§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1408201914200700
DOI 10.6846/TKU.2019.00357
論文名稱(中文) 垂直動荷載作用下樁筏基礎的有限差分分析
論文名稱(英文) Finite Difference Analysis For Piled Raft Foundation under Vertical Dynamic Loading
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 蔣翠莎
研究生(英文) Tricia John
學號 607385019
學位類別 碩士
語言別 英文
第二語言別
口試日期 2019-07-26
論文頁數 71頁
口試委員 指導教授 - 張德文(dwchang@mail.tku.edu.tw)
委員 - 葛宇甯(louisge@ntu.edu.tw)
委員 - 洪勇善(yshong@mail.tku.edu.tw)
關鍵字(中) 樁筏基礎
有限差分分析
動態加載
關鍵字(英) piled raft foundation
finite difference analysis
dynamic loading
第三語言關鍵字
學科別分類
中文摘要
本研究透過修改WERAFT-S (Wave Equation Analysis for Raft Foundation - Statics) 分析開發動態荷載條件下的有限差分分析。 此三維模型包含二維筏基的變形和一維基樁的變形,在時域中進行分析得到各種穩態荷載下筏基的位移量,進而分析樁筏基礎位移,分析結果並與三維分析軟體Midas GTS NX進行比較。
在本研究中,彈簧和阻尼器之模型選取皆有頻率相依 (frequency-dependent) 及頻率不相依 (frequency-independent) 的情況,上述兩種皆應用於模擬土壤。 所建議的分析能夠得到與有限元素法分析相似的位移量。 本研究未考慮樁與樁的互制效應。 研究結果發現,目前的分析模型在基礎共振的模擬上仍有限制。
英文摘要
In this study a finite difference analysis toolkit is developed by modifying the WERAFT-S (Wave Equation Analysis for Raft Foundation - Statics) analysis for use in dynamic loading conditions. This three-dimensional model considers the two dimensional deformations of the raft and the one-dimensional deformations of the piles. The analysis is performed in the time domain to determine the displacement of a raft foundation and subsequently a piled raft foundation, under various steady state loads. Validation of the proposed analysis model is carried out by performing a three dimensional analysis using Midas GTS NX.
Frequency-dependent and frequency-independent spring and dashpot models have been used to model the soil in this study. The proposed analysis is able to determine the order of displacement of similar magnitude as the finite element analysis. Pile to pile interaction effects have not been considered in this study. It was found that the current model is limited in its capacity to reveal the resonance of the foundation.
第三語言摘要
論文目次
Table of Contents
Abstract	I
Acknowledgement	III
List of Figures	VI
List of Tables	IX

Chapter 1 	Introduction	1
1.1 Research Motivation and Objective	1
1.2 Research Method	2
1.1 Research Contents	4

Chapter 2	Literature Review	5
2.1 Raft Foundation Analysis	5
2.2 Piled Raft Foundation Analysis	6
2.3 Foundation Subject to Dynamic Loading	9
2.4 Pile Stiffness	12
2.5 Kirchhoff-Love Hypothesis	13
2.6 Summary	13

Chapter 3	Theory and Method	15
3.1 Theory	15
3.2 Governing Equation	16
3.3Nodal Equations	17
3.4 Raft Displacement Analysis: WERAFT-D	25
3.5 Piled Raft Displacement Analysis: WEAPR-D	26
3.6 Finite Difference Model	29
3.6.1 Finite Difference Model- Raft Only	30
3.6.2 Finite Difference Model - Piled Raft 	32
3.7 Finite Element Model	33
3.7.1 Finite Element Model- Raft Only	33
3.7.2 Finite Difference Model- Piled Raft	36
3.8 Material Parameters	38

Chapter 4	Results	39
4.1 Raft Displacement	39
4.1.1 Raft Displacement: WERAFT-D	41
4.1.2 Raft Displacement- WERAFT-D vs. FEM Comparison	44
4.1.3 Raft Displacement- Finite Element on Linear Springs	49
4.2 Piled Raft Displacement: WEAPR-D	51

Chapter 5	 Conclusion 	61
5.1 Discussion and Conclusion	61
5.2 Limitations and Suggestions	62

References		63

Appendix A		67
Appendix B		68
Appendix C		70







List of Figures
Figure 1-1 Research Structure Diagram	3

Figure 2-1 Plate on Springs Model on Winkler Springs 	6
Figure 2-2 Plate-Beam-Springs Modelling of a Piled Raft Foundation 	8
Figure 2-2a Kitiyodom and Matsumoto (2002) 	8
Figure 2-2b Randolph (1994) 	8
Figure 2-3 Wolf (1995) Simplified Model	10
Figure 2-2a Disk on surface of half-space with truncated semi-infinite translational cone  	10
Figure 2-2a Discrete-element model (lumped-parameter) for translational cone	10

Figure 3-1 Discretized Raft Model on Linear Springs	15
Figure 3-2 Single Pile Equilibrium Model	26
Figure 3-3 Discretized Pile Model	29
Figure 3-4 WERAFT-D Raft Model	30
Figure 3-5 WERAFT-D Discretized Raft Model	31
Figure 3-6 WEAPR-D Piled Raft Model	32
Figure 3-7 Finite Element Meshing	34
Figure 3-7a Isometric View	34
Figure 3-7b Top View	34
Figure 3-8 Finite Element Model Boundary Constraints	36
Figure 3-9a 3-D Finite Element Pile Model	36
Figure 3-9b 3-D Finite Element Piled Raft Model	36
Figure 3-10 Piled Raft Foundation 3-D Finite Element Mesh	37

Figure 4-1 Surface Raft Foundation 	39
Figure 4-2 Raft Foundation Discretization 	41

Figure 4-3a Raft Foundation Displacement vs. Frequency- Lysmer (1965)	42
Figure 4-3b Raft Foundation Displacement vs. Frequency- Gazetas (1991) 	42
Figure 4-3c Raft Foundation Displacement vs. Frequency- Wolf (1995) 	43

Figure 4-4 Finite Element Model Dimension 	45
Figure 4-5 FEM Raft Foundation Displacement vs. Frequency 	45

Figure 4-6a WERAFT-D vs. FEM Comparison (Model R1) - Vs=120m/s	46
Figure 4-6b WERAFT-D vs. FEM Comparison (Model R1) - Vs=150m/s	47
Figure 4-6c WERAFT-D vs. FEM Comparison (Model R1) - Vs=180m/s	47

Figure 4-7a WERAFT-D vs. FEM Comparison (Model R2) - Vs=120m/s	48
Figure 4-7b WERAFT-D vs. FEM Comparison (Model R2) - Vs=150m/s	48
Figure 4-7c WERAFT-D vs. FEM Comparison (Model R2) - Vs=180m/s	49

Figure 4-8 FEM on Linear Springs and Dashpots Model	50
Figure 4-9 FEM on Linear Springs and Dashpots and Proposed Finite Difference Analysis 	50
Figure 4-10 Piled Raft Foundation Model	51
Figure 4-11 Piled Raft Foundation 3x3 Pile Configuration Layout 	53
Figure 4-12 Piled Raft Foundation 4x4 Pile Configuration Layout 	53

Figure 4-13a Piled Raft Foundation (PR1) vs. Raft Model (R1) Comparison - Vs=120m/s	54
Figure 4-13b Piled Raft Foundation (PR1) vs. Raft Model (R1) Comparison - Vs=150m/s	55
Figure 4-13c Piled Raft Foundation (PR1) vs. Raft Model (R1) Comparison - Vs=180m/s	55

Figure 4-14a Piled Raft Foundation (PR2) vs. Raft Model (R2) Comparison - Vs=120m/s	56
Figure 4-14b Piled Raft Foundation (PR2) vs. Raft Model (R2) Comparison - Vs=150m/s	56
Figure 4-14c Piled Raft Foundation (PR2) vs. Raft Model (R2) Comparison - Vs=180m/s	57

Figure 4-15a Piled Raft Foundation Model (PR2) vs. (PR1) Comparison - Vs=120m/s	58
Figure 4-15b Piled Raft Foundation Model (PR2) vs. (PR1) Comparison - Vs=150m/s	58
Figure 4-15c Piled Raft Foundation Model (PR2) vs. (PR1) Comparison - Vs=180m/s	59

Figure 4-16a Piled Raft Foundation (PR3) vs. Raft Model (R2) Comparison - Vs=150m/s	60
Figure 4-16a Piled Raft Foundation Model (PR3) vs. (PR2) Comparison - Vs=150m/s	60

Figure A-1 Graphs to determine dynamic stiffness and damping coefficients k ̃_z and c ̃_z using Gazetas, 1991 spring and dashpot model 	67

Figure C-1 Sample input load- 1.5 kPa amplitude	70
Figure C-2 Sample input load- 0.222 kPa amplitude	70
Figure C-3 Sample output displacement vs. time curve - WERAFT model	71
Figure C-4 Sample output displacement vs. time curve - FEM model	71




List of Tables

Table 3-1 Spring and Dashpot Models for a disk on Homogeneous Half-space 	25
Table 3-2 Pile Spring Models for a Homogeneous Half-space	28
Table 3-3 Finite Element Assigned Mesh Sizes 	33
Table 3-4 Empirical Formulas for Material Parameter Calculation 	38

Table 4-1 Raft Foundation Dimension and Loading 	39
Table 4-2 Material Parameters (Elastic Properties) 	40
Table 4-3 Finite Element Model Analysis Zone Dimension	44
Table 4-4 Piled Raft Foundation Model Parameters	52
Table 4-4 Pile Stiffness Parameters	52

Table 5-1 Analysis Time Comparison	62

Table B-1 Frequency independent soil spring and dashpot values	68
Table B-2 Frequency dependent soil spring and dashpot values	69
參考文獻
1.	Abderlrazaq, A., Badelow, F., Sung, H.K. and Poulos, H.G. (2011). Foundation design of the 151 story Incheon Tower in a reclamation area. Geotechnical En-gineering,42(2),85-93.
2.	Bowles, Joseph E. (1996). Foundation Analysis and Design, 3rd Edition, McGraw-Hill Book Co. New York, 800 pp
3.	Causon, P. D. M., and Mingham, P. C. G. (2018). Introductory Finite Difference Methods for PDEs. Bookboon.
4.	Chang, D.W. (2017). Development of a wave equation analysis for a piled raft foundation in soft clay subject to a static vertical force- research plan. (in Chinese)
5.	Chakravorty, A. K. and Ghosh, A. (1975). Finite difference solution for circular plates on elastic foundations. International Journal for Numerical Methods in Engineering, 9(1), 73–84. doi:10.1002/nme.1620090107
6.	Chang, D.W., Lien, H.W. and Wang, T.Y. (2018). Finite difference analysis of vertically loaded raft foundation based on the plate theory with boundary concern. Journal of Geo. Engineering, TGS, 13(3) 135-147.
7.	Chapman, S. (2018). Fortran for scientists and engineers (4th ed.). New York, United States: Mc Graw Hill Education.
8.	Chilton, D. S. and Wekezer, J. W. (1990). Plates on Elastic Foundation. Journal of Structural Engineering, 116(11), 3236–3241.doi:10.1061/(asce)0733-9445(1990)116:11(3236) 
9.	Clancy, P. and Randolph, M. F. (1993). An approximate analysis procedure for piled raft foundations. International Journal for Numerical Methods in Geo-mechanics, 17: 849-869. doi:10.1002/nag.1610171203
10.	Emani, P.K. and Maheshwari, B. K. (2009). Dynamic impedances of pile groups with embedded caps in homogeneous elastic soils using CIFECM. Soil Dynamics and Earthquake Engineering; 29(6):963–973.
11.	Fattah, M. Y., Hamood, M. J., and Al-Naqdi, I. A. A. (2015). Finite-element analysis of a piled machine foundation. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 168(6), 421–432. doi:10.1680/stbu.14.00053 
12.	Franke, E., Lutz, B. and El- Mossallamy, Y. (1994). Measurements and numerical modelling of high-rise building foundations on Frankfurt clay. Vertical and horizontal deformation of foundations and embankments, ASCE Geotechnical Special Publication No. 40. 2:1325-1336.
13.	Gazetas, G. (1991). Foundation Vibrations. Foundation Engineering Handbook, 553-593. doi:10.1007/978-1-4615-3928-5_15
14.	Gazetas, G. (1983). Analysis of machine foundation vibrations: state of the art. Soil Dynamics and Earthquake Engineering, 2(1), 2-42, https://doi.org/10.1016/0261-7277(83)90025-6.
15.	Hain S. and Lee I. (1978).  The analysis of flexible raft–pile systems. Géotechnique; 28(1):65–83.
16.	Hartmann, F., and Jahn, P. (2001). Meccanica, 36(4), 351–366. doi:10.1023/a:1015097016148 
17.	Hemsley, J. A. (2000). Design Applications of Raft Foundations. Thomas Telford Ltd, London
18.	Hemsley, J. A. (1998). Elastic Analysis of Raft Foundations Thomas Telford Ltd, London
19.	Hewitt, P. and Gue, S. S., (1994). Piled Raft Foundation in a weathered sedimentary formation. Proceeding of Geotropical, Kuala Lumpur, Malaysia 1994;1–11.
20.	Hiroshi, N. (2019). Simplified method of estimating the dynamic impedance of a piled raft foundation subjected to inertial loading due to an earthquake. Computers and Geotechnics, 105(0266352), 69-78.  doi.org/10.1016/j.compgeo.2018.09.014
21.	Horikoshi, K., and Randolph, M. F. (1997). On the definition of raft—soil stiffness ratio for rectangular rafts. Géotechnique, 47(5), 1055-1061. doi:10.1680/geot.1997.47.5.1055
22.	Hsieh, T. K. (1962). Foundation vibrations. Proceedings of the Institution of Civil Engineers, 22(2), 211-226. doi:10.1680/iicep.1962.11089
23.	Huang, M. H. and Thambiratnam, D. (2001). Free Vibration Analysis of Rectangular Plates on Elastic Intermediate Supports. Journal of Sound and Vibration. 240. 10.1006/jsvi.2000.3239.
24.	Hu, C., and Hartley, G. (1994). Analysis of a thin plate on an elastic half-space. Computers & Structures, 52(2), 227-235. doi:10.1016/0045-7949(94)90276-3
25.	Ioannides, A. M. (1988). Finite Difference Solution for Plate on Elastic Solid. Journal of Transportation Engineering, 114(1), 57-75.
  doi:10.1061/(asce)0733947x(1988)114:1(57) 
26.	Jeong, S. and Cho, J. (2014). Proposed nonlinear 3-D analytical method for piled raft foundations. Computers and Geotechnics, 59, 112-126. doi:10.1016/j.compgeo.2014.02.009
27.	Katzenbach, R. and Choudhury, D. (2013). ISSMGE Combined Pile-raft Foundation Guideline, Technische Universitat Darmstadt, Institute and Laboratory of Geotechnics, Darmstadt, Germany.
28.	Kerr, A.D. (1964). Elastic and viscoelastic foundation models, J. Appl. Mech., 31, pp.491-498.
29.	Kitiyodom, P. and Matsumoto, T. (2002). A simplified analysis method for piled raft and pile group foundations with batter piles. International Journal for Numerical and Analytical Methods in Geomechanics, 26 1349-1369.
30.	Komlev, A. and Makeev, S. (2018). The calculation of rectangular plates on elastic foundation the finite difference method. Journal of Physics: Conference Series, 944, 012056. doi:10.1088/1742-6596/944/1/012056
31.	Kramrisch, F. and Rogers, P. (1961). Simplified design of combined footings. Proceedings. ASCE, V. 88, SM5, pp. 19-44
32.	Liang, R. Y. and Husein, A. I. (1993). Simplified dynamic method for pile‐driving control. Journal of Geotechnical Engineering, 119(4), 694-713. doi:10.1061/(asce)0733-9410(1993)119:4(694)
33.	Lien, H.W. (2018). Finite difference analysis of piled raft foundations under vertical loads. Master Thesis, Dept. of Civil Engineering, Tamkang University, Taiwan (in Chinese).
34.	Liu, C. L. and Ai, Z. Y. (2017) Vertical harmonic vibration of piled raft foundations in layered soils. Int. J. Numer. Anal. Meth. Geomech., 41: 1711– 1723. doi: 10.1002/nag.2696.
35.	Loukidis, D. and Tamiolakis, G. (2017). Spatial distribution of Winkler spring stiffness for rectangular mat foundation analysis.  Engineering Structures, 153, 443-459. doi:10.1016/j.engstruct.2017.10.001
36.	Luco, J. E. (1976). Vibrations of a rigid disc on a layered viscoelastic medium. Nucl. Engrg. Des., 36, 325
37.	Lysmer, J. (1965). Vertical Motions of Rigid Footings, Ph.D. thesis, University of Michigan, Ann Arbor. 
38.	Mandolini, A., Di Laora, R. and Mascarucci, Y. (2013). Rational design of piled raft. Procedia Engineering. 57. 45–52. 10.1016/j.proeng.2013.04.008.
39.	Milović, D.M. and Djogo, M.B. (1997). Rectangular raft of any rigidity on the layer of limited thickness. Proc. 14th Int. Conf. Soil Mech. Foundn Engng, (pp. 857-858). Hamburg, Germany, A.A Balkema, Rotterdam.
40.	Mylonakis, G. and Gazetas, G. (1998). Settlement and additional internal forces of grouped piles in layered soil. Géotechnique, 48(1), 55-72. doi:10.1680/geot.1998.48.1.55
41.	Nguyen, D. D., Jo, S. and Kim, D. (2013). Design method of piled-raft foundations under vertical load considering interaction effects. Computers and Geotechnics, 47, 16-27. doi:10.1016/j.compgeo.2012.06.007
42.	Nguyen V. T, Hassen G. and Buhan P. (2016). Assessing the dynamic stiffness of piled-raft foundations by means of a multiphase model. Comput Geotech; 71:124–35.
43.	Novak, M. and Beredugo, Y. O. Vertical vibration of embedded footings. J. Soil Mech. Fnd Engrg. Div., ASCE, 1972, 00, SM12, 000
44.	Pasternak, P.L. (1954). On a new method of analysis of an elastic foundation by means of two foundation constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstuve i Arkhitekture, Moscow (in Russian).
45.	Poulos, H.G. (1991). Analysis of piled raft foundations. Computer Methods and Advances in Geotechnique. Ed. Beer et al., Balkema, Rotterdam, 153-191.
46.	Poulos, H. G. (1994), An approximate numerical analysis of pile–raft interaction. Int. J. Numer. Anal. Meth. Geomech., 18: 73-92. doi:10.1002/nag.1610180202
47.	Poulos, H.G. (2001). Pile-raft foundation: design and applications. Geotechnique, 51(2), 95-113
48.	Randolph, M. (1994). Design methods for pile groups and piled rafts. In Thirteenth International Conference on Soil Mechanics and Foundation Engineering (Vol. 5, pp. 61-82). New Delhi, India: Oxford and IBH Publishing Co. Pvt. Ltd.
49.	Randolph, M. F. and Wroth, C. P. (1978). Analysis and deformation of vertically loaded piles. Journal of Geotechnical Engineering 104(12): 1465-1487. 1978
50.	Richart, F. E. and Whitman, R. V. (1967). Comparison of footing vibration tests with theory, J. Soil Mech. Fdn. Engrg. Div.
51.	Shehata, O. E., Farid, A. F., and Rashed, Y. F. (2018). Practical boundary element method for piled rafts. Engineering Analysis with Boundary Elements, 97, 67–81. doi:10.1016/j.enganabound.2018.09.009
52.	Sutti, M. (2015). Elastic theory of plates. Retrieved from http://www.unige.ch/math/folks/sutti/Elastic_Theory_of_Plates.pdf
53.	Veletsos, A. S. and Verbic, B. (1974). Basic response functions for elastic foundations, J. Engrg. Mech. Div., ASCE, 1974, 100, EM2, 189
54.	Vlasov, V. Z. and Leontev, U. N. (1966). Beams, Plates and Shells on Elastic Foundation. (Translated from Russian), Israel Program for Scientific Translation Jerusllem, Israel.
55.	Winkler, E. (1867). Die Lehre von der Elastizität und Festigkeit, H. Dominicus, Prague (in German).
56.	Wolf, J. P. (1995). Simple Physical Models for Foundation Dynamics. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 5. https://scholarsmine.mst.edu/icrageesd/03icrageesd/session16/5 
57.	Yamashita, K., Yamada, T. and Makurai, M. (1998). Simplified method for analyzing piled raft foundations. Deep Foundations on Bored and Auger Piles, Van Impe and Haegeman (eds), Balkema, Rotterdam, 457-464.
58.	Zaman, M. M, Faruque, M. O. and Uddin, N. (1991). Analysis of foundation- elastic half half-space interaction using a mixed- variational approach. Soils Foundations, 27-38.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信