淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1409201011432400
中文論文名稱 應用連體損傷力學於微金屬板材拉伸斷裂之研究
英文論文名稱 A Study of Tensile Fracture in Micro Sheet Metal Forming by Using Continuum Damage Mechanics
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 蔡傑丞
研究生英文姓名 Jie-Cheng Tsai
學號 695371277
學位類別 碩士
語文別 中文
口試日期 2010-06-29
論文頁數 90頁
口試委員 指導教授-葉豐輝
委員-盧永華
委員-劉春和
委員-蔡慧駿
委員-李經綸
中文關鍵字 微成形  拉伸試驗  動態有限元素法  連體損傷力學 
英文關鍵字 Micro Forming  Tensile Test  Dynamic Finite Element  Continuum Damage Mechanics 
學科別分類 學科別應用科學機械工程
中文摘要 本文乃利用動態有限元素法結合連體損傷力學,進行微金屬板材拉伸斷裂分析之研究,探討拉伸負荷、伸長量、破斷面及變形歷程等,並與拉伸試驗做比較。
本研究首先使用Swift Model應力應變曲線,取代Lemaitre損傷理論中之冪次方(Power Law)應力應變曲線,重新推導彈塑性損傷模型。其次依據ASTM E345規範,進行銅箔拉伸試驗,得到相關機械性質;再利用新的損傷模型計算銅箔損傷曲線,做為銅箔拉伸斷裂模擬分析之依據。
本研究之實驗結果得知,銅箔試片拉伸斷裂後之伸長量為10.993mm,其破斷面在試片中間且趨近於水平。此外,由數值分析結果得知,模擬銅箔拉伸斷裂之伸長量為11.468mm,其破斷面亦在料片中間且為水平方向。本文經由數值分析與實驗結果比較,可證實有限元素法結合所推導之彈塑性損傷模型,可正確模擬微金屬板材拉伸斷裂分析。
英文摘要 The thesis uses dynamic finite element method and continuum damage mechanics to study the tensile fracture in micro sheet metal forming. The tensile load, elongation, fractured surface and deformation history are discussed and compared with the experimental results.
First, instead of using power law for stress-strain curve in Lemaitre damage model, Swift model is applied to re-derive a new elastic-plastic damage model. Secondly, the tensile test of copper foil is conducted according to ASTM E345 standard and the mechanical properties are obtained. Subsequently, the accumulated damage curve of copper foil is generated for the criterion of fracture by the new elastic-plastic damage model.
The experimental results show that the elongation of copper foil specimen at break is 10.993mm. The fractured surface is at the middle of specimen and the direction is approximately horizontal. Besides, the elongation by numerical analysis at break is 11.468 mm and the position and direction of fractured surface are also close to the experimental results. By comparison of numerical and experimental results, it shows that the combination of finite element method and elastic-plastic damage model can be used to simulate the tensile fracture in micro sheet metal forming correctly in the thesis.
論文目次 目 錄
中文摘要 ----------------------------------------------------------------------- I
英文摘要 ---------------------------------------------------------------------- II
目 錄 ----------------------------------------------------------------------- III
圖表索引 ------------------------------------------------------------------------ V
第一章 緒論 ------------------------------------------------------------------ 01
1.1 前言 ------------------------------------------------------------------ 01
1.2 研究動機與目的 --------------------------------------------------- 02
1.3 文獻回顧 ------------------------------------------------------------ 03
1.3.1 金屬拉伸試驗 ----------------------------------------------- 03
1.3.2 連體損傷力學 ------------------------------------------------ 08
1.4 研究流程 ------------------------------------------------------------ 13
1.5 論文之構成 --------------------------------------------------------- 16
第二章 基本理論 ------------------------------------------------------------ 18
2.1 顯性動態有限元素法 --------------------------------------------- 18
2.2 異向性降伏準則 --------------------------------------------------- 24
2.3 連體損傷力學 ------------------------------------------------------ 29
2.3.1 等效應變原理 ------------------------------------------------ 29
2.3.2 損傷方程式 --------------------------------------------------- 33
第三章 微金屬板材拉伸斷裂實驗 --------------------------------------- 36
3.1 實驗設備及實驗方法 ------------------------------------------- 36
3.2 實驗材料 -------------------------------------------------------- 41
3.3 實驗步驟 -------------------------------------------------------- 45
3.4 實驗結果 -------------------------------------------------------- 47
第四章 微金屬板材拉伸斷裂有限元素分析 --------------------------- 51
4.1 微金屬板材拉伸斷裂之數值分析 ------------------------------ 51
4.1.1 數值分析 ------------------------------------------------------ 51
4.1.2 邊界條件 ------------------------------------------------------ 54
4.1.3 材料參數 ------------------------------------------------------ 56
4.2 數值分析與實驗結果之比較 ------------------------------------ 57
4.2.1 微金屬拉伸模擬之應力與塑性應變之比較 ----------- 57
4.2.2 微金屬拉伸模擬之破斷處之比較 ----------------------- 59
4.2.3 微金屬拉伸模擬之變形歷程 ------------------------------ 64
4.3 微金屬板材斷裂之損傷方程式比較 --------------------------- 67
第五章 結論與未來展望 --------------------------------------------------- 70
5.1 結論 ------------------------------------------------------------------ 70
5.2 未來展望 ------------------------------------------------------------ 72
附錄 ----------------------------------------------------------------------------- 74
參考文獻 ----------------------------------------------------------------------- 82
符號索引 ---------------------------------------------------------------------- 86

圖表索引
圖1-1 材料之工程應力-應變曲線示意圖 ------------------------------ 05
圖1-2 金屬試片頸縮示意圖 ---------------------------------------------- 05
圖1-3 金屬試片斷裂示意圖 ---------------------------------------------- 08
圖1-4 球體衝擊鋁板之破壞行為 ---------------------------------------- 11
圖1-5 研究流程圖 ---------------------------------------------------------- 15
圖2-1 連續體物體於卡氏座標系統變形 ------------------------------- 19
圖2-2 損傷起始示意圖 ---------------------------------------------------- 30
圖2-3 代表性體積之材料損傷示意圖 ---------------------------------- 30
圖2-4 有效面積示意圖 ---------------------------------------------------- 31
圖3-1 拉伸實驗設備之整體系統配置圖 ------------------------------- 36
圖3-2 壓花夾頭與橡膠夾頭之試片比較圖 ---------------------------- 37
圖3-3 延伸計與夾頭夾持的狀態 ---------------------------------------- 38
圖3-4 三種夾頭之示意圖 ------------------------------------------------- 39
圖3-5 微金屬拉伸試片之尺寸示意圖 ---------------------------------- 40
圖3-6 標示Gage Length及中央位置之銅箔拉伸試片 -------------- 41
圖3-7 壓延銅箔之工程應力應變圖 ------------------------------------- 42
圖3-8 裁刀(左)與線切割(右)之試片邊緣 ------------------------- 43
圖3-9 金屬夾板之三方向試片切割示意圖 ---------------------------- 44
圖3-10 金屬夾板夾持料片之示意圖 ------------------------------------- 44
圖3-11 銅箔料片之邊緣鎔融 ---------------------------------------------- 45
圖3-12 0度、45度、90度三個方向之工程應力應變曲線圖 -------- 48
圖3-13 五條0度方向試片之工程應力應變曲線圖 ------------------- 48
圖3-14 微金屬拉伸試驗後之拉伸試片 ---------------------------------- 49
圖3-15 各微金屬拉伸試片之破裂處放大圖 ---------------------------- 50
圖4-1 微金屬拉伸試片之尺寸示意圖 ---------------------------------- 52
圖4-2 微金屬拉伸試片模型之網格分割 ------------------------------- 53
圖4-3 微金屬拉伸試片之邊界條件 ------------------------------------- 55
圖4-4 電解銅箔之負荷對伸長量曲線比較圖 ------------------------- 58
圖4-5 電解銅箔之工程應力應變曲線比較圖 ------------------------- 58
圖4-6 破裂處歷程圖於(A)(B)(C)(D) ---------------------- 61
圖4-7 模擬之銅箔完整試片破裂處 ------------------------------------- 62
圖4-8 銅箔拉伸試片之應變歷程圖 ------------------------------------- 65
圖4-9 銅箔拉伸歷程之應力分布圖 ------------------------------------- 66
圖4-10 損傷曲線之比較圖 ------------------------------------------------- 68
圖4-11 電解銅箔之兩損傷負荷對伸長量比較圖 ---------------------- 68
圖4-12 微金屬之兩損傷工程應力應變比較圖 ------------------------- 69

表4-1 微金屬拉伸試驗與模擬之應力應變比較表 ------------------- 59
表4-2 微金屬拉伸試驗與模擬比較表 ---------------------------------- 63
表4-3 微金屬之損傷比較表 ---------------------------------------------- 69


參考文獻 參考文獻
1. J. Lemaitre, “Engineering Damage Mechanics”, Springer Berlin Heidelberg, 2005.
2. Y. Ling, “Uniaxial True Stress-Strain after Necking”, AMP Journal of Technology, Vol. 5, 1996.
3. K. W. Sharon, “Mechanical and Fracture Properties of Thin Al-foil”, Department of Mechanics Engineering, Blekinge Institute of Technology, S-317, pp. 79, 2001.
4. M. Klein, A. Hadrboletz, B. Weiss, and G. Khatibi, “ The ‘Size Effect’ on the Stress–Strain, Fatigue and Fracture Properties of Thin Metallic Foils”, Materials Science and Engineering, A319-321, pp. 924-928, 2001.
5. B. Weiss, V. Groger, G. Khatibi, A. Kotas, P.,Zimprich, R. Stickler, and B. Zagar, “Characterization of Mechanical and Thermal Properties of Thin Cu Foils and Wires”, Sensors and Actuators, A 99, pp. 172-182, 2002.
6. H. W. Choi, K. R. Lee, R. Wang, and K. H. Oh, “Fracture Behavior of Diamond-Like Carbon Films on Stainless Steel under a Micro-Tensile Test Condition”, Diamond & Related Materials, Vol. 15, pp. 38-43, 2006.
7. H. Hoffmann, and S. Hong, “Tensile Test of very Thin Sheet Metal and Determination of Flow Stress Considering the Scaling Effect”, Annals of the CIRP, Vol. 55, 2006.
8. F. Vollertsen, H. Schulze Niehoff, and Z. Hu, “State of the Art in Micro Forming”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1172-1179, 2006.
9. G. Simons, Ch. Weippert, J. Dual, and J. Villain, “Size Effects in Tensile Testing of Thin Cold Rolled and Annealed Cu Foils”, Materials Science and Engineering, A 416, pp. 290-299, 2006.
10. C. Dai, X. Zhu, and G. Zhang, “Tensile and Fatigue Properties of Free-Standing Cu Foils”, Shenyang National Laboratory for Materials Science, Vol. 25, pp. 721-726, 2009.
11. L. M. Kachanov, “Introduction to Continuum Damage Mechanics”, Martinus Nijhoff Publisher, 1986.
12. J. Lemaitre, “A Course on Damage Mechanics”, Springer-Verlag, 1992.
13. E. Thomas Moyer, JR., H. McCoy2, and S. Shahram, “Prediction of Stable Crack Growth using Continuum Damage Mechanics”, International Journal of Fracture, Vol. 86, pp. 375-384, 1997.
14. I. Pether, G. Gloria, Q. Gleima, and F. Julio, “Model of Damage for Steel Frame Members”, Engineering Structures, Vol. 21, pp. 954-964, 1999.
15. V. Kevin, and R. Vaziri, “Application of a Damage Mechanics Model for Predicting the Impact Response of Composite Materials”, Computer and Structures, Vol. 79, pp. 997-1011, 2001.
16. F. M. Andrade Pires, J. M. A., L. Costa Sousa, and R. M. Natal Jorge, “Numerical Modelling of Ductile Plastic Damage in Bulk Metal Forming”, International Journal of Mechanical Sciences, Vol. 45, pp. 273-294, 2003.
17. A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth, “A Numerical Model for Bird Strike of Aluminum Foam-Based Sandwich Panels”, International Journal of Impact Engineering, Vol. 32, pp. 1127-1144, 2006.
18. J. L. Chaboche, M. Boudifa, and K. Saanouni, “A CDM Approach of Ductile Damage with Plastic Compressibility,” International Journal of Fracture, Vol. 137, pp. 51-75, 2006.
19. M. Alves, G. B. Micheli, and L. Driemeier, “High-Velocity Impact of Plates”, Solid Mechanics in Brazil 2007, Brazilian Society of Mechanical Sciences and Engineering ABCM, Symposium Series, 2007.
20. M. Mashayekhi, S. Ziaei-Rad, J. Parvizian, J. Niklewicz, and H. Hadavinia, “Ductile Crack Growth based on Damage Criterion:Experimental and Numerical Studies”, Mechanics of Materials, Vol. 39, pp. 623-636, 2007.
21. X. Liang, “Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading”, International Journal of Solids and Structures, Vol. 44, pp. 5163-5181, 2007.
22. X. Teng, “Numerical Prediction of Slant Fracture with Continuum Damage Mechanics”, Journal of Engineering Fracture Mechanics, Vol. 75, pp. 2020-2041, 2008.
23. M. V. Donadon, L. Iannucci, B. G. Falzon, J. M. Hodgkinson, and S. F. M. de Almeida, “A Progressive Failure Model for Composite Laminates Subjected to Low Velocity Impact Damage”, Computers and Structures, Vol. 86, pp. 1232-1252, 2008.
24. H. Hongcheng, and X. Liang, “Prediction of Slant Ductile Fracture using Damage Plasticity Theory”, International Journal of Pressure Vessels and Piping, pp. 1-10, 2009.
25. M. Zhan, C. Gu, Z. Jiang, L. Hu, and H. Yang, “Application of Ductile Fracture Criteria in Spin-Forming and Tube-Bending Processes”, Computational Materials Science, Vol. 47, pp. 353-365, 2009.
26. John O. Hallquist, “LS-DYNA Theoretical Manual”, 2006.
27. R. Hill, “The Mathematical Theory of Plasticity”, Oxford:Clarendon Press, 1950.
28. W. Johnson and P. B. Mellor, “Engineering Plasticity”, Chichester: Ellis Horwood, 1983.
29. ASTM E345, “Standard Test Methods of Tension Testing of Metallic Foil,” Annual Book of ASTM Standards, 2002.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-09-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-09-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信