濃度極化係數與時間之關係圖乙醇進口濃度10 wt%至60 wt%(Ye , 1998) 65
圖5-13批次滲透蒸發系統濃度極化係數與時間之關係圖乙醇進口濃度70 wt%至95 wt%(Ye , 1998) 66
圖5-14連續式滲透蒸發系統徑向濃度分佈圖乙醇進口濃度95 wt%(Li et al., 2006) 69
圖5-15連續式滲透蒸發系統徑向濃度分佈圖乙醇進口濃度80 wt%(Li et al., 2006) 70
圖5-16連續式滲透蒸發系統徑向濃度分佈圖乙醇進口濃度50 wt%(Li et al., 2006) 71
圖5-17連續式滲透蒸發系統徑向濃度分佈圖乙醇進口濃度85 wt%(Teli et al., 2007) 72
圖5-18連續式滲透蒸發系統徑向濃度分佈圖乙醇進口濃度80 wt%(Teli et al., 2007) 73
圖5-19連續式滲透蒸發系統徑向濃度分佈圖乙醇進口濃度75 wt%(Teli et al., 2007) 74
圖5-20連續式滲透蒸發系統徑向濃度分佈圖乙醇進口濃度70 wt%(Teli et al., 2007) 75
圖5-21連續式滲透蒸發系統進口體積流量與徑向濃度分佈關係圖(乙醇進口濃度95 wt%,進料溶液溫度60 ℃) (Li et al., 2006) 76
圖5-22連續式滲透蒸發系統進口體積流量與徑向濃度分佈關係圖(乙醇進口濃度80 wt%,進料溶液溫度60 ℃) (Li et al., 2006) 77
圖5-23連續式滲透蒸發系統進口體積流量與徑向濃度分佈關係圖(乙醇進口濃度50 wt%,進料溶液溫度60 ℃) (Li et al., 2006) 78
圖5-24連續式滲透蒸發系統進口體積流量與徑向濃度分佈關係圖(乙醇進口濃度85 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 79
圖5-25連續式滲透蒸發系統進口體積流量與徑向濃度分佈關係圖(乙醇進口濃度80 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 80
圖5-26連續式滲透蒸發系統進口體積流量與徑向濃度分佈關係圖(乙醇進口濃度75 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 81
圖5-27連續式滲透蒸發系統進口體積流量與徑向濃度分佈關係圖(乙醇進口濃度70 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 82
圖5-28連續式滲透蒸發系統膜面及通道壁濃度與通道位置關係圖(乙醇進口濃度95 wt%,進料溶液溫度60 ℃) (Li et al., 2006) 85
圖5-29連續式滲透蒸發系統膜面及通道壁濃度與通道位置關係圖(乙醇進口濃度80 wt%,進料溶液溫度60 ℃) (Li et al., 2006) 86
圖5-30連續式滲透蒸發系統膜面及通道壁濃度與通道位置關係圖(乙醇進口濃度50 wt%,進料溶液溫度60 ℃) (Li et al., 2006) 87
圖5-31連續式滲透蒸發系統膜面及通道壁濃度與通道位置關係圖(乙醇進口濃度85 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 88
圖5-32連續式滲透蒸發系統膜面及通道壁濃度與通道位置關係圖(乙醇進口濃度80 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 89
圖5-33連續式滲透蒸發系統膜面及通道壁濃度與通道位置關係圖(乙進口濃度75 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 90
圖5-34連續式滲透蒸發系統膜面及通道壁濃度與通道位置關係圖(乙醇進口濃度70 wt%,進料溶液溫度30 ℃) (Teli et al., 2007) 91
圖5-35連續式滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖(進料溶液溫度60 ℃) (Li et al., 2006) 92
圖5-36連續式滲透蒸發系統進料乙醇濃度與水的滲透通量關係圖(進料溶液溫度30 ℃) (Teli et al., 2007) 93
圖5-37連續式滲透蒸發系統濃度極化與通道位置關係圖(進料溶液溫度60 ℃) (Li et al., 2006) 94
圖5-38連續式滲透蒸發系統濃度極化與通道位置關係圖(乙醇進口濃度85 wt%及80 wt%進料溶液溫度30 ℃) (Teli et al., 2007) 95
圖5-39連續式滲透蒸發系統濃度極化與通道位置關係圖(乙醇進口濃度75 wt%及70 wt%進料溶液溫度30 ℃) (Teli et al., 2007) 96
圖5-40滲透蒸發系統薄膜孔洞支撐層之膜厚與滲透通量關係圖 98
圖5-41滲透蒸發系統薄膜緻密層之膜厚與滲透通量關係圖 99
圖5-42滲透蒸發系統進料側溶液溫度與滲透通量關係圖 100

表目錄
表3-1計算擴散係數之參數(Raisi et al., 2009) 19
表3-2雙成份混合溶劑之UNIFAC參數 34
表3-3 UNIFAC法之其他參數列表 34
表3-4雙成份混合溶劑之官能基交互作用參數  35
表3-5雙成份混合溶劑之UNIFAC參數  35
表3-6雙成份混合溶劑之UNIFAC參數  35
表5-1 ethanol/water 混合溶液之批次滲透蒸發系統薄膜表面濃度與進料端邊界層質傳係數(Ye , 1998) 101
表5-2 ethanol/water 混合溶液之批次滲透蒸發系統各質傳係數與滲透通量(Ye , 1998) 102
表5-3 ethanol/water 混合溶液之連續式滲透蒸發系統各質傳係數與滲透通量(Li et al., 2006) 103
表5-4 ethanol/water 混合溶液之連續式滲透蒸發系統各質傳係數與滲透通量(Teli et al., 2007) 104
參考文獻
Ahn H., Lee H., Lee S.B., Lee Y. Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination, 2006;193:244-251.
Aminabhavi T.M., Naik H.G. Synthesis of Graft Copolymeric Membranes of poly(vinyl alcohol) and polyacrylamide for the pervaporation separation of water/acetic acid mixtures. J. Appl. Polymer Sci., 2002;83:244-258.
Amnuaypanich S., Patthana J., Phinyocheep P., Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. Chem. Eng. Sci., 2009;64:4908-4918.
Biswas K., Datta S., Chaudhuri S., Karagupta K., Datta S., Sanyal A.K. Dehydration of glycerol-water mixtures using pervaporation: influence of process parameters. Sep. Sci. Technol., 2000;35:1391-1408.
Claes S., Vandezande P., Mullens S., Leysen R., De Sitter K., Andersson A., Maurer F.H.J., Van den Rul H., Peeters R., Van Bael M.K. High flux composite PTMSP-silica nanohybrid membranes for the pervaporation of ethanol/water mixtures. J. Membr. Sci., 2010;351:160-167.
Feng X., Huang Y. M. R. Liquid separation by membrane pervaporation: a review. Ind. Eng. Chem. Res. 1997;36:1048-1066
Gimenes M.L., Liu L., Feng X. Sericin/poly(vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures. J. Membr. Sci., 2007;295:71-79.
Guo W.F., Chung T.S., Matsuura T., Wang R., Liu Y. Pervaporation study of water and tert-butanol mixtures. J. Appl. Polymer Sci., 2004;91:4082-4090.
Holderbaum T., Gmehling J. PSRK: A group contribution equation of state based on unifac. Fluid Phase Equilib., 1991;70:251-265.
Hyder M.N., Huang R.Y.M., Chen P. Effect of selective layer thickness on pervaporation of composite poly(vinyl alcohol)–poly(sulfone) membranes. J. Membr. Sci., 2008;318:387-396.
Iversen S.B., Bhatia V.K., Dam-Jphasen K., Jonsson G. Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci., 1997;130:205-217.
Jin H.T., An Q.F., Zhao Q., Qian J.W., Zhu M.H. Pervaporation dehydration of ethanol by using polyelectrolyte complex membranes based on poly (N-ethyl-4-vinylpyridinium bromide) and sodium carboxymethyl cellulose. J. Membr. Sci., 2010;347:183-192.
Jiraratananon R., Chanachai A., Huang R.Y.M., Uttapap D. Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes I. Effect of operating conditions. J. Membr. Sci., 2002;195:143-151.
Jiraratananon R., Sampranpiboon P., Uttapap D., Huang R.Y.M. Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes. J. Membr. Sci., 2002;210:389-409.
Kalyani S., Smitha B., Sridhar S., Krishnaiah A. Pervaporation separation of ethanol–water mixtures through sodium alginate membranes. Desalination, 2008;229:68-81.
Kanti P., Srigowri K., Madhuri J., Smitha B., Sridhar S. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep. Purif. Technol., 2004;40:259-266.
Kober.P.A Pervaporation and percrystallization. J. Appl. Polym. Sci., 1917;39:944,.
Kuhn J., Sutanto S., Gascon J., Gross J., Kapteijn F. Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation. J. Membr. Sci., 2009;339:261-274.
Li B.B., Xu Z.L., Qusay F.A., Li R. Chitosan-poly (vinyl alcohol)/poly (acrylonitrile) (CS–PVA/PAN) composite pervaporation membranes for the separation of ethanol–water solutions. Desalination, 2006;193:171-181.
Li L., Xiao Z., Tan S.J., Pu L., Zhang Z.B. Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. J. Membr. Sci., 2004;243:177-187.
Ling W.S., Thian T.C., Bhatia S. Process optimization studies for the dehydration of alcohol–water system by inorganic membrane based pervaporation separation using design of experiments (DOE). Sep. Purif. Technol., 2010;71:192-199.
Liu M.G., Dickson J.M., Cote P. Simulation of a pervaporation system on the industrial scale for water treatment Part I: Extended resistance-in-series model. J. Membr. Sci., 1996;111:227-241.
Ma Y., Wang J.H., Tsuru T. Pervaporation of water/ethanol mixtures through microporous silica membranes. Sep. Purif. Technol., 2009;66:479-485.
Magalad V. T., Gokavi G. S., Raju K.V.S.N., Aminabhavi T. M. Mixed matrix blend membranes of poly(vinyl alcohol)–poly(vinyl pyrrolidone) loaded with phosphomolybdic acid used in pervaporation dehydration of ethanol. J. Membr. Sci., 2010;354:150-161.
Namboodiri V.V., Vane L.M. High permeability membranes for the dehydration of low water content ethanol by pervaporation. J. Membr. Sci., 2007;306:209-215.
Ohya H., Matsumoto J., Negishi Y., Hino T., Choi H.S. The separation of water and ethanol by pervaporation with PVA-PAN composite membranes. J. Membr. Sci., 1992;68:141-148.
Patil M.B., Veerapur R.S., Patil S.A., Madhusoodana C.D., Aminabhavi T.M. Preparation and characterization of filled matrix membranes of sodium alginate incorporated with aluminum-containing mesoporous silica for pervaporation dehydration of alcohols. Sep. Purif. Technol., 2007;54:34-43.
Peters T.A., Benes N.E., Keurentjes J.T.F. Hybrid ceramic-supported thin PVA pervaporation membranes: Long-term performance and thermal stability in the dehydration of alcohols. J. Membr. Sci., 2008;311:7-11.
Poling B.E., Prausnitz J.M., O’connell J. P. The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2007.
Raisi A., Aroujalian A., Kaghazchi T. Experiment study and mass transport modeling of ethanol separation from aqueous solutions by pervaporation. Sep. Sci. Technol., 2009;44:3538-3570.
Satyanarayana S.V., Sharma A., Bhattacharya P.K. Composite membranes for hydrophobic pervaporation: study with the toluene–water system. Chem. Eng. J., 2004;102:171-184.
Schabel W., Scharfer P., Kind M., Mamaliga I. Sorption and diffusion measurements in ternary polymer–solvent–solvent systems by means of a magnetic suspension balance—Experimental methods and correlations with a modified Flory–Huggins and free-volume theory. Chem. Eng. Sci., 2007;62:2254-2266.
Sun H.L., Lu L.Y., Chen X., Jiang Z.Y. Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol. Appl. Surf. Sci., 2008;254:5367-5374.
Tan S.J., Li L., Zhang Z.B., Wang Z.Y. The influence of support layer structure on mass transfer in pervaporation of composite PDMS–PSF membranes. Chem. Eng. J., 2010;157:304-310.
Teli S.B., Gokavi G.S., Aminabhavi T.M. Novel sodium alginate-poly(N-isopropylacrylamide) semi-interpenetrating polymer network membranes for pervaporation separation of water + ethanol mixtures. Sep. Purif. Technol., 2007;56:150-157.
Trifunovic O., Tragardh G. Mass transport of aliphatic alcohols and esters through hydrophobic pervaporation membranes. Sep. Purif. Technol., 2006;50:51-61.
Trifunovic O., Tragardh G. The influence of support layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes. J. Membr. Sci., 2005;259:122-134.
Uragami T., Morikawa T. Permeation and separation characteristics of acohol-water mixtures through poly (dimethyl siloxane) membrane by pervaporation and evapomeation. J. Appl. Polymer Sci., 1992;44:2009-2018.
Villaluenga J.P.G., Khayet M., Godino P., Seoane B., Mengual J.I., Analysis of the membrane thickness effect on the pervaporation separation of methanol/methyl tertiary butyl ether mixtures. Sep. Purif. Technol., 2005;47:80-87.
Wang X.P., Shen Z.Q., Zhang F.Y., Zhang Y.F. A novel composite chitosan membrane for the separation of alcohol-water mixtures. J. Membr. Sci., 1996;119:191-198.
Welty JR, Wick CE, Wilson RE. Fundamentals of momentum, heat, and mass transfer, 3rd ed. New York: Wiley, 1984.
Winston W.S. and Sirkar K.K., Membrane Handbook, Wan Nostrand Reinhold, New York, 1992
Wu L.G., Zhu C.L., Liu M. Study of a new pervaporation membrane* Part 1. Preparation and characteristics of the new membrane. J. Membr. Sci., 1994;90:199-205.
Yang D., Li J., Jiang Z.Y., Lu L.Y., Chen X. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci., 2009;64:3130-3137.
Zhang G.J., Gu W.L., Ji S.L., Liu Z.Z., Peng Y.L., Wang Z. Preparation of polyelectrolyte multilayer membranes by dynamic layer-by-layer process for pervaporation separation of alcohol/water mixtures. J. Membr. Sci., 2006;280:727-733.
Zhang P., Qian J.W., Yang Y., Bai Y.X., An Q.F., Yan W.D. Swelling behavior of palygorskite–polyacrylamide hybrid membrane in xylene mixtures and its pervaporation performance for separating the xylene isomers. J. Membr. Sci., 2007;288:280-289.
Zhang W., Zhang Z.N., Wang X.P. Investigation on surface molecular conformations and pervaporation performance of the poly(vinyl alcohol) (PVA) membrane. J. Coll. Int. Sci., 2009;333:346-353.
Zhu G.Q., Li Y.S., Zhou H., Liu J., Yang W.S. Microwave synthesis of high performance FAU-type zeolite membranes: Optimization, characterization and pervaporation dehydration of alcohols. J. Membr. Sci., 2009;337:47-54.
Zhu Y.X., Xia S.S., Liu G.P., Jin W.Q. Preparation of ceramic-supported poly(vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. J. Membr. Sci., 2010;349:341-348.
葉耕誠, PVDF與PVDF/PU薄膜之滲透蒸發分離程序, 淡江大學化工研究所碩士論文, 1998.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信