淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1408201713334000
中文論文名稱 三維偏振散射光量測系統之設計與實現
英文論文名稱 Design and implementation of three-dimensional polarized light-scattering measurement system
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生中文姓名 張力仁
研究生英文姓名 Li-Jen Chang
學號 802370030
學位類別 博士
語文別 中文
口試日期 2017-07-12
論文頁數 239頁
口試委員 指導教授-劉承揚
委員-張天立
委員-孫永信
委員-陳玉彬
委員-李亞偉
中文關鍵字 偏振散射光  表面粗糙度  螺紋  木材表面  雷射 
英文關鍵字 polarized light-scattering  surface roughness  thread  wood surface  laser 
學科別分類
中文摘要   本研究建立一套完整的偏振散射光量測系統,可對待測物進行二維和三維的散射光量測,此系統可分為三大部分:光源組件、旋轉控制機構與偵測組件,其中光源組件採用之雷射波長為405 nm, 515 nm, 671 nm搭配光圈、濾波鏡、λ /2 波板、偏振鏡、空間濾波器、擴束器進行偏振光源控制,旋轉控制機構運用四個旋轉步進馬達來控制入射光與接收端的角度,偵測組件為電荷偶合元件搭配35 mm物鏡與偏振鏡,藉由轉動偏振鏡來偵測不同偏振角度的散射光成像。為了驗證本系統的可行性,本研究選用三種待測物,分別為表面粗糙度標準片、木材和公制螺紋,其中表面粗糙度值為Ra = 1.6 μm、Ra = 0.8 μm、Ra = 0.4 μm、Ra = 0.1 μm,木材為南方松、杉木、白楊木,螺紋為公制M3和M6。經由實驗結果可知,三維偏振散射光可用來區分待測物的特徵和材質,對於未來自動光學檢測系統的發展有相當大的助益。
英文摘要 In this study, polarization scattering light measurement system is established. The characterization of surface measurement is investigated by using in-plane and out-of-plane polarized light-scattering measurements. This system is divided into the light source assembly, rotation control mechanism and detection component. The laser wavelengths of measurtment system are 405 nm, 515 nm and 671 nm. In order to adjust the polarized light sources, the light beam goes through the pinhole, waveplane, polarizer, space filter, and beam expander. The rotation control mechanism applies four stepper motors to control the incident angle and detection angle. The detection component is a charge couple device (CCD) camera. The polarizer and 35 mm focusing lens are set up in front of the CCD. The angle of polarizer is rotated to control the direction of polarization of the scattered light. This experiment conducts the measurements by using standard sheets of metal surface roughness, woods and ISO metric screws. The roughnesses are Ra = 1.6 μm , Ra = 0.8 μm , Ra = 0.4 μm and Ra = 0.1 μm , respectively. The woods are pine, spruce and aspen. The metric screws are ISO M6 and ISO M3. This measurement system can be used to quickly and accurately distinguish between different surfaces and properties. In the future, there is a considerable benefit at the development of automatic optical detection system.
論文目次 目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XX
符號說明 XXI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 散射光 3
1.2.2 光學量測技術 4
1.3 研究動機與目的 9
1.4 本文架構 10
第二章 光學理論 11
2.1 前言 11
2.2 偏振光 12
2.2.1 偏振現象 12
2.2.2 偏振理論 13
2.2.3 偏振種類 14
2.2.4 偏振影像 16
2.3 散射 18
2.3.5 散射理論 18
2.3.6 散射現象 19
2.4 雙向反射分佈函數 21
第三章 偏振散射光量測系統 22
3.1 研究方法 22
3.2 散射光量測系統架構 24
3.2.1 光源組件 26
3.2.2 控制機構 27
3.2.3 偵測組件 28
第四章 偏振散射光量測實驗 29
4.1 實驗流程 29
4.2 硬體參數設定 30
4.2.1 光源組件設定 30
4.2.2 控制機構設定 32
4.2.3 偵測組件設定 33
4.3 軟體參數設定 35
4.3.4 二維步進馬達控制介面 35
4.3.5 三維步進馬達控制介面 36
4.3.6 CCD影像擷取介面 38
4.3.7 偏振成像分析介面 39
4.4 偏振散射光量測 40
4.4.8 系統驗證 40
4.5 偏振散射光二維量測與分析 48
4.6 偏振散射光三維量測與分析 150
第五章 結論與未來展望 228
參考文獻 231

圖目錄
圖2.1線偏振器[70] 12
圖2.2光的磁場與電場方向[70] 14
圖2.3偏振狀態示意圖(a)線偏振(b)圓偏振(c)橢圓偏振[70] 15
圖2.4色素痣皮膚成像(a)正常光源成像(b)偏振成像[60] 17
圖2.5散射示意圖 19
圖2.6雙向反射分佈函數示意圖 21
圖3.1研究步驟 23
圖3.2散射光量測系統示意圖 25
圖3.3光源組件 26
圖3.4控制機構示意圖 27
圖3.5偵測組件 28
圖4.1系統設定示意圖 30
圖4.2光源組配置圖 31
圖4.3偵測組件配置圖 34
圖4.4偏振散射光系統圖 34
圖4.5二維步進馬達控制介面 35
圖4.6三維散射光座標 36
圖4.7三維步進馬達控制介面 37
圖4.8影像擷取介面 38
圖4.9程式語言分析介面 39
圖4.10矽晶圓水平偏振(PP)成像 41
圖4.11矽晶圓垂直偏振(PS)成像 42
圖4.12矽晶圓45°偏振(P45)成像 43
圖4.13矽晶圓POL成像 44
圖4.14偏振成像光強度分析(a)水平與垂直偏振強度正規化(b)橢圓偏振參數分析(c)線偏振光強度分析 47
圖4.15表面粗糙度標準試片(a)Ra = 1.6 μm(b)Ra = 0.8 μm(c)Ra = 0.4 μm(d)Ra = 0.1 μm 48
圖4.16在入射光波長671 nm下的Ra = 1.6標準試片之PP成像 49
圖4.17在入射光波長671 nm下的Ra = 1.6標準試片之PS成像 50
圖4.18在入射光波長671 nm下的Ra = 1.6標準試片之POL圖 51
圖4.19偏振參數隨入射角度變化之關係圖,Ra = 1.6(a) PP、PS正規化(b) POL正規化 52
圖4.20在入射光波長671 nm下的Ra = 0.8標準試片之PP成像 53
圖4.21在入射光波長671 nm下的Ra = 0.8標準試片之PS成像 54
圖4.22在入射光波長671 nm下的Ra = 0.8標準試片之POL圖 55
圖4.23偏振參數隨入射角度變化之關係圖,Ra = 0.8(a) PP、PS正規化(b) POL正規化 56
圖4.24在入射光波長671 nm下的Ra = 0.4標準試片之PP成像 57
圖4.25在入射光波長671 nm下的Ra = 0.4標準試片之PS成像 58
圖4.26在入射光波長671 nm下的Ra = 0.4標準試片之POL圖 59
圖4.27偏振參數隨入射角度變化之關係圖,Ra = 0.4(a) PP、PS正規化(b) POL正規化 60
圖4.28在入射光波長671 nm下的Ra = 0.1標準試片之PP成像 61
圖4.29在入射光波長671 nm下的Ra = 0.1標準試片之PS成像 62
圖4.30在入射光波長671 nm下的Ra = 0.1標準試片之POL圖 63
圖4.31偏振參數隨入射角度變化之關係圖,Ra = 0.1(a) PP、PS正規化(b) POL正規化 64
圖4.32在入射光波長515 nm下的Ra = 1.6標準試片之PP成像 65
圖4.33在入射光波長515 nm下的Ra = 1.6標準試片之PS成像 66
圖4.34在入射光波長515 nm下的Ra = 1.6標準試之片POL圖 67
圖4.35偏振參數隨入射角度變化之關係圖,Ra = 1.6(a) PP、PS正規化(b) POL正規化 68
圖4.36在入射光波長515 nm下的Ra = 0.8標準試片之PP成像 69
圖4.37在入射光波長515 nm下的Ra = 0.8標準試片之PS成像 70
圖4.38在入射光波長515 nm下的Ra = 0.8標準試片之POL圖 71
圖4.39偏振參數隨入射角度變化之關係圖,Ra = 0.8(a) PP、PS正規化(b) POL正規化 72
圖4.40在入射光波長515 nm下的Ra = 0.4標準試片之PP成像 73
圖4.41在入射光波長515 nm下的Ra = 0.4標準試片之PS成像 74
圖4.42在入射光波長515 nm下的Ra = 0.4標準試片之POL圖 75
圖4.43偏振參數隨入射角度變化之關係圖,Ra = 0.4(a) PP、PS正規化(b) POL正規化 76
圖4.44在入射光波長515 nm下的Ra = 0.1標準試片之PP成像 77
圖4.45在入射光波長515 nm下的Ra = 0.1標準試片之PS成像 78
圖4.46在入射光波長515 nm下的Ra = 0.1標準試片之POL圖 79
圖4.47偏振參數隨入射角度變化之關係圖,Ra = 0.1(a) PP、PS正規化(b) POL正規化 80
圖4.48在入射光波長515 nm下的Ra = 1.6標準試片之PP成像 81
圖4.49在入射光波長515 nm下的Ra = 1.6標準試片之PS成像 82
圖4.50在入射光波長405 nm下的Ra = 1.6標準試片之POL圖 83
圖4.51偏振參數隨入射角度變化之關係圖,Ra = 1.6(a) PP、PS正規化(b) POL正規化 84
圖4.52在入射光波長405 nm下的Ra = 0.8標準試片之PP成像 85
圖4.53 Ra = 0.8、Ra = 0.4、Ra = 0.1的垂直偏振散射光成像 86
圖4.54在入射光波長405 nm下的Ra = 0.8標準試片之POL圖 87
圖4.55偏振參數隨入射角度變化之關係圖,Ra = 0.8(a) PP、PS正規化(b) POL正規化 88
圖4.56在入射光波長405 nm下的Ra = 0.4標準試片之PP成像 89
圖4.57在入射光波長405 nm下的Ra = 0.4標準試片之POL圖 90
圖4.58偏振參數隨入射角度變化之關係圖,Ra = 0.4(a) PP、PS正規化(b) POL正規化 91
圖4.59在入射光波長405 nm下的Ra = 0.1標準試片之PP成像 92
圖4.60在入射光波長405 nm下的Ra = 0.1標準試片之POL圖 93
圖4.61偏振參數隨入射角度變化之關係圖,Ra = 0.1(a) PP、PS正規化(b) POL正規化 94
圖4.62 PP、PS正規化偏振參數隨入射角度變化之關係圖(a)光波長671 nm(b)光波長515 nm(c)光波長405 nm 96
圖4.63 POL正規化偏振參數隨入射角度變化之關係圖(a)光波長671 nm(b)光波長515 nm(c)光波長405 nm 97
圖4.64木材樣品(南方松、杉木、白楊木) 99
圖4.65在入射光波長671 nm下的南方松之PP成像 100
圖4.66在入射光波長671 nm下的南方松之PS成像 101
圖4.67在入射光波長671 nm下的南方松之POL圖 102
圖4.68偏振參數隨入射角度變化之關係圖,南方松(a) PP、PS正規化(b) POL 103
圖4.69在入射光波長671 nm下的杉木之PP成像 104
圖4.70在入射光波長671 nm下的杉木之PS成像 105
圖4.71在入射光波長671 nm下的杉木之POL圖 106
圖4.72偏振參數隨入射角度變化之關係圖,杉木(a) PP、PS正規化(b) POL 107
圖4.73在入射光波長671 nm下的白楊木之PP成像 108
圖4.74在入射光波長671 nm下的白楊木之PS成像 109
圖4.75在入射光波長671 nm下的白楊木之POL圖 110
圖4.76偏振參數隨入射角度變化之關係圖,白楊木(a) PP、PS正規化(b) POL 111
圖4.77在入射光波長515 nm下的南方松之PP成像 112
圖4.78在入射光波長515 nm下的南方松之PS成像 113
圖4.79在入射光波長515 nm下的南方松之POL圖 114
圖4.80偏振參數隨入射角度變化之關係圖,南方松(a) PP、PS正規化(b) POL 115
圖4.81在入射光波長515 nm下的杉木之PP成像 116
圖4.82在入射光波長515 nm下的杉木之PS成像 117
圖4.83在入射光波長515 nm下的杉木之POL圖 118
圖4.84偏振參數隨入射角度變化之關係圖,杉木(a) PP、PS正規化(b) POL 119
圖4.85在入射光波長515 nm下的白楊木之PP成像 120
圖4.86在入射光波長515 nm下的白楊木之PS成像 121
圖4.87在入射光波長515 nm下的白楊木之POL圖 122
圖4.88偏振參數隨入射角度變化之關係圖,白楊木(a) PP、PS正規化(b) POL 123
圖4.89在入射光波長405 nm下的南方松之PP成像 124
圖4.90在入射光波長405 nm下的南方松之PS成像 125
圖4.91在入射光波長405 nm下的南方松之POL圖 126
圖4.92偏振參數隨入射角度變化之關係圖,南方松(a) PP、PS正規化(b) POL 127
圖4.93在入射光波長405 nm下的杉木之POL圖 130
圖4.94偏振參數隨入射角度變化之關係圖,杉木(a) PP、PS正規化(b) POL 131
圖4.95在入射光波長405 nm下的白楊木之PP成像 132
圖4.96在入射光波長405 nm下的白楊木之PS成像 133
圖4.97在入射光波長405 nm下的白楊木之POL圖 134
圖4.98偏振參數隨入射角度變化之關係圖,白楊木(a) PP、PS正規化(b) POL 135
圖4.99 PP、PS正規化偏振參數隨入射角度變化之關係圖(a)光波長671 nm(b)光波長515 nm(c)光波長405 nm 137
圖4.100 POL正規化偏振參數隨入射角度變化之關係圖 (a)光波長為671 nm(b)光波長為515 nm(c)光波長為405 nm 138
圖4.101 ISO公制螺紋 139
圖4.102在入射光波長515 nm下的M6螺紋之PP成像 140
圖4.103在入射光波長515 nm下的M6螺紋之PS成像 141
圖4.104在入射光波長515 nm下的M6螺紋之POL圖 142
圖4.105偏振參數隨入射角度變化之關係圖,M6螺紋(a) PP、PS正規化(b) POL 143
圖4.106在入射光波長515 nm下的M3螺紋之PP成像 144
圖4.107在入射光波長515 nm下的M3螺紋之PS成像 145
圖4.108在入射光波長515 nm下的M3螺紋之POL圖 146
圖4.109偏振參數隨入射角度變化之關係圖,M3螺紋(a) PP、PS正規化(b) POL 147
圖4.110 M6、M3之PP和PS正規化偏振參數隨入射角度變化之關係圖 149
圖4.111 M6、M3之POL正規化偏振參數隨入射角度變化之關係圖 149
圖4.112 Ra = 1.6散射光成像(a)PP(b)PS(c)P45(d)POL圖 152
圖4.113在入射光波長671 nm下的Ra = 1.6數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 153
圖4.114 Ra = 0.8散射光成像(a)PP(b)PS(c)P45(d)POL圖 155
圖4.115在入射光波長671 nm下的Ra = 0.8數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 156
圖4.116 Ra = 0.4散射光成像(a)PP(b)PS(c)P45(d)POL圖 158
圖4.117在入射光波長671 nm下的Ra = 0.4數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 159
圖4.118 Ra = 0.1散射光成像(a)PP(b)PS(c)P45(d)POL圖 161
圖4.119在入射光波長671 nm下的Ra = 0.1數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 162
圖4.120 Ra = 1.6散射光成像(a)PP(b)PS(c)P45(d)POL圖 164
圖4.121在入射光波長515 nm下的Ra = 1.6數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 165
圖4.122 Ra = 0.8散射光成像(a)PP(b)PS(c)P45(d)POL圖 167
圖4.123在入射光波長515 nm下的Ra = 0.8數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 168
圖4.124 Ra = 0.4散射光成像(a)PP(b)PS(c)P45(d)POL圖 170
圖4.125在入射光波長515 nm下的Ra = 0.4數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 171
圖4.126 Ra = 0.1散射光成像(a)PP(b)PS(c)P45(d)POL圖 173
圖4.127在入射光波長515 nm下的Ra = 0.1數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 174
圖4.128 Ra = 1.6散射光成像(a)PP(b)PS(c)P45(d)POL圖 176
圖4.129在入射光波長405 nm下的Ra = 1.6數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 177
圖4.130 Ra = 0.8散射光成像(a)PP(b)PS(c)P45(d)POL圖 179
圖4.131在入射光波長405 nm下的Ra = 0.8數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 180
圖4.132 Ra = 0.4散射光成像(a)PP(b)PS(c)P45(d)POL圖 182
圖4.133在入射光波長405 nm下的Ra = 0.4數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 183
圖4.134 Ra = 0.1散射光成像(a)PP(b)PS(c)P45(d)POL圖 185
圖4.135在入射光波長405 nm下的Ra = 0.1數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 186
圖4.136不同表面粗糙度標準試片的雙軸向橢圓偏振參數變化(a)光波長671 nm(b)光波長515 nm(c)光波長405 nm 188
圖4.137不同表面粗糙度標準試片的線偏振強度變化(a)光波長671 nm(b)光波長515 nm(c)光波長405 nm 189
圖4.138南方松散射光成像(a)PP(b)PS(c)P45(d)POL圖 191
圖4.139在入射光波長670 nm的南方松數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 192
圖4.140杉木散射光成像(a)PP(b)PS(c)P45(d)POL圖 194
圖4.141在入射光波長670 nm的杉木數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 195
圖4.142白楊木散射光成像(a)PP(b)PS(c)P45(d)POL圖 197
圖4.143在入射光波長670 nm的白楊木數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 198
圖4.144南方松散射光成像(a)PP(b)PS(c)P45(d)POL圖 200
圖4.145在入射光波長515 nm下的南方松數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 201
圖4.146杉木0°~155°散射成像(a)PP(b)PS(c)P45(d)POL圖 203
圖4.147在入射光波長515 nm下的杉木數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 204
圖4.148白楊木0°~155°散射成像(a)PP(b)PS(c)P45(d)POL圖 206
圖4.149在入射光波長515 nm下的白楊木數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 207
圖4.150南方松散射光成像(a)PP(b)PS(c)P45(d)POL圖 209
圖4.151在入射光波長405 nm下的南方松數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 210
圖4.152杉木散射光成像(a)PP(b)PS(c)P45(d)POL圖 212
圖4.153在入射光波長405 nm下的杉木數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 213
圖4.154白楊木散射光成像(a)PP(b)PS(c)P45(d)POL圖 215
圖4.155在入射光波長405 nm下的白楊木數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 216
圖4.156不同波長下的雙軸向橢圓偏振參數(a)光波長671 nm(b)光波長515 nm(c)光波長405 nm 218
圖4.157不同波長下的線偏振光強度(a)光波長671 nm(b)光波長515 nm(c)光波長405 nm 219
圖4.158 M6螺紋0°~155°散射成像(a)PP(b)PS(c)P45(d)POL圖 221
圖4.159在入射光波長515 nm下的M6螺紋數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 222
圖4.160 M3螺紋散射光成像(a)PP(b)PS(c)P45(d)POL圖 224
圖4.161在入射光波長515 nm下的M3螺紋數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 225
圖4.162在入射光波長515 nm下的M6與M3數值分析曲線圖(a) η雙軸向橢圓偏振參數值(b) PL線偏振光強度 227

表目錄
表3.1散射光量測系統組件表 25
表4.1雷射光規格表 31
表4.2五相步進電機規格表 32
表4.3電荷耦合元件(CCD)規格表 33
表4.4木材規格 99
參考文獻 [1]林詩瑀, 蔡裕祥, "精密量測及檢測," 全華科技圖書,2002.
[2]楊國輝, 黃宏彥, "雷射原理與量測概論," 五南圖書,2002.
[3]P. Besl, "Active optical range imaging sensors," Machine vision and applications, vol. 1, No 2, pp. 127-152, 1988.
[4]B. Bidanda, S. Motavalli, and K. Harding, "Reverse engineering: an evaluation of prospective non-contact technologies and application in manufacturing system," International Journal of Computer Integrated Manufacturing, vol. 4, No. 3, pp. 145-156, 1991.
[5]J. Strutt, "On the light from the sky, its polarization and colour," philosophical magazine, vol. 41, No 4, pp. 107-120, 274-279, 1871.
[6]K. Nassau, "The physics and chemistry of color: the fifteen causes of color, 2nd edition," Wiley, 2001.
[7]J. Stover, "Optical scattering: measurement and analysis," SPIE Optical Engineering Press, 1995.
[8]T. Chen, P. Hou, J. Chiu, "Measurement of the ballscrew contact angle byusing the photoelastic effect and image processing," Optics and Lasers in Engineering, vol. 38, No. 2, pp.87-95, 2002.
[9]Y. Xu, O. Sasaki, T. Suzuki, "Double-grating interferometer for measurement of cylinder diameters," Applied Optics, vol. 43, No. 3, pp. 537-541, 2004.
[10]C. Liu, W. Chen, "Screw pitch precision measurement using simple linear regression and image analysis," Applied Mathematics and Computation, vol. 178, No. 2, pp. 390-404, 2006.
[11]C. Chen, W. Jywe, Y. Liu, H. Jwo, "The development of using the digital projection method to measure the contact angle of ball screw," Physics Procedia, vol. 19, pp. 36-42, 2011.
[12]K. Creath, "Phase-shifting speckle interferometry," Applied Optics, vol. 24, No. 18, pp. 3053-3058, 1985.
[13]U. Persson, "Surface roughness measurement on machined surfaces using angular speckle correlation," Journal of Materials Processing Technology, Vol. 180, No.1-3, pp. 233-238, 2006..
[14]X. Zhao, Z. Gao, "Surface roughness measurement using spatial-average analysis of objective speckle pattern in specular direction," Optics and Lasers in Engineering, vol. 47, No.11, pp.1307-1316. 2009.
[15]J. Meireles, L. Silva, D. Caetano, J. Huguenin, "Effect of metallic surface roughness on the speckle pattern formation at diffraction plane," Optics and Lasers in Engineering, vol. 50, No. 12. pp. 1731-1734. 2012.
[16]Y. Fuh, K. Hsu, J. Fan, "Roughness measurement of metals using a modified binary speckle image and adaptiveoptics," Optics and Lasers in Engineering, vol. 50, No. 3. Pp. 312-316. 2012.
[17]Z. Gao, X. Zhao, "Roughness measurement of moving weak-scattering surface by dynamic speckle image," Optics and Lasers in Engineering, vol. 50, No. 5, pp. 668-677, 2012.
[18]O. Sasaki, H. Okazaki, "Sinusoidal phase modulating interferometry for surface profile measurement," Applied Optics, vol. 25, No. 18, pp. 3137-3140, 1986.
[19]B. Stossel, N. George, "Recognition of threaded objects by spatial spectrum analysis," Applied Optics, vol. 30, No. 11, pp. 1379-1387, 1991.
[20]J. Li, O. Sasaki, T. Suzuki, "Measurement of sectional profile of a cylinder using a sinusoidally vibrating light with sinusoidal intensity," Optical Review, vol. 9, No. 4, pp. 159-162, 2002.
[21]S. Nevas, F. Manoocheri, E. Ikonen, "Gonioreflectometer for measuring spectral diffuse reflectance," Applied Optics, vol. 43, No. 36, pp. 6391-6399, 2004.
[22]J. Li, O. Sasaki, T. Suzuki, "Measurement of diameter of metal cylinders using a sinusoidally vibrating interference pattern," Optics Communications, vol. 260. No. 2, pp. 398-402, 2006.
[23]E. Jonathan, "Non-contact and non-destructive testing of silicon v-grooves a non-medical application of optical coherence tomography (OCT)," Optics and Lasers in Engineering, vol. 44, No. 11, pp. 1117-1131, 2006.
[24]S. Fan, L. Wang, M. Komori, A. Kubo, "Simulation method for interference fringe patterns in measuring gear tooth flanks by laser interferometry," Applied Optics, vol. 49, No. 33, pp.6409-6415, 2010.
[25]S. Fang, L. Wang, M. Komori, A. Kubo, "Design of laser interferometric system for measurement of gear tooth flank," Optik, vol. 122, No. 14, pp. 1301-1304, 2011.
[26]J. Li, O. Sasaki, "Measurement of a cross-sectional profile of a thread gauge using a sinusoidally vibrating interference pattern," Applied Optics, vol. 50, No. 20, pp. 3470-3474, 2011.
[27]R. Zipin, "A preliminary investigation of the bidirectional spectral reflectance of v-grooved surfaces," Applied Optics, vol. 5, No. 12, pp. 1954-1957, 1966.
[28]K. Torrance, E. Sparrow, "Theory for off-specular reflection from roughened surfaces," Journal of the Optical Society of America, vol. 57, No. 9, pp. 1105-1114, 1967.
[29]W. Erb, "Computer-controlled gonioreflectometer for the measurement of spectral reflection characteristics," Applied Optics, vol. 19, No. 22, pp. 3789-3794, 1980.
[30]G. Videen, J. Hsu, W. Bickel, W. Wolfe, "Polarized light scattered from rough surfaces," Journal of the Optical Society of America A, vol. 9, No. 7, pp. 1111-1118, 1992.
[31]R. Luna, "Scattering by one-dimensional random rough metallic surfaces in a conical configuration several polarizations," Optics Letters, vol. 21, No. 18, pp. 1418-1420, 1996.
[32]J. Bosse, G. Hansali, J. Lopez, J. Dumas, "Characterisation of surface roughness by laser light scattering diffusely," Wear, vol. 224, No. 2, pp. 236-244, 1999.
[33]L. Sung, G. Mulholland, T. Germer, "Polarized light-scattering measurements of dielectric spheres upon a silicon surface," Optics Letters, vol. 24, No. 13, pp. 866-868, 1999.
[34]E. Ortiz, F. Gonzalez, J. Saiz, F. Moreno, "Experimental measurement of the statistics of the scattered intensity from particles on surfaces," Optics Express, vol. 10, No. 3, pp. 190-195, 2002.
[35]C. Tay, C. Quan, "A parametric study on surface roughness evaluation," Optik, vol. 114, No. 1, pp. 1-6, 2003.
[36]L. Jin, M. Kasahara, B. Gelloz, K. Takizawa, "Polarization properties of scattered light from macrorough surfaces," Optics Letters, vol. 35, No. 4, pp.595-597, 2010.
[37]G. Ward, "Measuring and modeling anisotropic reflection," Comouter GraDhica., vol. 26, No. 2, pp. 265-272, 1992.
[38]J. Zaworski, J. Welty, M. Drost, "Measurement and use of bi-directional reflectance," International Journal of Heat and Mass Transfer, vol. 39, No. 6, pp. 1149-1156, 1996.
[39]J. Proctor, P. Barnes, "NIST high accuracy reference reflectometer-spectrophotometer," J Res Natl Inst Stand Technol, vol. 101, No. 5, pp. 619-627, 1996.
[40]T. Germer, "Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, subsurface defects, and surface microroughness," Applied Optics, vol. 36, No. 33, pp. 8798-8805, 1997.
[41]T. Germer, C. Asmail, B. Scheer, "Polarization of out-of-plane scattering from microrough silicon," Optics Letters, vol. 22, No. 17, pp. 1284-1286, 1997.
[42]T. Germer, C. Asmail, "Polarization of light scattered by microrough surfaces and subsurface defects," Journal of Optical Society of America A, vol. 16, No. 6, pp. 1326-1332, 1999.
[43]S. Marschner, S. Westin, E. Lafortune, K. Torrance, "Image-based bidirectional reflectance distribution function measurement," Applied Optics, vol. 39, No. 16, pp. 2592-2600, 2000.
[44]I. Renhorn, G. Boreman, "Analytical fitting model for rough-surface BRDF," Optics Express, vol. 16, No. 17, pp. 12892-12898, 2008.
[45]F. Leloup, S. Forment, P. Dutre, M. Pointer, P.Hanselaer, "Design of an instrument for measuring the spectral," Applied Optics, vol. 47, No. 29, pp. 5454-5467, 2008.
[46]D. White, P. Saunders, S. Bonsey, J. Ven, H. Edgar, "Reflectometer for measuring the bidirectional reflectance of rough surfaces," Applied Optics, vol. 37, No. 16, pp. 3450-3454, 1998.
[47]T. Germer, C. Asmail, "Goniometric optical scatter instrument for out-of-plane ellipsometry measurements," Review of Scientific Instruments, vol. 70, No. 9, pp. 3688-3695, 1999.
[48]Y. Shen, Q. Zhu, Z. Zhang, "A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces," Review of Scientific Instruments, vol. 74, No. 11, pp. 4885-4892, 2003.
[49]H. Li, K. Torrance, "An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces," Proceedings of SPIE, vol. 5878, 58780V, 2005.
[50]H. Li, S. Foo, K. Torrance, S. Westin, "Automated three-axis gonioreflectometer for computer graphics applications," Proceedings of SPIE, vol. 5878, 58780S, 2005.
[51]劉承揚,劉子安,傅尉恩, "應用於晶圓表面奈米微粒檢測的多方向偏振散射光量測儀," 科儀新知第二十九卷第四期, pp. 78-84, 2008.
[52]M. Hyde, J. Schmidt, M. Havrilla, "A geometrical optics polarimetric birdirectional reflectance distribution function for dielectric and metallic surface," Optics Express, vol. 17, No. 24, pp. 22138-22153, 2009.
[53]C. Liu, T. Liu, W. Fu, "Out-of-plane ellipsometry measurements of nanoparticles on surfaces for thin film coated wafer inspection," Optics and Laser Technology, vol. 42, No. 6, pp. 902-910, 2010.
[54]I. Renhorn, T. Hallberg, D. Bergstrom, G. Boreman, "Four-parameter model for polarization-resolved rough-surface BRDF," Optics Express, vol. 19, No. 2, pp. 1027-1036, 2011.
[55]C. Liu, L. Chang, "Out-of-plane light-scattering polarimetric imaging of a thread surface," Optics and Lasers in Engineering, vol. 63, pp. 76-81, 2014.
[56]L. Jin, K. Yamaguchi, M. Watanabe, S. Hira, E. Kondoh, B. Gelloz, "Polarization characteristics of scattered light from macroscopically rough surfaces," Optical Review, vol. 22, No. 4, pp. 511-520, 2015.
[57]H. Huang, W. Jywe, C. Liu, L. Duan, M. Wang, "Development of a novel laser-based measuring system for the thread profile of ballscrew," Optics and Lasers in Engineering, vol. 48, No.10, pp. 1012-1018, 2010.
[58]H. Feng, Y. Wang, C. Li, W. Tao, "An automatic measuring method and system using a light curtain for the thread profile of a ballscrew," Measurement Science and Technology, vol. 22, No. 8, pp. 1-9, 2011.
[59]R. Takeda, M. Komori, "Development of scanning measurement of tooth flankform of generated face mill hypoid gear pair with reference to the conjugate mating tooth flank form using 2 axes sensor," MAPAN - Journal of Metrology Society of India, vol. 26, No. 1, pp. 55-67, 2011.
[60]S. Jacques, J. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers in Surgery and Medicine, vol. 26, No. 2, pp. 119-129, 2000.
[61]J. Roman, D. Duncan, T. Germer, "Out-of-plane polarimetric imaging of skin surface and subsurface effects," Proceedings of SPIE, vol. 5686, No. 6, pp. 145-153, 2005.
[62]鄧勇, 魯強, 駱清銘, "用基於方位分辨的漫後向散射光確定粒子尺寸分佈及相對折射率," 光學學報第8期, pp. 1214-1219, 2006.
[63]R. Silvennoinen, P. Wahl, J. Vidot, "Inspection of orientation of micro fibres in dried wood by a diffractive optical element," Optics and Laser in Engineering, Vol. 33, No. 1, pp. 29-38, 2000.
[64]J. Palviainen, R. Silvennoinen, "Inspection of wood density by spectrophotometry and a diffractive optical element based sensor, "Measurement Science and Technology, Vol. 12, No. 3, pp. 345-352, 2001.
[65]S. Simonahoa, J. Palviainen, Y. Tolonen, R. Silvennoinen, "Determination of wood grain direction from laser light scattering pattern," Optics and Lasers in Engineering, Vol. 41, No. 1, pp. 95-103, 2002.
[66]J. Cooper, P. Steele, B. Mitchell, "Detecting juvenile wood in southern pine lumber by measuring phase shift," AIP Conference Proceedings, vol. 760, pp. 1507-1514, 2005.
[67]D. Vahey, J. Zhu, C. Scott, "Wood density and anatomical properties in suppressed-growth trees: comparison of two methods," Wood and Fiber Science, vol. 39, No 3, pp. 462-471, 2006.
[68]J. Rojas, J. Alpuente, E. Bolıvar, P. Lopez-Esp, "Empirical characterization of wood surfaces by means of iterative autocorrelation of laser speckle patterns," Progress In Electromagnetics Research, Vol. 80, pp. 295-306, 2008.
[69]D. Martin, M. Garcia-Alegre, D. Guinea, "Laser diffuse lighting in a visual inspection system for defect detection in wood laminate," InTech, 2011.
[70]王凱平, "金屬表面粗糙度之偏振散射光量測技術," 淡江大學機械與機電工程學系碩士班學位論文, 2012.
[71]劉俊廷, "外螺紋結構之三維偏振散射光量測技術," 淡江大學機械與機電工程學系碩士班學位論文, 2012.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2022-08-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2022-08-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信