§ 瀏覽學位論文書目資料
系統識別號 U0002-1408201911175200
DOI 10.6846/TKU.2019.00356
論文名稱(中文) 雙連續結構多孔薄膜之製備、物性分析及其在分離程序之應用
論文名稱(英文) Bi-continuous porous membrane: preparation, characterization, and applications in separation processes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 尤思婷
研究生(英文) Szu-Ting Yu
學號 606400108
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-18
論文頁數 102頁
口試委員 指導教授 - 鄭廖平
委員 - 張旭賢
委員 - 張朝欽
關鍵字(中) 聚醚碸
聚乙烯吡咯烷酮
聚乳酸
多氧乙烯山梨聚糖
多孔型薄膜
濕式相轉換法
超過濾
抗汙
截留分子量
關鍵字(英) Polyethersulfone
Polyvinylpyrrolidone
porous membrane
dry-wet phase inversion method
ultrafiltration
antifouling capability
molecular weight cut-off
第三語言關鍵字
學科別分類
中文摘要
本研究以乾濕式相轉換法(dry-wet phase inversion method)由PVP(polyvinylpyrrolidone) /γ-丁內酯(gamma-Butyrolactone)/聚醚碸與Tween 20/碳酸丙烯酯(propylene carbonate)/聚乳酸兩系統製備多孔型薄膜,前者依PVP及PES之添加量不同,探討其對薄膜之物性與過濾效能之影響,所製得薄膜呈非對稱結構,表面為皮層,內部為手指狀巨孔,隨著PVP添加量增加,上、下表面孔洞逐漸變大,使純水通量提升,當添加至15 wt%時,結構轉變形成雙連續互穿結構;改變PES添加量時,薄膜表面孔洞尺寸變小,上表面變得緊實,使純水通量逐漸下降,薄膜之孔隙度約為60~81%,上表面的接觸角薄膜的抗張強度皆隨著PVP的添加逐漸下降,這是由於上、下表面孔洞變大所致,然而當固定PVP添加量時,抗張強度會隨著PES添加量增加,呈上升趨勢。PVP在薄膜的殘留量乃由NMR分析得知,結果顯示,殘留量佔膜重0.1~6.4 %而PVP的移除率約為73~99.8 %。在純水通量測試中發現隨著PVP的添加通量呈上升趨勢,當PVP添加至15 wt%時,其通量最高可達約1000 LMH。將薄膜進行BSA過濾時,發現BSA之移除率最高可達96%,過濾通量為51 LMH,利用PEG量測薄膜之截留分子量,發現其截留分子量約為137~454 kDa,此現象與純水通量及孔洞大小相互呼應。
後者依Tween 20之添加量及製膜液冷卻時間的不同,探討其對薄膜之物性與孔洞結構之影響,所製得薄膜之冷卻時間維持在10分鐘時,隨著Tween 20添加量增加,上、下面孔洞逐漸變大,截面結構由倒V趨勢轉為上下均一的孔洞,接著再轉為正V趨勢,最後轉變形成雙連續互穿結構,薄膜之孔隙度約為49~55%,抗張強度會隨著Tween 20添加量增加,呈下降趨勢;再添加5 wt% Tween 20而改變製膜液冷卻時間時,薄膜表面孔洞尺寸無太大變化,當冷卻時間達15分鐘時,胞孔縮小並開始產生相互連通之雙連續互穿結構,薄膜之孔隙度約為53~68 %。
英文摘要
In this research, we used the dry-wet phase inversion method to prepare porous membranes from the polyvinylpyrrolidone (PVP) / γ-butyrolactone (GBL) / polyethersulfone  (PES) and  the Tween 20 / propylene carbonate / poly(lactic acid) system to prepare porous membrane. According to the amount of added different PVP and PES content, we can be divided into 6 series: P16, P16K5, P16K10, P16K15, P13K10, P20K10. All membranes show the asymmetric structure with a dense surface (skin) and porous cross section composed of finger-liked macrovoids. With the increase of added PVP, the pores on the top and bottom surfaces increase, resulting in an increase of the pure flux. When increase of added 15 wt% PVP, the structure transform into bi-continuous porous. Changing the amount of added PES, the surface pore size of the membrane is found to decrease, resulting in a decrease of the pure flux. The porosity of membrane is about 60-81%, and the contact angle of the top surface gradually decreases with the addition of PVP. The tensile strength decrease with the increase of added amount of PVP, which is attributed to the larger pores of the top and bottom surfaces. However, when the added PVP is fixed, the tensile strength increases with the addition of PES. The amount of PVP resided in the membrane has been determined by NMR analysis. The results show that about 73-99.8 % of the PVP is removed during the membrane formation process and the residual amount only accounts for 0.1~6.4 % of the membrane weight. As to the pure water flux increase with the PVP content, when increase of added 15 wt% PVP, the flux are up to 1000 LMH. The BSA filtration experiments show that the rejection ratio of the membrane are up to 96% and permeation flux of BSA solution are 51 LMH. PEG is used to determine the molecular weight cut-off (MWCO) of the membranes. For PES membranes, the MWCO is about 137-454 kDa, these results are consistent with the pure water flux and the pore size.
The latter is based on the addition of different Tween 20 and different cooling time. All membranes show the asymmetric structure. With the increase of added Tween 20, the pores on the top and bottom surfaces increase, and the structure changes from the inverted V and then turns to the positive V trend and finally transform into bi-continuous porous. The porosity of membrane is about 49-55%, and the tensile strength decrease with the increase of added amount of Tween 20. With the increase of cooling time, the pores on the top and bottom surfaces is not much different. When increase of cooling time on 15 min, the cross section pores shrink and transform into bi-continuous porous. The porosity of membrane is about 53-68 %.
第三語言摘要
論文目次
目錄
致謝 I
論文提要內容 Ⅱ
Abstract Ⅳ
目錄 VI
圖目錄 VIII
表目錄 X
第一章 序論 1
1.1 前言和研究目的 1
第二章 製備雙連續互穿結構之聚醚碸薄膜及其在超過濾之應用 3
2.1 前言 3
2.2 實驗 8
2.2.1 實驗藥品 8
2.2.2 浸置沉澱法製備聚醚碸薄膜 10
2.2.3 PES薄膜之物性測試分析 11
2.2.4 純水通量、截留分子量及抗垢測試 14
2.3 結果與討論 25 
2.3.1 PES薄膜之製備與物性分析 25
2.3.2 PES薄膜BSA抗垢能力測試 50
2.3.3 PES薄膜截留分子量測試 52
2.4 結論 55
2.5 參考文獻 56
附錄A PMI測試 65
附錄B AFM測試 73
附錄C 拉力測試 74
第三章 製備雙連續互穿結構之聚乳酸薄膜及其在微過濾之應用 77
3.1 前言 77
3.2 實驗 80
3.2.1 實驗藥品 80
3.2.2 浸置沉澱法製備聚乳酸薄膜 82
3.2.3 PLA薄膜之物性測試分析 83
3.3 結果與討論 85
3.3.1 PLA薄膜之製備與物性分析 85
3.4 結論 100
3.5 參考文獻 101

圖目錄
圖2-1 製備PES薄膜之流程 10
圖2-2 CFP之壓差與孔徑之關係 14
圖2-3 以HPLC測試分子量為26 kDa之PEG Standard所獲得之(a)折現率變化圖及(b)檢量線 16
圖2-4 以HPLC測試分子量為43 kDa之PEG Standard所獲得之(a)折現率變化圖及(b)檢量線 17
圖2-5 以HPLC測試分子量為50 kDa之PEG Standard所獲得之(a)折現率變化圖及(b)檢量線 18
圖2-6 以HPLC測試分子量為100 kDa之PEG Standard所獲得之(a)折現率變化圖及(b)檢量線 19
圖2-7 以HPLC測試分子量為150 kDa之PEG Standard所獲得之(a)折現率變化圖及(b)檢量線 20
圖2-8 以HPLC測試分子量為230 kDa之PEG Standard所獲得之(a)折現率變化圖及(b)檢量線 21
圖2-9 以HPLC測試分子量為500 kDa之PEG Standard所獲得之(a)折現率變化圖及(b)檢量線 22
圖2-10 不同濃度牛血清白蛋白(BSA)之UV吸收度檢量線 24
圖2-11 PES薄膜上表面之SEM影像圖 29
圖2-12 PES薄膜截面之SEM影像圖 30
圖2-13 PES薄膜截面巨孔之SEM放大影像圖 31
圖2-14 PES薄膜截面之SEM放大影像圖 32
圖2-15 不同比例組成之PES薄膜下表面SEM影像圖 33
圖2-16 (a)聚醚碸PES與 (b)聚乙烯吡咯烷酮PVP之H-NMR光譜圖 37
圖2-17 PES薄膜之H-NMR光譜圖 40
圖2-18 PES薄膜之FTIR-ATR光譜圖 45
圖2-19 製膜液中PVP含量對薄膜厚度及拉伸強度作圖 47
圖2-20 製膜液中PES含量對薄膜厚度及拉伸強度作圖 47
圖2-21 PES薄膜之薄膜純水通量 49
圖2-22 PES薄膜過濾BSA之通量隨時間變化圖 52
圖2-23 PES薄膜之截留率與水通量對PEG分子量作圖 54
圖A-1 P16K5薄膜之氣體流量對壓力作圖 65
圖A-2 P16K5薄膜之累積氣體流量對孔徑作圖 65
圖A-3 P16K5薄膜之孔徑分佈圖 66
圖A-4 P16K5薄膜之孔徑分佈對平均孔徑作圖 66
圖A-5 P16K10薄膜之氣體流量對壓力作圖 67
圖A-6 P16K10薄膜之累積氣體流量對孔徑作圖 67
圖A-7 P16K10薄膜之孔徑分佈圖 68
圖A-8 P16K10薄膜之孔徑分佈對平均孔徑作圖 68
圖A-9 P16K15薄膜之氣體流量對壓力作圖 69
圖A-10 P16K15薄膜之累積氣體流量對孔徑作圖 69
圖A-11 P16K15薄膜之孔徑分佈圖 70
圖A-12 P16K15薄膜之孔徑分佈對平均孔徑作圖 70
圖A-13 P13K10薄膜之氣體流量對壓力作圖 71
圖A-14 P13K10薄膜之累積氣體流量對孔徑作圖 71
圖A-15 P13K10薄膜之孔徑分佈圖 72
圖A-16 P13K10薄膜之孔徑分佈對平均孔徑作圖 72
圖B-1 PES薄膜之粗糙度分析 73
圖C-1 PES薄膜之拉伸強度分析 76
圖3-1 製備PLA薄膜之流程 82
圖3-2 PLA薄膜上表面之SEM影像圖 89
圖3-3 PLA薄膜截面之SEM影像圖 90
圖3-4 PLA薄膜截面之SEM放大影像圖 91
圖3-5 PLA薄膜下表面之SEM影像圖 92
圖3-6 不同冷卻時間之PLA薄膜上表面之SEM影像圖 94
圖3-7 不同冷卻時間之PLA薄膜截面之SEM影像圖 95
圖3-8 不同冷卻時間之PLA薄膜截面之SEM放大影像圖 96
圖3-9 不同冷卻時間之PLA薄膜下表面之SEM影像圖 97

表目錄
表2-1 製備PES薄膜之製膜液組成 11
表2-2 PES薄膜之厚度、接觸角、孔隙度、孔洞尺寸及製膜液黏度 27
表2-3 由H-NMR計算所得PVP之殘留率及移除率 36
表2-4 PES薄膜之FTIR/ATR上下表面分析 42
表2-5 PES薄膜之抗張強度與伸長率 46
表2-6 PES薄膜之純水通量 (L/m2h) 49
表2-7 Guerout–Elford–Ferry 方程式計算所得之薄膜表面平均孔徑dma 50
表2-8 PES薄膜BSA過濾之回復率及截留率 51
表2-9 PES薄膜過濾BSA阻力 51
表2-10 各系列薄膜之截留分子量及計算之表面孔洞大小 (nm) 53
表3-1 製備PLA薄膜之製膜液組成 83
表3-2 PLA薄膜之厚度、接觸角、孔隙度、孔洞尺寸及製膜液黏度 86
表3-3 不同冷卻時間系列薄膜之厚度、接觸角、孔隙度、孔洞尺寸 87
表3-4 PLA薄膜之抗張強度與伸長率 99
表3-5 不同冷卻時間之PLA薄膜抗張強度與伸長率 99
參考文獻
第二章
[1] World Resources Institute. Aqueduct Project, 2013. Accessed on December 2013, available at http://www.wri.org/resources/charts-graphs/water-stress-country.
[2] M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Science and technology for water purification in the coming decades, Nature, 452, 2008, 301–310.
[3] C. A. Quist-Jensen, F. Macedonio, E. Drioli, Membrane technology for water production in agriculture: Desalination and wastewater reuse, Desalination, 364, 2015, 17-32.
[4] WHO, World Health Organization — Water, Fact Sheet 391[Online]. available at http://www.who.int/mediacentre/factsheets/fs391/en/2014 (Accessed:05-Aug-2014).
[5] S. Chauhan, K. C. Gupta, J. Singh, Purification of drinking water with the application of natural extracts, Journal of Global Biosciences., 4, 2015, 1861-1866. 
[6] G. Amy, N. Ghaffour, Z. Li, L. Francis, R. V. Linares, T. Missimer, S. Lattemann, Membrane-based seawater desalination﹕Present and future prospects, Desalination, 401, 2017, 16-21.
[7] H. Strathmann, L. Giorno, E. Drioli, Introduction to Membrane Science and Technology, Wiley-VCH, Weinheim, 2011.
[8] S. T. Yang, Bioprocessing for Value-Added Products from Renewable Resources, Elsevier Science, Boston, Commonwealth of Massachusetts , 2007, page 163-183.
[9] G. Nakhla, A. Lugowski, J. Patel, V. Rivest, Combined biological and membrane treatment of food-processing wastewater to achieve dry-ditch criteria﹕Pilot and full-scale performance, Bioresour. Technol., 97, 2006, 1-14.
[10] W. Ma, Y. Zhao, L. Wang, The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis, Desalination, 203, 2007, 256-259.
[11] H. T. Wang, L. Yang, X. H. Zhao, T. Yu, Q. Y. Du, Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone, Chin. J. Chem. Eng., 17, 2009, 324–329.
[12] Q. Shi, Y. L. Su, S. P. Zhu, C. Li, Y. Y. Zhao, Z. Y. Jiang, A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane, J. Membr. Sci., 303, 2007, 204–212.
[13] T. D. Kusworo, N. Aryanti, R. A. Anggita, T. A. D. Setyorini, D. P. Utomo, Surface Modification and Performance Enhancement of Polethersulfone(PES) Membrane Using Combination of Ultra Violet Irradiation and Thermal Annealing for Produced Water Treatment, J. Environ. Sci., 10(1), 2017, 35-43. 
[14] M. Mulder, Basic principles of membrane technology, Kluwer Academic Publisher, Dordrecht, Netherlands, 1991.
[15] B. Vatsha, J. C. Ngila, R. M. Moutloali, Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification, J. Phys. Chem. Earth., 67-69, 2014, 125-131.
[16] A. A. Karim, T. A. G. Allah, A. S. E. Kalliny, S. I. A. Ahmed, E. R. Souaya, M. I. Badawy, M. Ulbricht, Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor, Sep. Purif. Technol., 175, 2017, 36-46.
[17] S. H. Yoo, J. H. Kim, J. Y. Jho, J. Won, Y. S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes : effect of PVP molecular weight, J. Membr. Sci., 236, 2004, 203-207.
[18] B. Chakrabarty, A. K. Ghoshal, M. K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive, J. Membr. Sci., 315, 2008, 36-47.
[19] A. Rahimpour, S. S. Madaeni, Y. Mansourpanah, Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media, J. Membr. Sci., 364, 2010, 380-388.
[20] L. Wu, J. Sun, Q. Wang, Poly(vinylidene fluoride)/polyethersulfone blend membranes: Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology, J. Membr. Sci., 285, 2006, 290-298.
[21] M. J. Han, S. T. Nam, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane, J. Membr. Sci., 202, 2002, 55-61.
[22] A. K. Holda, I. F. J. Vankelecom, Integrally skinned PSf-based SRNF-membranes prepared via phase inversion-Part A: Influence of high molecular weight additives, J. Membr. Sci., 450, 2014, 512-521.
[23] H. A. Tsai, L. D. Li, K. R. Lee, Y. C. Wang, C. L. Li, J. Huang, J. Y. Lai, Effect of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes, J. Membr. Sci., 176, 2000, 97-103.
[24] H. A. Tsai, D. H. Huang, R. C. Ruaan, J. Y. Lai, Mechanical properties of asymmetric polysulfone membranes containing surfactant as additives, Ind. Eng. Chem. Res., 40, 2001, 5917-5922.
[25] Y. W. Kim, D. K. Lee, K. J. Lee, J. H. Kim, Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes, European Polym. J., 44, 2008, 932-939.
[26] A. Jena, K. Gupta, Pore volume of nanofiber nonwovens, Int. Nonwovens J., 14(2), 2005, 25-30.
[27] A. Shockravi, V. Vatanpour, Z. Najjar, S. Bahadori, A. Javadi, A new high performance polyamide as an effective additive for modification of antifouling properties and morphology of asymmetric PES blend ultrafiltration membranes, Micropor. Mesopor. Mat., 246, 2017, 24-36.
[28] Z. Xiong, Y. Zhong, H, Lin, F. Liu, T. Li, J. Li, PDLA/PLLA ultrafiltration membrane with excellect permeability, rejection and fouling resistance via stereocomplexation, J. Membr. Sci., 533, 2017, 103-111.
[29] J. A. Antosiewicz, D. Shugar, UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications, Biophys. Rev., 8, 2016, 163-177.
[30] T. H. Young, L. W. Chen, Pore formation mechanism of membranes from phase inversion process, Desalination, 103, 1995, 233-247.
[31] T. M. Don, Y. C. Hsu, H. Y. Tai, E. Fu, L. P. Cheng, Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture, J. Membr. Sci., 415-416, 2012, 784-792.
[32] T. H. Young, D. J. Lin, J. J. Gau, W. Y. Chuang, L. P.  Cheng, Morphology of crystalline Nylon-610 membranes prepared by the immersion-precipitation process: competition between crystallization and liquid–liquid phase separation, Polymer, 40, 1999, 5011-5021.
[33] L. Y. Lafreniere, F. D. F. Talbot, Effect of poly(vinylpyrrolidone) additive on the performance of poly(ether sulfone) ultrafiltration membranes, Ind. Eng. Chem., 26, 1987, 2385-2389.
[34] L. Marbelia, M. R. Bilad, I. F. J. Vankelecom, Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors, Sep. Purif. Technol., 213, 2019, 276-282.
[35] J. R. Hwang, M. V. Sefton, The effects of polymer concentration and a pore-forming agent (PVP) on HEMA-MMA microcapsule structure and permeability, J. Membr. Sci., 108, 1995, 257-268.
[36] S. A. Al Malek, M. N. Abu Seman, D. Johnson, N. Hilal, Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone, Desalination, 288, 2012, 31-39.
[37] T. M. Don, Y. C. Hsu, H. Y. Tai, E. Fu, L. P. Cheng, Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture, J. Membr. Sci., 415-416, 2012, 784-792.
[38] 陳勝昌,以非溶劑誘導相轉移法製備多孔型薄膜,淡江大學化學工程與材料工程碩士論文(2013).
[39] H. H. Wang, J. T. Jung, J. F. Kim, S. Kim, E. Drioli, Y. M. Lee, A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS), J. Membr. Sci., 574, 2019, 44-54.
[40] C. A. Smolders, A J. Reuvers, R. M. Boom and I. M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids, J. Membr. Sci., 73, 1992, 259-275.
[41] G. Bakeri, A. F. Ismail, M. Shariaty-Niassar, T. Matsuura, Effect of polymer concentration on the structure and performance of polyetherimide hollow fiber membranes, J. Membr. Sci., 363, 2010, 103-111.
[42] R. E. Kesting, Synthetic Polymeric Membranes a Structural Perspective, John Wiley & Sons. Inc., New York City, 1985, page 31.
[43] E. Fontananova, J. C. Jansen, A. Cristiano, E. Curcio, E. Drioli, Effect of additives in the casting solution on the formation of PVDF membranes, Desalination, 192, 2006, 190-197.
[44] S. Mohsenpour, A. Safekordi, M. Tavakolmoghadam, F. Rekabdar, M. Hemmati, Comparsion of the membrane morphology based on the phase diagram using PVP as an organic additive and TiO2 as an inorganic additive, Polymer, 97, 2016, 559-568.
[45] F. Russo, R. C. Munoz, F. Galiano, A. Figoli, Unprecedented preparation of porous matrimide@ 5218 membranes, J. Membr. Sci., 585, 2019, 166-174.
[46] T. Marino, E. Blasi, S. Tonaghi, E. D. Nicolo, A. Figoli, Polyethersulfone membranes prepared with Rhodiasolv® Polarclean as water soluble green solvent, J. Membr. Sci., 549, 2018, 192-204.
[47] B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive, J. Membr. Sci., 315, 2008, 36-47.
[48] B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive, J. Membr. Sci., 315, 2008, 36-47.
[49] I. S. Byun, I. C. Kim, J. W. Seo, Pervaporation behavior of asymmetric sulfonated polysulfones and sulfonated poly(ether sulfone) membranes, J. Appl. Polym. Sci., 76, 2000, 787-798.
[50] N. R. Babij, E. O. McCusker, G. T. Whiteker, B. Canturk, N. Choy, L. C. Creemer, C. V. De Amicis, N. M. Hewlett, P. L. Johnson, J. A. Knobelsdorf, F. Li, B. A. Lorsbach, B. M. Nugent, S. J. Ryan, M. R. Smith, Q. Yang, NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry, Org. Process Res. Dev., 20, 2016, 661-667.
[51] M. Mumtaz, C. Labruge`re, E. Cloutet, H. Cramail, Synthesis of Poly(3,4-ethylenedioxythiophene) Latexes Using only (N-vinylpyrrolidone)-Based Copolymers as Reactive Stabilizers, J. Polym. Sci., Part A: Polym. Chem., 48, 2010, 3841-3855.
[52] A. Franceschini, S. Abramson, V. Mancini, B. Bresson, C. Chassenieuxa, N. Lequeux, New covalent bonded polymer–calcium silicate hydrate composites, J. Mater. Chem., 17, 2007, 913-922.
[53] H. Susanto, S. Franzka, M. Ulbricht, Dextran fouling of polyethersulfone ultrafiltration membranes-Causes, extent and consequences, J. Membr. Sci., 296, 2007, 147-155.
[54] S. Zhu, M. Shi, S. Zhao, Z. Wang, J. Wang, S. Wang, Preparation and characterization of a polyethersulfone/polyaniline nanocomposite membrane for ultrafiltration and as a substrate for a gas separation membrane, RSC Adv., 5, 2015, 27211-27223.
[55] A. Mushtaq, H. B. Mukhtar, A. M. Shariff, FTIR Study of Enhance Polymeric Blend Membrane with Amines, J. Appl. Sci. Eng. Technol., 7(9), 2014, 1811-1820.
[56] P. Qu, H. Tang, Y. Gao, L. P. Zhang, S. Wang, Polyethersulfone composite membrane blended with cellulose fibrils, Bioresources, 5(4), 2010, 2323-2336.
[57] X. F. Qian, J. Yin, S. Feng, S. H. Liu, Z. K. Zhu, Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles, J. Mater. Chem., 11, 2001, 2504-2506.
[58] Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, G. A. Somorjai, J. Phys. Chem. B., 110, 2006, 23052-23059.
[59] Z. Sun, F. Chen, Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc, Int. J. Biol. Macromol., 91, 2016, 143-150.
[60] M. H. Razzaghi, A. Safekordi, M. Tavakolmoghadam, F. Rekabdar, M. Hemmati, Morphological and separation performance study of PVDF/CA blend membranes, J. Membr. Sci., 470, 2014, 547-557.
[61] V. Vatanpour, A. Shockravi, H. Zarrabi, Z. Nikjavan, A. Javadi, Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane, J. Ind. Eng. Chem., 30, 2015, 342-352.
[62] G. Wu, S. Gan, L. Cui, Y. Xu, Preparation and characterization of PES/TiO2 composite membranes, Appl. Surf. Sci., 254, 2008, 7080-7086.
[63] V. Vatanpour, S. S. Madaeni, A. R. Khataee, E. Salehi, S. Zinadini, H. A. Monfared, TiO2 Embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance, Desalination, 292, 2012, 19-29.
[64] Y. Q. Wang, Y. L. Su, X. L. Ma, Q. Sun, Z. Y. Jiang, Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance, J. Membr. Sci., 283, 2006, 440-447.
[65] G. Arthanareeswaran, T. K. Sriyamuna Devi, D. Mohan, Development, characterization and separation performance of organic-inorganic membranes PartⅡ. Effect of additives, Sep. Purif. Technol., 67(3), 2009, 271-281.
[66] K. J. Kim, A.G. Fanen, R. Ben Aim, M. G. Liu, G. Jonsson, I. C. Tessaro, A. P. Broek, D. Bargeman, A comparative study of techniques used for porous membrane characterization: pore characterization, J. Membr. Sci., 87, 1994, 35-46.
[67] J. Huang, K. Zhang, K. Wang, Z. Xie, B. Ladewig, H. Wang, Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties, J. Membr. Sci., 423-424, 2012, 362-370.
[68] X. Dong, A. A. Jumaily, I. C. Escobar, Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation(NIPS) fabrication of polysulfone membranes, Membranes, 8, 2018, 23-39.

第三章
[1] H. Strathmann, Membrane separation processes : current relevance and future opportunities, AIChE J., 47,2001, 1077–1087.
[2] K. .M Nampoothiri, N. R. Nair, R. P. John, An overview of the recent developments in polylactide (PLA) research, Bioresor. Technol., 101, 2010, 8493-8501.
[3] Z. Xiong, Y. Zhong, H. Lin, F. Liu, T. Li, J. Li, PDLA/PLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation, J. Membr. Sci., 533, 2017, 103-111.
[4] Y. Yang, L. Zhang, Z. Xiong, Z. Tang, R. Zhang, J. Zhu, Research progress in the heat resistance, toughening and filling modification of PLA, Sci. China Chem., 59, 2016, 1355-1368.
[5] P. J. D. P. van de Witte, J. W. A. van de Berg, J. Feijen, Phase behavior of polylactides in solvent-nonsolvent mixtures, J. Polym. Sci. Pol. Phys., 34, 1996, 2553-2568.
[6] D. Garlotta, A literature review of poly(lactic acid), J. Polym. Environ., 9(2), 2001, 63-84.
[7] H. Rabiee, S. M. S. Shahabadi, A. Mokhtare, H. Rabiei, Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80, J. Environ. Chem. Eng., 4, 2016, 4050-4061.
[8] H. H. Chang, S. C. Chen, D. J. Lin, L. P. Cheng, The effect of Tween-20 additive on the morphology and performance of PVDF membranes, J. Membr. Sci., 466, 2014, 302-312.
[9] A. Moriya, T. Maruyama, Y. Ohmukai, T. Sotani, H. Matsuyama, Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods, J. Membr. Sci., 342, 2009, 307-312.
[10] A. Gao, F. Liu, H. Shi, L. Xue, Controllable transition from finger-like pores to inter-connectec pores of PLLA membranes, J. Membr. Sci., 478, 2015, 96-104.
[11] M. Amirilargani, E. Saljoughi, T. Mohammadi, Effect of Tween 80 concentration as a surfactant additive on morphology and permeability of flat sheet polyethersulfone (PES) membrane, Desalination, 249, 2009, 837-842.
[12] T. H. Young, D. J. Lin, J. J. Gau, W. Y. Chuang, L. P. Cheng, Morphology of crystalline Nylon-610 membranes prepared by the immersion-precipitation process: competition between crystallization and liquid–liquid phase separation, Polymer, 40, 1999, 5011-5021.
[13] L. P. Cheng, T. H. Young, W. M. You, Formation of crystalline EVAL membranes by controlled mass transfer process in water-DMSO-EVAL copolymer systems, J. Membr. Sci., 145, 1998, 77-90.
[14] S. P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fiber membranes, J. Membr. Sci., 150, 1998, 75-85.
[15] P. Y. Zhang, H. Yang, Z. L. Xu, Preparation of Polyvinylidene Fluoride (PVDF) Membranes via Nonsolvent Induced Phase Separation Process using a Tween 80 and H2O Mixture As an Additive, Ind. Eng. Chem. Res., 51, 2012, 4388-4396.
[16] 陳勝昌,以非溶劑誘導相轉移法製備多孔型薄膜,淡江大學化學工程與材料工程碩士論文(2013).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信