§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1408201713102100
DOI 10.6846/TKU.2017.00468
論文名稱(中文) 具低電壓自我啟動之2.4GHz射頻能量擷取電路
論文名稱(英文) Design of A 2.4GHz RF harvesting with Low-Voltage Self-Start-UP DC-DC Boost Converter
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 林胤丞
研究生(英文) Yin-Cheng Lin
學號 603450221
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-19
論文頁數 68頁
口試委員 指導教授 - 楊維斌(robin@ee.tku.edu.tw)
委員 - 羅有龍(yllo@nknu.edu.tw)
委員 - 楊維斌(robin@ee.tku.edu.tw)
委員 - 江正雄(chiang@ee.tku.edu.tw)
關鍵字(中) 能量擷取
射頻
低電壓
自我啟動
直流-直流升壓轉換器
關鍵字(英) Energy harvesting
RF
Self-Start up
DC-DC boost converter
第三語言關鍵字
學科別分類
中文摘要
近年來,能量收集技術已被廣泛的討論,能源議題在全球受到了重視,許多研究不斷的朝向降低能耗,及開發綠色能源的方向努力,包含振動、熱電、光能和射頻能量轉換等方式。然而,環境中的射頻能量在現代社會中不僅容易獲得,且經由人為的操作具有相對穩定等優點。不管是工業、醫學,以及學界中,許多關於射頻能量收集之技術的應用也一一被提出,包括物聯網、環境變化監控、無線傳感器節點等…應用。藉由無線電源的轉換與管理,不僅能延長電池壽命,免於經常性的更換電池,更可以有效的回收能量,甚至以無電池之方式節省電子產品之面積,使電子產品的整體結構更緊密。
    本論文將針對各種環境能量來源特性與電源管理系統進行分析並設計一具低電壓自我啟動之2.4兆赫茲射頻能量擷取電路,以低電壓自我啟動以及高轉換效率為目標,並利用UMC 0.18um 1P6M製程實現,電路主要由4區塊所構成,分別為射頻整流器、自我啟動電路、直流-直流升壓電路及脈波頻率控制迴路所組成,為了實現能夠在低電壓自我啟動並且進一步達到穩壓之效果,此電路將升壓操作情形分成2階段,分別為啟動階段與控制迴路調節階段,首先啟動階段先將擷取之射頻能量經過整流器轉換成一直流電壓,並透過電壓偵測器判斷輸入電壓是否足夠啟動並進行第一階段升壓操作;當第一階段所產生的輸出電壓足夠時,將會由零電流偵測電路鎖定功率電晶體之開關,並且開啟控制迴路,經由控制迴路所產生之訊號會操作功率電晶體進行第二階段的升壓動作,並且調節其輸出電壓維持於1.8V。
    另外全系統模擬加入快速升壓機制,大幅降低控制迴路切換所需的時間,以降低環境能源變異可能對電路操作帶來的影響。全系統在模擬環境TT、FF、SS及攝氏0至75度溫度變異下可穩壓於1.8V,其中可接收最低0dBm之射頻能量並從最低0.3V升壓至1.8V提供最大250uA之電流,整體轉換效率為45%,升壓轉換器最高轉換效率為83%。
英文摘要
Energy issues received attention in the world and energy harvesting technology has been widely discussed in recent years. Many studies have to focus on reducing energy consumption and developing green energy. These green energy including vibration, thermal, light and radiofrequency (RF) energy. However, the ambient RF energy in modern society is not only readily available, and has the advantages of relatively stable through artificial operation. Regardless of industry, medicine, and academia, many applications of the technology on RF energy harvesting is also presented, including Internet of Things, environmental monitoring, wireless sensor nodes.
  In this paper will analyze a variety of environmental energy source characteristics and power management system to design an energy harvesting circuit and we will improve low voltage self-starting and high conversion efficiency. The proposed harvesting circuit is based on UMC 0.18um 1P6M CMOS process. The circuit will be the operation in two step to conversion voltage. At the first step, the self-start up circuit will detection and boost low input voltage to drive the main boost converter. When the main boost converter have enough voltage to drive the control circuit. It will into the second step. At the second step, the Pulse Frequency Modulation (PFM) control will regulator the boost converter to 1.8V, and locked the inductor current in Discontinuous Conduction Mode (DCM) operation with Zero Current Detect (ZCD) to keep it conversion efficiency. Furthermore, we propose fast-boost mechanism with Clock Voltage Doubler. The simulation result is reduced the first step from 15ms to 3.5ms.
The proposed harvesting circuit can receive the lowest 0dBm of RF energy and from the lowest 0.3V boost to 1.8V to provide maximum 250uA current, the overall conversion efficiency of 45%, boost converter maximum conversion efficiency of 83%.
第三語言摘要
論文目次
致謝	I
中文摘要	II
英文摘要	IV
目錄	VI
圖目錄	X
表目錄	XV
第一章  緒論	1
1.1 研究背景	1
1.2 研究動機	2
1.3 論文架構	2
第二章  無線能量擷取電路                  3
2.1 無線能量擷取電路之類別與介紹	        3
2.1.1 光伏能源(Photovoltaic Energy)	3
2.1.2 熱電(Thermoelectric)	        5
2.1.3 壓電(Piezoelectric)	        6
2.1.4 無線電波(Radio)	                7
2.2 無線能量擷取種類之比較	        8
2.3 射頻能量介紹與分析	                9

第三章  電源調節器電路	                11
3.1 電源調節器分類	                11
3.1.1 線性穩壓器(Linear Regulator)       12
3.1.2 切換式電容穩壓器(Switching Capacitance Regulator)15
3.1.3 切換式穩壓器(Switching Regulator)    17
3.1.4 電源調節器比較	                19
3.2切換式穩壓電路分類	                21
3.2.1 降壓轉換器	                        21
3.2.2 升壓轉換器	                22
3.2.3 升降壓轉換器	                23
3.3 電路控制方法	                        24
3.3.1 脈波寬度調變 (Pulse Width Modulation, PWM)	    24
3.3.2 脈波頻率調變 (Pulse Frequency Modulation, PFM) 26
3.4 切換式穩壓器規格定義與說明	        28
3.4.1 輸入電壓 (Input Voltage)	        28
3.4.2 輸出電壓漣波 (Output Voltage Ripple)	28
3.4.3 線性調節度 (Line Regulation)	        29
3.4.4 負載調節度 (Load Regulation)	        30
3.4.5 轉換效能 (Efficiency)	                30
3.4.6 電磁干擾 (Electromagnetic Interference, EMI) 32
第四章  電路設計與模擬	34
4.1 架構簡介	        35
4.2 射頻整流電路	        36
4.3切換式升壓轉換器	38
4.4自我啟動升壓電路	39
4.4.1電壓偵測器 (Voltage Detector)	40
4.4.2環形振盪器 (Ring OSC)	        41
4.4.3改良式充電幫浦 (Charge Pump)	41
4.4.4時脈產生器 (Clock Generator)	42
4.5脈波頻率調整控制電路	                43
4.5.1比較器 (Comparator)	                44
4.5.2零電流偵測 (Zero Current Detect)	45
4.5.3脈波頻率調變電路(PFM)	        48
4.6電路模擬與佈局	                50
4.6.1 全系統模擬結果	                52
4.7具快速升壓及低電壓自我啟動之2.4GHz 射頻能量擷取電路   60
第五章  電路量測	64
5.1 量測方式	64
第六章  結論與未來展望	65
參考文獻   	        66
圖目錄
圖1.1應用能量擷取電路之系統	1
圖2.1 太陽能板等效電路	4
圖2.2 射頻功率與距離關係圖	7
圖3.1 低壓降線性穩壓器基本架構	12
圖3.2 升壓型切換式電容穩壓器	15
圖3.3 切換式穩壓器基本架構	17
圖3.4 降壓轉換器基本架構	21
圖3.5 升壓轉換器基本架構	22
圖3.6 升降壓轉換器基本架構	23
圖3.7 脈波寬度調變電路	24
圖3.8 脈波寬度調變電路波型	25
圖3.9 脈波頻率調變電路	27
圖3.10 脈波頻率調變電路波型	27
圖3.11 輸出電壓漣波	29
圖3.12 效能轉換表示圖	31
圖4.1 能量擷取電路系統圖	34
圖4.2具低電壓自我啟動之2.4GHZ射頻能量擷取電路系統圖	36
圖4.3 二極體整流器	37
圖.4.4 整流器 	37
圖4.5 升壓轉換器架構	38
圖4.6 升壓轉換器操作情形	39
圖4.7 自我啟動升壓電路	40
圖4.8 電壓偵測器	41
圖4.9 環形振盪器	41
圖4.10 改良式充電幫浦	42
圖4.11 時脈產生器	43
圖4.12脈波頻率調整控制電路	43
圖4.13 比較器	44
圖4.14 零電流偵測	45
圖4.15 操作情形	46
圖4.16 SR LATCH	47
圖4.17 脈波頻率調變電路	48
圖4.18 脈波頻率調變電路操作波形	49
圖4.19具低電壓自我啟動之2.4GHZ射頻能量擷取電路系統圖 50
圖4.20 電路布局圖	51
圖4.21電路布局示意圖	52
圖4.22 TT27模擬結果與電路鎖定情形	53
圖4.23 TT0模擬結果與電路鎖定情形	53
圖4.24 TT75模擬結果與電路鎖定情形	54
圖4.25 FF27模擬結果與電路鎖定情形	54
圖4.26 FF0模擬結果與電路鎖定情形	55
圖4.27 FF75模擬結果與電路鎖定情形	55
圖4.28 SS27模擬結果與電路鎖定情形	56
圖4.29 SS0模擬結果與電路鎖定情形	56
圖4.30 SS75模擬結果與電路鎖定情形	57
圖4.31 輕重載抽載模擬結果	57
圖4.32程變異與穩壓結果	58
圖4.33 具快速升壓及低電壓自我啟動之2.4GHZ射頻能量擷取電路 60
圖4.34 時脈倍壓電路	61
圖4.35 時脈倍壓電路操作情形	62
圖4.36 時脈倍壓電路之比較圖	62
圖4.37 全系統鎖定比較圖	63
圖5.1 量測儀器與晶片腳位之量測環境連接圖	64
表目錄
表2.2能量擷取種類與特性	8
表2.3 無線電波頻譜	10
表3.1電源調節器之特性比較	20
表4.1 SR LATCH 真值表	47
表4.2 預計規格表與模擬結果	58
表4.3 本論文與參考文獻特性比較表	59
參考文獻
[1]	M Raju, and M Grazier, "ULP meets energy harvesting: A game-changing combination for design engineers," in TEXAS INSTRUMENTS White Paper, April 2010.
[2]	Gerard Meijer, Kofi Makinwa, Michiel Pertijs, "Smart Sensor Systems: Emerging Technologies and Applications," April 2014.
[3]	Priya, Shashank, Inman, Daniel J, "Energy Harvesting Technologies," 2009.
[4]	C. J. Huang et al., "Batteryless 275mV startup single-cell photovoltaic energy harvesting system for alleviating shading effect," 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 2013, pp. 265-268.
[5]	M Li," Thermoelectric-Generator-Based DCDC Conversion Network for Automotive Applications," in KTH Information and Communication Technology, 2014.
[6]	T. Soyata, L. Copeland and W. Heinzelman, "RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology, "in IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 22-57, First quarter 2016.
[7]	X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, "Wireless Networks With RF Energy Harvesting: A Contemporary Survey," in IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757-789, Secondquarter 2015.
[8]	S. H. Chen et al., "A Direct AC–DC and DC–DC Cross-Source Energy Harvesting Circuit with Analog Iterating-Based MPPT Technique with 72.5% Conversion Efficiency and 94.6% Tracking Efficiency," in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5885-5899, Aug. 2016.
[9]	T. C. Huang et al., "A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting With $alpha $-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control," in IEEE Journal of Solid-State Circuits, vol. 47, no. 4, pp. 852-862, April 2012.
[10]	Tzu-Chi Huang, Yao-Yi Yang, Yu-Huei Lee, Ming-Jhe Du, Shih-Hsien Cheng and Ke-Horng Chen, "A battery-free energy harvesting system with the switch capacitor sampler (SCS) technique for high power factor in smart meter applications," 2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip, Hong Kong, 2011, pp. 359-362.
[11]	G. Saini, M. Arrawatia, S. Sarkar and M. S. Baghini, "A battery-less power management circuit for RF energy harvesting with input voltage regulation and synchronous rectification," 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, 2015, pp. 1-4.
[12]	C. Y. Hsieh et al., "A battery-free 225 nW buck converter for wireless RF energy harvesting with dynamic on/off time and adaptive phase lead control," 2011 Symposium on VLSI Circuits - Digest of Technical Papers, Honolulu, HI, 2011, pp. 242-243.
[13]	A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff and B. H. Calhoun, "A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and $-$14.5 dBm, 915 MHz RF Kick-Start," in IEEE Journal of Solid-State Circuits, vol. 50, no. 8, pp. 1820-1832, Aug. 2015.
[14]	Y. S. Hwang, C. C. Lei, Y. W. Yang, J. J. Chen and C. C. Yu, "A 13.56-MHz Low-Voltage and Low-Control-Loss RF-DC Rectifier Utilizing a Reducing Reverse Loss Technique," in IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6544-6554, Dec. 2014.
[15]	P. H. Chen et al., "Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and VTH -Tuned Oscillator With Fixed Charge Programming," in IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp. 1252-1260, May 2012.
[16]	P. S. Weng, H. Y. Tang, P. C. Ku and L. H. Lu, "50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting," in IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, April 2013.
[17]	Po-Hung Chen et al., "0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS," IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-4.
[18]	P. H. Chen and P. M. Y. Fan, "An 83.4% Peak Efficiency Single-Inductor Multiple-Output Based Adaptive Gate Biasing DC-DC Converter for Thermoelectric Energy Harvesting," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 2, pp. 405-412, Feb. 2015.
[19]	J. Kim, M. Shim, J. Jung, H. Kim and C. Kim, "A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications," 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), Singapore, 2014, pp. 35-36.
[20]	P. H. Chen, C. S. Wu and K. C. Lin, "A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter With Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting," in IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 523-532, Feb. 2016.
[21]	J. Katic, S. Rodriguez and A. Rusu, "A Dual-Output Thermoelectric Energy Harvesting Interface With 86.6% Peak Efficiency at 30 uW and Total Control Power of 160 nW," in IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1928-1937, Aug. 2016.
[22]	H. H. Wu, C. L. Wei, Y. C. Hsu and R. B. Darling, "Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter With a Near-Threshold Startup Voltage and High Efficiency," in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1956-1965, April 2015.
[23]	J. Zarate-Roldan, S. Carreon-Bautista, A. Costilla-Reyes and E. Sánchez-Sinencio, "A Power Management Unit With 40 dB Switching-Noise-Suppression for a Thermal Harvesting Array," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 8, pp. 1918-1928, Aug. 2015.
[24]	Y. K. Ramadass and A. P. Chandrakasan, "Minimum Energy Tracking Loop with Embedded DC-DC Converter Delivering Voltages down to 250mV in 65nm CMOS," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 64-587.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信