淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1408202100113200
中文論文名稱 選擇性雷射熔化成型製造多孔性氯化銀光觸媒模組暨其應用
英文論文名稱 Application of Porous Silver Chloride Photocatalyst Module manufacturing by Selective Laser Melting
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 109
學期 2
出版年 110
研究生中文姓名 黃晟瑜
研究生英文姓名 Cheng-Yu Huang
學號 609370019
學位類別 碩士
語文別 中文
口試日期 2021-07-02
論文頁數 46頁
口試委員 指導教授-林清彬
委員-陳冠辰
委員-張子欽
中文關鍵字 氯化銀  選擇性雷射熔化成型  光觸媒  大腸桿菌  降解  滅菌 
英文關鍵字 Silver chloride  Select laser melting forming  photocatalyst  E.coli  Degradation  Sterilization 
學科別分類 學科別應用科學機械工程
中文摘要 飲用水會透過添加氯或臭氧進行滅菌,儘管其具有顯著的效果,但是在使用後飲用水通常會有難聞的味道,甚至可能會產生三鹵甲烷和氯仿等具有致癌毒性的副產物。含有偶氮染料之廢水若不經處理排入河流中,除了會嚴重影響人們的用水外,也會嚴重汙染農地及生態系。因此,本研究開發一種使用選擇性雷射熔化3D列印製造一款無毒及具高孔隙率AgCl/Ago(Ago:銀原子簇)的光觸媒結構,並測試對偶氮染料(Orange II)和細菌(大腸桿菌)的光催化降解及結構重複使用的耐用性和可靠性。AgCl/Ago光催化模組是藉由SLM技術將平均厚度約30μm的奈米級AgCl粉末薄層平鋪在304不銹鋼基板上,並藉由高功率雷射光逐層熔化AgCl粉末直到 3D 的AgCl/Ago光催化模組製作完成。由於熔化過程可能會導致AgCl轉化為其他化合物,如Ag2O或Ag(OH),而降低光催化的活性,因此找到製作 SLM 模塊雷射光的最佳參數為 26 W功率和 385 mm/sec掃描速度。高孔隙率AgCl/Ago光催化模組顯示對Orange II偶氮染料的降解和大腸桿菌的滅菌具有良好的效果。在可見光和紫外光的照射下,Orange II偶氮染料的降解,濃度降解動力學遵循一級反應,對Orange II偶氮染料持續使用5次循環降解,仍具有95% 的降解性。大腸桿菌的滅菌可以在 135 分鐘完成,降解動力學也遵循一級反應。使用SLM製成的高孔隙率AgCl/Ago光催化模組不僅顯示降解水中污染物及滅菌的能力,而且說明了這種結構具有重複使用的耐用性和可靠性。
英文摘要 A selective laser melting (SLM) 3D printing procedure of producing highly porous AgCl/Ago (Ago: silver clustering) photocatalyst was developed and tested for stability and degradability of azo dye (Orange II) and bacteria (E. coli). AgCl/Ago photocatalytic module was made through SLM technique which the nano-scaled meter AgCl powder was stacking in a thin layer (about average thickness of 30 µm) on a 304 stainless steel substrate and melting AgCl powder by high power laser beam layer by layer until the 3D module been made. Due to the melting process may cause AgCl turning into other compounds such Ag2O or Ag(OH), which may reduce the activity of photocatalyst, the optimum parameters of making SLM module were tested here in as 26 watt of laser power and 385 mm/sec of scanning speed. Degradation of azo dye and sterilization of E. coli were shown effective by this photocatalytic module. Degradation of azo dye was performed under visible and UV light irradiation and the concentration degradation kinetics follow the first order reaction. Furthermore, the degradability of this photocatalyst module which degrades azo dye could persist 5 cycles been used in our experiment with 95% degradability. Sterilization of E. coli could be accomplished within 135 min test and the degradation kinetics follows the first order as well. The photocatalytic module been made by SLM process not only showed the capability of degrading contaminants in the water but illustrated the durability and reliability of repeating use of this well-structured module.
論文目次 目錄V
圖目錄VII
第一章 前言1
1.1研究源起1
1.2文獻回顧4
1.2.1選擇性雷射熔化成型4
1.2.2氯化銀與光催化6
1.2.3氯化銀的染料降解與光催化滅菌7
第二章 實驗步驟9
2.1研究方法及步驟9
2.2氯化銀粉末製作,顯微結構觀察與相分析9
2.3多孔性Ag0/AgCl光觸媒模組10
2.3.1多孔性Ag0/AgCl光觸媒模組的設計10
2.3.2多孔性Ag0/AgCl光觸媒圓柱製作12
2.4Orange II染料的降解13
2.5大腸桿菌光催化滅菌16
2.6多孔性Ag0/AgCl光觸媒模組可靠度測試18
第三章 結果與討論19
3.1氯化銀粉末析出與分析19
3.2氯化銀粉末加熱的熱分析,XRD分析及顯微結構觀察21
3.3基材的影響27
3.4多孔性Ag0/AgCl光觸媒29
3.5Orange II偶氮染料光催化降解31
3.6大腸桿菌光催化滅菌35
第四章 結論39
參考文獻41

圖目錄
圖 1 (a).多孔性Ag0/AgCl光觸媒圓柱與(b).多孔性Ag0/AgCl光觸媒模組的示意圖11
圖 2 (a).氯化銀粉末選擇雷射熔化成型;(b).氯化銀粉末床照片12
圖 3 (a)UV光;(b)可見光的光譜14
圖 4 (a).偶氮染料Orange II水溶液降解與(b).大腸桿菌溶液的滅菌實驗裝置15
圖 5 (a). UV光照射後的氯化銀粉末;(b).氯化銀粉末的SEM照片19
圖 6 氯化銀粉末光還原後的X射線繞射分析圖20
圖 7 氯化銀粉末加熱溫度與熱量變化的DSC曲線21
圖 8 氯化銀粉末在(a).500℃與(b).525℃的XRD分析圖22
圖 9 氯化銀在各種加熱溫度後的共軛焦顯微結構;(a).500℃;(b).525℃;(c).550℃;(d).600℃;(e).650℃23
圖 10 氯化銀粉末溫度與雷射掃描速率模擬的關係與線性迴歸25
圖 11 氯化銀粉末在304不銹鋼基板經26W功率及不同掃描速率,UV光照射後 (a).250mm/s; (b).275mm/s; (c).300mm/s; (d).325mm/s; (e).350mm/s; (f).385mm/s; (g).400mm/s的共軛焦顯微結構26
圖 12 (a).氯化銀粉末在304不銹鋼基材,使用雷射功率65W及掃描速率25mm/s的共軛焦顯微結構;(b).氯化銀晶粒上熱還原產生銀珠;(c).白色氫氧化銀的XRD;(d).氫氧化銀的樹枝狀晶態28
圖 13 氯化銀粉末在304不銹鋼基材,使用雷射功率65W及掃描速率25mm/s,經時效12小時(照片左邊)及時效24小時(照片右邊)。29
圖 14 3D列印時在一些氯化銀粉末層的照片(a).第1層;(b).第2層;(c).第3層;(d).第4層;(e).第5層;(f).多孔性Ag0/AgCl光觸媒模組(面積:44384mm2)。30
圖 15 Orange II偶氮染料水溶液在Ag0/AgCl光觸媒光照作用下,(a).濃度(C)與(b).ln(C/Co)與降解時間(t)的關係圖;(c)降解速率與降解時間(t)的關係圖;(d).經重複使用5次光觸媒的降解率與時間關係。32
圖 16 Ag0/AgCl光觸媒光催化反應的示意圖34
圖 17 多孔性Ag0/AgCl光觸媒在紫外線和可見光照射下,培養皿上大腸桿菌的菌落數隨時間增加而減少。37
圖 18 多孔性Ag0/AgCl光觸媒在可見光和紫外線光催化(a).大腸桿菌菌落數和滅菌時間關係圖;(b).ln(C/C0)-時間關係圖和線性迴歸;(c).一階反應動力學ln(N/N0)=Capp × t擬合曲線與滅菌時間的關係圖。38
參考文獻 1.Simchi and H. Pohl, “Effects of laser sintering processing parameters on the microstructure and densification of iron powder”, Mat. Sci. Eng., A 359 (2003) pp.119-128.
2.Moon Jung Choi, Kyoung-Hwan Shin and Jyongsik Jang, “Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light”, Journal of Colloid and Interface Science, 341(2010) pp.83-87.
3.Wei-Chieh Lina, Chien-Hung Chena, Han-Yu Tanga, Yu-Cheng Hsiaoc, Jill Ruhsing Panb, Chi-Chang Huc, and Chihpin Huanga,” Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition”, Applied Catalysis B: Environmental, 140–141 (2013) pp.32-41.
4.Simchi and H. Pohl, “Effects of laser sintering processing parameters on the microstructure and densification of iron powder”, Mat. Sci. Eng., A 359 (2003) pp.119-128.
5.M. Wong, I. Owen, C.J. Sutcliffe and A. Puri “Convective heat transfer and pressure losses across novel heat sinks fabricated by Selective Laser Melting”, International Journal of Heat and Mass Transfer, 52(2009) pp.281-288.
6.Yadroitsev, Ph. Bertrand and I. Smurov, “Parametric analysis of the selective laser melting process, Applied Surface Science”, 253(19) (2007) pp.8064-8069.
7.J. Hiemenz, “Electron Beam Melting”, Advanced Materials & Processes, 165(3) (2007) pp45-46.
8.R. B. Eane. “Metal Powder Effects on Selective Laser Sintering”, University of Leeds, 2002, p. 236
9.E. Uhlmann, A. Bergmann and W. Gridin.,” Investigation on additive manufacturing of tungsten Carbide-cobalt by selective laser melting”, Procedia CIRP, 35(2015) pp.8 -15.
10.GT.Win Technology Ltd, https://study.hc.edu.tw/uploads/1042119.
11.K. Kempen. “Expanding the materials palette for Selective Laser Melting of metals”, PhD thesis. KU Leuven, 2015.
12.J. P. Kruth, G. Levy, F. Klocke and T. H. C. Childs,” Consolidation phenomena in laser and powder-bed based layered manufacturing”, CIRP Annals - Manufacturing Technology, 56(2007) pp.730–759.
13.N. K. Tolochko, Y. V. Khlopkov, S. E. Mozzharov, M. B. Ignatiev, T. Laoui and V. I. Titov., “Absorptance of powder materials suitable for laser sintering”, Rapid Prototyping Journal, 6(3) (2000) pp: 155-161.
14.J. F. Ready,” Effects of High Power Laser Radiation” New York, London: Academic Press, 1971.
15.V. Gusarov and I. Smurov,” Modelling the interaction of laser radiation with powder bed at selective laser melting”, Physics Procedia, 5(2010) pp.381-394.
16.X. C. Wang, T. Laoui, J. Bonse, J. P. Kruth, B. Lauwers and L. Froyen,” Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation”, The International Journal of Advanced Manufacturing Technology,19(2002) pp.351-357.
17.E. Attar, “Simulation of Selective Electron Beam Melting Processes”, University of Erlangen-Nurnberg, 2011.
18.T. Lee, M. Leok and N. H. McClamroch, “A nonlinear strain rate and pressure-dependent micro-mechanical composite material model for impact problems”,Proceedings of the 2011 American Control Conference March (2011), pp.1885-1891.
19.Yadroitsev, N. K. Tolochko, S. E. Mozzharov, I. A. Yadroitsev, T. Laoui, L. Froyen, V. I. Titov and M. B.,” Balling processes during selective laser treatment of powders”, Ignatiev, April (2004).
20.M. Prokhorov, V. I. Konov, I. Ursu and I. N. Mihailescu, “Laser Heating of Metals”, Bristol, Philadelphia. Hilger Bristol, 1990.
21.Fujishima and K. Honda,” Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238(1972) pp.37-38.
22.Tang Bin and Zhang Qing-qing,” Characterization of Photocatalysis of AgCl Colloid”, Journal of university of science and technology of china, 32(6) (2002) pp.743-747.
23.Yu Jiemei, Wang Xikui, GuoWeilin and Wang Jingang,” Photocatalytic degradation of p-nitrophenol in water with AgCl catalysis”, Chemical Journal on Internet, 8(5) (2006) pp.33
24.Song Cheng-Fang, Zhang Qing-Qing and Tang Bin,” On the photocatalytic degradation of pigment by AgCl film”, Journal of Anhui Institute of Mechanical and Electrical Engineering, 18(1) (2003) pp. 23-25.
25.Peng Wang, Baibiao Huang, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai, Jiyong Wei and Myung-Hwan Whangbo,” Ag@AgCl: a highly efficient and stable photocatalyst active under visible light”, Angew. Chem. Int. Ed., 47(2008) pp.7931-7933.
26.Zhang Yan, Tan Ya-dong and Kong Qian,” Study on the Photocatalytic performance of Reactive Red K-2BP by AgCl Photocatalyst”, Contemporary Chemical Industry, 34(3) (2005) pp.180-183.
27.Zhang Qing and Tang Bin,” Colloidal silver chloride preparation and photocatalytic antibacterial properties of antibacterial film”, Journal of Nanjing University of Science and Technology, 28(5) (2004) pp.547-551.
28.P.A. Christensen, T.P. Curtis, T.A. Egerton, S.A.M. Kosa and J.R. Tinlin,” Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide”, Applied Catalysis B: Environmental, 41(2003) pp.371-386
29.L. Sikong, B. Noophum and K. Kooptarnond,” Photodegradation of contaminants and antibacterial activity enhanced by AgCl nanoparticles on N, S, co-doped TiO2 thin films”,Digest Journal of Nanomaterials and Biostructures ,10(2) (2015) pp.455-469.
30.E.V. Skorb, L.I. Antonouskay, N.A. Belyasov, D.G. Shchukin, H. M. Hwald and D.V. Sviridov, “Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite”, Applied Catalysis B: Environmental,84(2008) pp.94-99.
31.P. Wang, B. Huang and Z. Lou, “Synthesis of highly efficient Ag@ AgCl plasmonic photocatalysts with various structures”, Chem. Eur. J., 16(2) (2010) pp.538-544.
32.M. Ramstedt and P. Franklyn,” Difficulties in determining valence for Ag0 nanoparticles using XPS-characterization of nanoparticles inside poly (3‐sulphopropyl methacrylate) brushes”, Surf. Interface. Anal., 42(2010) pp.855-858.
33.Shikha Garg, Hongyan Rong, Christopher J. Miller, and T. David Waite, Journal of Physical Chemistry, 120(11) (2016) pp.5988-5996.
34.S.Kolossova, E.Boillat, R.Glardon, P.Fischer and M.Locher,” 3D FE simulation for temperature evolution in the selective laser sintering process”, International Journal of Machine Tools and Manufacture, 44(2-3) (2004) pp.117-123.
35.John Michael Dowden,"The Mathematics of Thermal Modeling: An Introduction to the Theory of Laser Material Processing", Chapman& Hall/CRC, London (2001).
36.R. Li, H. Han, F. Zhang, D. Wang and C. Li,” Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4”, Energy Environ. Sci. ,7 (2014) pp.1369
37.S. Pal, T.Y. Kyung and W. Kim,” Nanocrystalline Silver Supported on Activated Carbon Matrix from Hydrosol: Antibacterial Mechanism under Prolonged Incubation Conditions”, Journal of Nanoscience and Nanotechnology, 9(3) (2009) pp.2092-2103
38.Okkyoung Choi, Zhiqiang Hu, Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environ, Sci. Technol., 42(12) (2008) pp.4583-4588
39.Nelson, K. L., Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters, Environ. Sci. Technol., 41(2007) pp.192-197
40.McDonnell, G., Russell, A.D., Antiseptics and disinfectants: activity, action, and resistance, Clin. Microbiol. Rev., 12(1) (1999) pp.147-179
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2021-08-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-08-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw