淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1408201711432700
中文論文名稱 供應鏈管理中信用交易財務的經濟生產量模型
英文論文名稱 Economic production quantity models with trade credit financing in supply chain management
校院名稱 淡江大學
系所名稱(中) 管理科學學系博士班
系所名稱(英) Doctoral Program, Department of Management Sciences
學年度 105
學期 2
出版年 106
研究生中文姓名 王璐
研究生英文姓名 LU WANG
學號 899620206
學位類別 博士
語文別 英文
第二語文別 英文
口試日期 2017-07-20
論文頁數 75頁
口試委員 指導教授-鄧進財
指導教授-婁國仁
委員-楊維楨
委員-曹銳勤
委員-婁國仁
委員-楊志德
委員-謝組邦
委員-廖啟順
委員-李培齊
中文關鍵字 存貨  信用交易  算術幾何不等式  違約風險  財務  學習曲線  納許和整合解 
英文關鍵字 Inventory  Trade credit  Arithmetic–geometric inequality  Default risk  Finance  Learning curve  Nash and integrated solutions. 
學科別分類
中文摘要 在當今競爭激烈的市場中,賣家通常會向買家提供允許延期的付款(即信用交易)。通常情況下,如果未償還的金額在允許期限內支付,則不存在利息。但是,如果付款未在允許的延期期限內全額支付,則利息按未償還金額計算。
給予允許期限不僅增加了賣方的機會成本,而且增加了賣方的違約風險,因為允許期限越長,機會成本越高以及違約風險越高。因此,經銷商發現最佳的信用交易是一個重要且相關的問題,使得信用交易引起的銷售增長可以顯著地克服機會成本和違約風險的成本增加。
一個眾所周知的學習事實是,新產品的生產成本在每次累積生產量加倍時都下降了10%到50%。另一方面,買方資本投資對減少訂單的影響成本顯著對數。因此,確定最佳的資本投資是買方降低總成本的重要策略。
在本論文中,我們提出了信用交易條件下的三個確定性存貨模型。在第二章中,當供應商提供上游信用交易M時,我們為製造商(或批發商)建立了具有缺陷物品的經濟生產量模型,同時向買方(或零售商)提供下游信用交易N。在第三章中,我們提出一個經濟生產量模型,從賣方的前景來確定他/她的最佳的信用交易期和生產批量同時,其中(i)信用交易不僅增加銷售,而且增加機會成本和違約風險,以及(ii)生產成本下降並服從學習曲線現象。在第四章中,我們建立賣方和買方的年度總利潤,然後在即時存貨系統中公式化非合作納許解和合作整合解,其中(1)給予信用交易不僅增加需求,也增加了機會成本和違約風險;(2)資本投資對降低訂貨成本的影響是對數的。最後,在第五章中,我們為本論文提供了一些結論和未來的研究課題。
英文摘要 In today’s competitive markets, sellers usually offer their buyers a permissible delay in payments (i.e., trade credit). Usually, there is no interest charge if the outstanding amount is paid within the permissible delay period. However, if the payment is not paid in full by the end of the permissible delay period, then interest is charged on the outstanding amount.
Granting a permissible delay period increases not only the seller's opportunity cost but also the seller's default risk because the longer the permissible delay period, the higher the opportunity cost as well as the default risk. Consequently, it is an important and relevant issue for the seller to find an optimal trade credit such that the sales increase induced by trade credit can significantly overcome the cost increase of opportunity cost and default risk.
It is a well-known fact of learning-by-doing that production cost of a new product declines by a factor of from 10 to 50 percent each time the accumulated production volume doubles. On the other hand, the impact of buyer’s capital investment in reducing ordering cost is significantly logarithmic. Therefore, finding the optimal capital investment is an important strategy for the buyer to reduce his/her total cost.
In this thesis, we propose three deterministic inventory models under the trade credit conditions. In Chapter 2, we establish an economic production quantity model for a manufacturer (or wholesaler) with defective items when its supplier offers an up-stream trade credit M while it in turn provides its buyers (or

retailers) a down-stream trade credit N. In Chapter 3, we propose an economic production quantity model from the seller's prospective to determine his/her optimal trade credit period and production lot size simultaneously in which (i) trade credit increases not only sales but also opportunity cost and default risk, and (ii) production cost declines and obeys a learning curve phenomenon. In Chapter 4, we establish seller’s and buyer’s annual total profits, and then formulate non-cooperative Nash solution and cooperative integrated solution in a just-in-time inventory system, in which (1) granting trade credit increases not only the demand but also the opportunity cost and default risk and (2) the impact of capital investment in reducing ordering cost is logarithmic. Finally, in Chapter 5, we provide some conclusions and future research topics for this thesis.
論文目次 Chinese abstract……………………………………………………………………...I
English abstract..………………………………… …...…………..…......................Ⅱ
Contents…..……..………………………………… …...…………..……………...IV
List oftables…..……..………………………………… …………..…......................V
List of figures…..…………………………………..……………………………….VI
Chapter 1 Introduction……………………………………………………………….1
1.1Motivation ……………………….……………………...……......................1
1.2 Literature review ………………………….………………...………………..3
1.3 Summary ……………………..…………………………………………….10
Chapter 2 Optimal lot-sizing policy for a manufacturer with defective items in a supply chain with up-stream and down-stream tradecredits……………………………………………….…....................11
2.1 Introduction ………….11
2.2 Mathematical formulation …14
2.3 Optimal solution 24
2.4 Numerical examples 27
2.5 Concluding remarks 29
Chapter 3 Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs ….31
3.1 Introduction 31
3.2 Notation and assumptions 34
3.3 Mathematical model and optimal solution 36
3.4 Numerical examples 41
3.5 Concluding remarks 44
Chapter 4 Nash and integrated solutions in a just-in-time seller–buyer supply chain with buyer's ordering cost reductions………………………………….............46
4.1Introduction……………….……...……………..……………….46
4.2 Notation and assumptions ………….……..……....49
4.3 Mathematical model and solution 52
4.4 Numerical Examples 60
4.5 Concluding remarks 63
Chapter 5 Conclusion…… ……….65
References ..68



List of tables
Table 2.1. Sensitivity analysis on parameters for optimal lot-sizing policy……………………………………………………….29
Table 3.1. Sensitivity analysis on parameters for optimal trade credit
and lot size policies…………………………….…………...43
Table 4.1. Sensitivity analysis on parameters for Nash and integrated solutions………………………………………………….....62


List of Figures
Figure 2.1 Cumulative revenue for good items on …………….18
Figure 2.2 Cumulative revenue for good items on ……….…...21
Figure 2.3 Cumulative revenue for good itemson …..……….…….23
Figure 4.1. Both seller’s and buyer’s on-hand quantities ..………………..54


參考文獻 1.Abad, P.L.,&Jaggi, C.K. (2003).A joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive.International Journal of Production Economics, 83(2), 115-122.
2. Arrow, K.J.(1962). The economic implications of learning by doing.Review of Economic Studies, 29(3), 155-173.
3. Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payment.Journal of the Operational Research Society, 46, 658-662.
4. Billington, P. J. (1987). The classical economic production quantity model with setup cost as a function of capital expenditure, Decision Sciences, 18(1), 25-42.
5. Cardenas-Barron, L.E. (2011). The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra. Applied Mathematical Modelling, 35 (5), 2394-2407.
6. Chang, C. T., Teng, J. T., &Goyal, S. K. (2008).Inventory lot-size models under trade credits: a review. Asia Pacific Journal of Operational Research, 25, 89-112.
7. Chang, C. T., Teng, J. T., &Chern, M. S. (2010). Optimal manufacturer’s replenishment policies for deteriorating items in a supply chain with up-stream and down-stream trade credits.International Journal of Production Economics, 127, 197-202.
8. Chang, C.T., Ouyang, L.Y.,&Teng, J.T. (2003).An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Applied Mathematical Modelling,27(12), 983-996.
9. Chen, S. C., Cardenas-Barron, L.E.,&Teng, J. T., (2014a).Retailer’s economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity. International Journal of Production Economics,155, 284-291.
10. Chen, S. C., Teng, J. T.,&Skouri, K., (2014b). Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit. International Journal of Production Economics,155, 302-309.
11. Chang, C. T., Teng, J. T.,&Chern, M. S. (2003).Optimal manufacturer’s replenishment policies for deteriorating items in a supply chain with up-stream and down-stream trade credits.International Journal of Production Economics, 127(1), 197-202.
12. Chang, H. C., Ho, C. H., Ouyang, L. Y.,&Su, C. H. (2009).The optimal pricing and ordering policy for an integrated inventory model when trade credit linked to order quantity.Applied Mathematical Modelling, 33(7), 2978-2991.
13. Chen, L. H.,& Kang, F. S. (2007). Integrated vendor-buyer cooperative inventory models with variant permissible delay in payments. European Journal of Operational Research, 183(2), 658-673.
14. Cheng, M. C., Chang, C. T., &Ouyang, L. Y.(2012). The retailer’s optimal ordering policy with trade credit in different financial environments.Applied Mathematics and Computation,218(19), 9623-9634.
15. Chern, M. S., Pan, Q., Teng, J. T., Chan, Y. L.,& Chen, S. C. (2013).Stackelberg solution in a vendor-buyer supply chain model with permissible delay in payments.International Journal of Production Economics, 144 (1), 397-404.
16. Goyal, S. K. (1985).Economic order quantity under conditions of permissible delay in payments.Journal of the Operational Research Society, 36, 335-338.
17. Goyal, S. K., Teng, J. T., & Chang, C. T. (2007). Optimal ordering policies when the supplier provides a progressive interest-payable scheme. European Journal of Operational Research, 179, 404-413.
18. .Giri, B. C.,& Maiti, T. (2013). Supply chain model with price- and trade credit-sensitive demand under two-level permissible delay in payments. International Journal of Systems Science, 44(5), 937-948.
19. Huang, Y. F. (2003). Optimal retailer’s ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54, 1011-1015.
20. Huang, Y. F. (2004). Optimal retailer’s replenishment policy for the EPQ model under the supplier’s trade credit policy.Production Planning and Control, 15, 27-33.
21. Hu, F.,& Liu, D.(2010).Optimal replenishment policy for the EPQ model with permissible delay in payments and allowable shortages.Applied Mathematical Modelling, 34(10), 3108-3117.
22. Huang, Y. F. (2007).Economic order quantity under conditionally permissible delay in payments.European Journal of Operational Research,176, 911-924.
23. Huang, Y. F., & Hsu, K. H. (2008).An EOQ model under retailer partial trade credit policy in supply chain. International Journal of Production Economics,112,655-664.
24. Huang, C. K. (2010). An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments. Applied Mathematical Modeling, 34(5), 1352-1359.
25. Harris, F.W. (1913).How many parts to make at once. Factory, The Magazine of Management, 10(2), 135-136 and 152.
26. Hwang, H.,& Shinn, S.W.(1997). Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers and Operations Research, 24(6), 539-547.
27. Jamal, A. M. M., Sarker, B. R., & Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment.Journal of the Operational Research Society, 48, 826-833.
28. Kim, J., Hwang, H.,& Shinn, S. (1995). An optimal credit policy to increase supplier’s profits with price-dependent demand functions. Production Planning and Control, 6(1), 45-50.
29. Kreng, V. B., & Tan, S. J. (2010). The optimal replenishment decisions under two levels of trade credit policy depending on the order quantity. Expert Systems with Applications, 37, 5514-5522.
30. Kreng, V. B., & Tan, S. J. (2011). Optimal replenishment decision in an EPQ model with defective items under supply chain trade credit policy. Expert Systems with Applications, 38, 9888-9899.
31. Lou, K.R.,& Wang, W.C. (2013). A comprehensive extension of an integrated inventory model with ordering cost reduction and permissible delay in payments. Applied Mathematical Modelling, 37(7), 4709-47167.
32. Liao, J. J. (2008). An EOQ model with noninstantaneous receipt and exponentially deteriorating items under two-level trade credit.International Journal of Production Economics, 113, 852-861.
33. Liao, J. J., Huang, K. N.,& Chung, K. J. (2012). Lot-sizing decisions for deteriorating items with two warehouses under an order-size-dependent trade credit. International Journal of Production Economics, 137, 102-115.
34. Min, J., Zhou, Y. W., &Zhao, J. (2010).An inventory model for deteriorating items under stock-dependent demand and two-level trade credit.Applied Mathematical Modelling, 34(11), 3273-3285.
35. Min. J., Zhou, Y. W., Liu, G. Q.,& Wang, S. D. (2012).An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments.International Journal of Systems Science, 43(6), 1039-1053.
36. Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain.Expert Systems with Applications, 39(3), 3537-3550.
37. Nasri, F., Affisco J. F.,& Paknejad, M. J. (1990). Setup cost reduction in an inventory model with finite range stochastic lead time. International Journal of Production Research, 28(1) 199-212.
38. Ouyang, L. Y., Chang, C. T., & Shum P. (2012). The EOQ with defective items and partially permissible delay in payments linked to order quantity derived algebraically. Central European Journal of Operations Research, 20(1), 141-160.
39. Nori, V.S. &Sarker, B.R. (1996).Cyclic scheduling for a multi-product, single-facility production system operating under a just-in-time production systems. Journal of the Operational Research Society, 47(7), 930-935.
40. Ouyang, L. Y., Chang, C.T.,&Teng, J. T.(2005). An EOQ model for deteriorating items under trade credits. Journal of the Operational Research Society, 56(6), 719-726.
41. Ouyang, L. Y., Teng, J.T.,& Chen, L. H.(2006).Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments.Journal of Global Optimization, 34(2), 245-271.
42. Ouyang, L. Y.,& Chang, C. T. (2013).Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging.International Journal of Production Economics, 144(2), 610-617.
43. Pal, B., Sana, S. S.,& Chaudhuri, K. (2014). Three stage trade credit policy in a three-layer supply chain–a production-inventory model. International Journal of Systems Science,45(9), 1844-1868.
44. Porteus, E. L. (1985). Investing in reduced setups in the EOQ model.Management Science, 31(8), 998-1010.
45. Rosen, S.(1972).Learning by experience as joint production.Quarterly Journal of Economics, 86(3), 366-382.
46. Sarkar, B. (2012). An EOQ model with delay in payments and time varying deterioration rate.Mathematical and Computer Modelling, 55(3-4), 367-377.
47. Sarker, B. R., & Coates, E. R. (1997). Manufacturing setup cost reduction under variable lead times and finite opportunities for investment. International Journal of Production Economics,49(3), 237-247.
48. Shinn, S. W., & Hwang, H. (2003).Optimal pricing and ordering policies for retailers under order-size dependent delay in payments.Computers and Operations Research, 30, 35-50.
49. Skouri, K., Konstantaras, I., Papachristos, S., &Teng, J. T. (2011). Supply chain models for deteriorating products with ramp type demand rate under permissible delay in payments. Expert Systems with Applications, 38, 14861-14869.
50. Soni, H., & Shah, N.H., (2008). Optimal ordering policy for stock-dependent demand under progressive payment scheme.European Journal of Operational Research,184, 91-100.
51. Teng, J. T. (2002). On the economic order quantity under conditions of permissible delay in payments.Journal of the Operational Research Society, 53, 915-918.
52. Teng, J. T. (2009a). Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers.International Journal of Production Economics,119, 415-423.
53. Teng, J. T. (2009b). A simple method to compute economic order quantities.European Journal of Operational Research,198, 351-353.
54. Teng, J. T., &Chang, C. T. (2009). Optimal manufacturer’s replenishment policies in the EPQ model under two levels of trade credit policy. European Journal of Operational Research, 195(2), 358-363.
55. Teng, J. T., &Goyal, S. K. (2007).Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits.Journal of the Operational Research Society, 58, 1252-1255.
56. Teng, J. T., Krommyda, I. P., Skouri, K., & Lou, K. R. (2011). A comprehensive extension of optimal ordering policy for stock-dependent demand under progressive payment scheme.European Journal of Operational Research, 215, 97-104.
57. Teng, J. T., Min, J., &Pan, Q. (2012a). Economic order quantity model with trade credit financing for non-decreasing demand.Omega,40(3), 328-335.
58. Teng, J. T.,& Thompson, G. L. (1983). Oligopoly models for optimal advertising when production costs obey a learning curve. Management Science, 29(9), 1087-1101.
59. Teng, J. T.,& Thompson, G. L. (1996). Optimal strategies for general price-quality decision models of new products with learning production costs. European Journal of Operational Research, 93(3), 476-489.
60. Teng, J. T., Chang, C. T.,&Chern, M. S. (2012b).Vendor–buyer inventory models with trade credit financing under both non-cooperative and integrated environments. International Journal of Systems Science,43(11), 2050-2061.
61. Trevino, J., Hurley, B. J.,& Friedrich, W. (1993).A mathematical model for the economic justification of setup time reduction.International Journal of Production Research, 31(1) 191-202.
62. The Boston Consulting Group (1972).Perspective on Experience. The Boston Consulting Group, Boston.
63. Thompson, G. L.,&Teng, J. T. (1984).Optimal pricing and advertising policies for new product oligopoly models.Marketing Science, 3(2), 148-168.
64. Tsai, D. M. (2012). Optimal ordering and production policy for a recoverable item inventory system with learning effect. International Journal of Systems Science, 43(2), 349-367.
65. Wang, W. C., Teng, J. T.,& Lou, K. R. (2014). Seller’s optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime. European Journal of Operational Research, 232(2), 315-321.
66. Yang, C. T., Ouyang, L. Y., Wu, K. S.,& Yen, H. F. (2011).An optimal replenishment policy for deteriorating items with stock-dependent demand and relaxed terminal conditions under limited storage space.Central European Journal of Operations Research, 19(1), 139-153.
67. Yang, C. T., Pan, Q. H., Ouyang, L. Y., &Teng, J. T. (2012).Retailer’s optimal order and credit policies when a supplier offers either a cash discount or a delay payment linked to order quantity. European Journal of Industrial Engineering, 7 (3), 370-392.
68. Zhou, Y. W., Zhong, Y.,& Li, J. (2012). An uncooperative order model for items with trade credit, inventory-dependent demand and limited displayed-shelf space.European Journal of operational Research, 223(1), 76-85.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-09-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-09-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信