§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1408201711003800
DOI 10.6846/TKU.2017.00465
論文名稱(中文) 金屬超分子. 腙基架橋萘啶之銀錯合物研究
論文名稱(英文) Metallosupramolecules. Silver Complexes with Hydrazone Bridged Naphthyridinyl Ligand
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 李奕承
研究生(英文) Yi-Cheng Li
學號 603160069
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-07-18
論文頁數 70頁
口試委員 指導教授 - 王文竹
委員 - 林志彪
委員 - 陳登豪
關鍵字(中) 金屬超分子
萘啶化合物
銀錯合物
關鍵字(英) Supramolecule
Silver complex
Self-assembly
Helicate
Hydrazone bridged
第三語言關鍵字
學科別分類
中文摘要
超分子結構的獲得,配位子的設計是重要的一步,而本篇研究目標定位於金屬簇螺旋( Cluster Helicate ) 超分子結構。要形成簇狀螺旋錯合物,配位子必須要能鍵結多個金屬離子,基於此,我們設計配位子是含有三個萘啶結構,並由柔軟且具配位能力的腙基連接組成。金屬離子則選用銀離子,因為銀離子的鍵結構形可調性高,可依不同類型配位子所提供的鍵結單元調整其鍵結形狀,且銀離子為過渡金屬,具有d 軌域含有未成對電子,使金屬簇螺旋超分子結構會產生豐富的物理及化學性質,在奈米系統上,更可以形成金屬線的特異表現。因此,設計可以鍵結多金屬離子的系統,使其形成有系統的金屬簇超分子錯合物。 

    在本篇報告中合成了一個具腙基架橋的萘啶配位子,並與銀離子形成錯合物,利用1-D NMR、COSY、HMBC、HSQC等方法,成功的鑑定出配位子以及錯合物的結構。在UV-Vis吸收光譜中發現配位子與錯合物的π→π*有明顯位移,螢光波長在510 nm。且從UV-vis滴定光譜中,得到錯合物的自組裝過程為[L]、[ML]、[M2L]、[M3L]、[M3L2]、[M4L2]、[M5L2]、[M6L2],並在ESI-MS質譜儀中確認[M6L2]的存在。此外利用電子吸收光譜酸鹼滴定,求得萘啶配位子之pKa為3.83。
英文摘要
Metallosupramolecules have been extensively studied due to their supramolecular behavior with properties supplemented by the metal ions, such as electronics, magnetism, color, or electrochemical behavior. Moreover, metalloupramolecules have been utilized to fabricate metal nanomaterials and molecular machine because of their ability to self-assemble into ordered suprastructures. A novel polydentate ligand L was synthesized by condensation of 2,7-dihydrazinyl-1,8-naphthyridine and 2-dimethylglyoxal-hydrazonyl- naphthyridine. Reaction of L ligand strands with silver perchlorate in CH3CN generates a double helical hexanuclear complex. The ligands and silver complex were successfully identified by 1H-NMR and 2-D NMR technical as COSY, HMBC and HSQC. The complexation behavior of L was studied by UV-Vis spectrophotometric titration. The experimental results reveal the formation of hexanuclear complexes [Ag6L2]+6. Moreover, the double-helical structure of  [Ag6L2]+6 was confirmed by electrospray ionization mass spectrometer. The pKa value of ligand L was determined by UV-Vis spectroscopic titration.
第三語言摘要
論文目次
目錄
第一章 緒論	        1
  1.1 前言	        1
  1.2 超分子的原理和特性	1
  1.3 超分子結合的驅動力	2
     1.3.1 氫鍵	        2
     1.3.2 π-π堆疊	3
     1.3.3 配位鍵	4
     1.3.4 離子作用力	4
     1.3.5 凡得瓦力	5
  1.4 無機超分子的類型	5
  1.5 螺旋錯合物	6
     1.5.1單股螺旋錯合物	7
     1.5.2雙股螺旋錯合物	9
     1.5.3三股螺旋錯合物	11
  1.6 金屬導線	11
  1.7 雙軸金屬導線	13
  1.8 研究構想及設計	14
     1.8.1 鍵結區的設計	14
     1.8.2 連接區的設計	16
     1.8.3 金屬離子的選擇	17
  1.9 配位子之構想與縮寫	18
第二章 實驗部分	19
  2.1 實驗藥品	19
  2.2 儀器	20
     2.2.1 NMR	20
     2.2.2 ESI-Ms	20
     2.2.3 UV-Vis spectrophotometer	20
     2.2.4 SPECFIT Simulation	20
  2.3 前驅物的合成	22
  2.4 配位子的合成	27
  2.5 錯合物的合成	28
第三章 合成與鑑定	29
  3.1 配位子之合成與鑑定	29
  3.2 錯合物之合成與鑑定	32
第四章 溶液態性質探討	37
  4.1 吸收與發射光譜的研究	37
  4.2 超分子聚集行為	39
  4.3 分子自組裝的研究方法	40
  4.4 核磁共振光譜	48
  4.5 酸鹼滴定吸收光譜	50
第五章 結論	52
第六章 參考文獻	53
附錄	55
	
圖目錄
Figure 1-1. 分子自組裝成超分子示意圖	1
Figure 1-2. 分子間氫鍵	2
Figure1-3. 利用分子比例的改變形成氫鍵複合體	3
Figure 1-4. π-π interaction的三種排列	3
Figure 1-5. 各種形式的 π-π stacking	3
Figure 1-6. 不同金屬離子形成不同構形的化合物	4
Figure 1-7. 異電荷產生庫倫吸引力	4
Figure 1-8. 凡得瓦力之偶極-偶極力	5
Figure 1-9. ( A ) Helical、( B ) Grid、( C ) Rack、( D ) Cylinder、( E ) Trigonal Cluster、
( F ) Sandwich	6
Figure 1-10. 左圖為P型螺旋,右圖為螺旋錯合物,據有螺旋軸、螺旋方向及螺距	7
Figure 1-11. 左圖為配位子,右圖為藉由末端取代基的立體障礙所形成單螺旋	8
Figure 1-12. 左圖為配位子,右圖為單核單股螺旋銅錯合物	8
Figure 1-13. 左圖為配位子,右圖為雙核單股螺旋釕錯合物	8
Figure 1-14. 左圖為配位子,右圖為雙核單股螺旋釕錯合物	9
Figure 1-15. 含氧、氮為橋基的配位子	9
Figure 1-16. 左圖為配位子,右圖為雙股螺旋銅錯合物	10
Figure 1-17. 左圖為配位子,右圖為雙股螺旋銅錯合物	10
Figure 1-18. 三股螺旋鈦錯合物	11
Figure 1-19. 五核的metal string 錯合物	12
Figure 1-20. 七核的metal string 錯合物	12
Figure 1-21. 雙股螺旋錯合物	12
Figure 1-22. 雙軸金屬線示意圖	13
Figure 1-23. 四核雙軸雙股螺旋錯合物	13
Figure 1-24. 五核銀雙螺旋錯合物	14
Figure 1-25. 四銀雙軸雙螺旋錯合物	14
Figure 1-26. 上圖為配位子的種類,下圖為萘啶與金屬鍵結之形式	15
Figure 1-27. 六核雙股雙螺旋錯合物	16
Figure 1-28. 配位子示意圖	17
Figure 1-29. 親銀性作用力	17
Figure 1-30. 本論文中配位子之架構	18
Figure 3-1. 1H-NMR spectrum (600 MHz) of Npt-(MeC2MeNpt)2 in DMSO-d6.	31
Figure 3-2. 1H-1H COSY NMR spectrum (600 MHz) of Npt-(MeC2MeNpt)2 in DMSO-d6.	31
Figure 3-3. ESI-Ms spectrum of Npt-(MeC2MeNpt)2 in MeOH.	32
Figure 3-4. ESI-Ms spectrum of Npt-(MeC2MeNpt)2 in MeOH.( m/z = 611)	32
Figure 3-5. 1H-NMR spectrum (600 MHz) of complex in DMSO-d6.	33
Figure 3-6. 1H-1H COSY NMR spectrum ( 600 MHz ) of complex in DMSO-d6.	34
Figure 3-7. 2D-HSQC spectrum( 600MHz ) of comlpex in DMSO-d6 solution.	34
Figure 3-8. 2D-HMBC spectrum( 600MHz ) of comlpex in DMSO-d6 solution.	35
Figure 3-9. ESI-Ms spectrum of complex in MeOH.	36
Figure 3-10. ESI-Ms spectrum of complex in MeOH.( m/z = 1862 )	36
Figure 4-1. UV-Vis of L and complex in DMSO at room temperature.	37
Figure 4-2. Photoluminescence spectrum of L in DMSO at room temperature.
          ( [ M ] = 3.20 x 10-5M ).	38
Figure 4-3. Photoluminescence spectrum of L in DMSO at room temperature.
          ( [ M ] = 4.25 x 10-5M ).	38
Figure 4-4. UV-Vis spectrum of L in DMSO with various concentration.	40
Figure 4-5. Fitting of L in DMSO with various concentration.( Right 398nm;Left 500 nm )	40
Figure 4-6. UV-Vis spectrum for titration of L with AgClO4 in DMSO.[L]= 1.34×10-5M	42
Figure 4-7. UV-Vis spectrum for titration of L with AgClO4 in DMSO. (0.0~0.5 eq.)	42
Figure 4-8. UV-Vis spectrum for titration of L with AgClO4 in DMSO. (0.5~1.0 eq.)	43
Figure 4-9. UV-Vis spectrum for titration of L with AgClO4 in DMSO. (1.0~1.5 eq.)	43
Figure 4-10. UV-Vis spectrum for titration of L with AgClO4 in DMSO. (1.5~2.0 eq.)	44
Figure 4-11. UV-Vis spectrum for titration of L with AgClO4 in DMSO. (2.0~3.0 eq.)	44
Figure 4-12. UV-Vis spectrum for titration of L with AgClO4 in DMSO. (3.0~4.0 eq.)	45
Figure 4-13. EA plot of UV-Vis spectrum for titration of L with AgClO4 in DMSO.	45
Figure 4-14. Corresponding speciation of L for the spectrometric titration with AgClO¬4 in
           DMSO.	46
Figure 4-15. 1H-NMR spectrum of L and complex in DMSO-d6. ( 6-12ppm )	47
Figure 4-16. 湯上慰學長的分子堆積圖示意圖	47
Figure 4-17. 1H-NMR spectrum of L and complex in DMSO-d6. ( 2-3 ppm )	48
Figure 4-18. 湯上慰學長的分子單晶圖	48
Figure 4-19. The 1H-NMR variation temperature spectrum of complex in DMSO-d6.
           ( 12-6 ppm )	49
Figure 4-20. The 1H-NMR variation temperature spectrum of complex in DMSO-d6.
           ( 3-2 ppm )	49
Figure 4-21. UV-Vis spectrum for titration of L with HCl in DMSO.	51
Figure 4-22. Plot of log[( Ai-A ) / ( A-Af )] vs. pH( 450 nm );Change with pH in 
the UV-Vis spectrum. ( 4.34-3.05 )	51
Figure A-1. The 600 MHz 1H-NMR spectrum of Npt-OH in DMSO-d6 solution.	55
Figure A-2. The 600 MHz 1H-NMR spectrum of Npt-Cl in DMSO-d6 solution.	55
Figure A-3. The 600 MHz 1H-NMR spectrum of Npt-N2H3 in DMSO-d6 solution.	56
Figure A-4. The 600 MHz 1H-NMR spectrum of Npt-MeC2Me in DMSO-d6 solution.	56
Figure A-5. The 600 MHz 1H-NMR spectrum of HO-Npt-NH2 in DMSO-d6 solution.	57
Figure A-6. The 600 MHz 1H-NMR spectrum of Npt-(OH)2 in DMSO-d6 solution.	57
Figure A-7. The 600 MHz 1H-NMR spectrum of Npt-Cl2 in DMSO-d6 solution.	58
Figure A-8. The 600 MHz 1H-NMR spectrum of Npt-( N2H3)2 in DMSO-d6 solution.	58
Figure A-9. The 600 MHz 1H-NMR spectrum of Npt-(MeC2Me-Npt)2 in DMSO-d6 solution.	59
Figure A-10. The 600 MHz 1H-NMR spectrum of Npt-(MeC2Me-Npt)2 in DMSO-d6 solution. ( 9.2-7.2 ppm )	59
Figure A-11. The 600 MHz 1H-NMR spectrum of Npt-(MeC2Me-Npt)2 in DMSO-d6 solution.( 2.8-2.4 ppm )	60
Figure A-12. The 600 MHz 2D-CODY spectrum of Npt-(Npt-MeC2Me)2 in DMSO-d6 solution.	60
Figure A-13. The 600 MHz 1H-NMR spectrum of Complex in DMSO-d6 solution.	61
Figure A-14. The 600 MHz 1H-NMR spectrum of complex in DMSO-d6 solution.( 12.0-6.0 ppm )	61
Figure A-15. The 600 MHz 13C-NMR spectrum of complex in DMSO-d6 solution.	62
Figure A-16. The 600 MHz 2D-CODY spectrum of complex in DMSO-d6 solution.	62
Figure A-17. The 600 MHz 2D-HSQC spectrum of complex in DMSO-d6 solution.	63
Figure A-18. The 600 MHz 2D-HMBC spectrum of complex in DMSO-d6 solution.	63
Figure A-19. The 600 MHz 1H-NMR spectrum of L compared with complex in DMSO-d6 solution.( 12.0 - 6.0 ppm )	64
Figure A-20. The 600 MHz 1H-NMR spectrum of L compared with complex in DMSO-d6 solution.( 3.0 - 2.0 ppm )	64
Figure A-21. The 600 MHz 1H-NMR variation temperature spectrum of complex in DMSO-d6 solution.	65
Figure A-22. The 600 MHz 1H-NMR variation temperature spectrum of complex in DMSO-d6 solution.	65
Figure B-1. The ESI-Ms spectrum of Npt-(Npt-MeC2Me)2 in MeOH. ( full scan )	66
Figure B-2. The ESI-Ms spectrum of Npt-(Npt-MeC2Me)2 in MeOH. ( m/z = 633 )	66
Figure B-3. The ESI-Ms spectrum of Npt-(Npt-MeC2Me)2 in MeOH. ( m/z = 611 )	67
Figure B-4. The ESI-Ms spectrum of complex in MeOH .( full scan )	67
Figure B-5. The ESI-Ms spectrum of complex in MeOH .( m / z = 1862 )	68
Figure B-6. The ESI-Ms spectrum of complex in MeOH .( m / z = 825 )	68
Figure B-7. The ESI-Ms spectrum of complex in MeOH .( m /z = 923 )	69
Figure C-1. UV-Vis spectrum for titration of L with AgClO4 in DMSO.	69
Figure C-2. ( a ) Experiment ( b ) Calculation UV-Vis specturm for titration of Npt(Npt-MeC2Me)2 with AgClO4 in DMSO. ( 0.0eq-4.0eq )	70

表目錄
Table 1-1. Nomenclature abbreviation of ligand	18
Table 5-1. The chemical shift (aromatic part) of ligand and complex in DMSO-d6.	49
參考文獻
1.Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, 1995.
2.Bianchi, A.; Bowman-James, K.; Garcia-Espana, E. Supramolecular Chemistry of Anions; John Wiley: New York, 1997.
3.Sauvage, J.-P. Transition Metals in Supramolecular Chemistry; John Wiley: New York, 1999.
4.Conn, M. M,; Rebek, J. Chem. Rev. 1997, 97, 1647.
5.Meyer, E. A.; Castellano, R. K.; Diederich, F. O. Angew. Chem. Int. Ed. 2003, 42, 1210.
6.Puntoriero, F. ; Campagna, S.; Stadler, A.-M.; Lehn, J.-M. Coord. Chem. Rev. 2008.
7.Albrecht, M. Chem. Rev. 2001, 101, 3457.
8.Rasshofer, W.; Oepen, G.; Muller, W. M.; Vogtle, F. Chem. Ber. 1978, 111, 1108.
9.Piguet, C.; Bernardinelli, G.; Hopfgartner, G.; Chem. Rev. 1997, 97, 2005.
10.Youinou, M.-T.; Ziessel, R.; Lehn, J.-M. Inorg. Chem. 1991, 30, 2144.
11.Yao, Y.; Perkovic, M. W.; Rillema, D. P.; Woods, C. Inorg. Chem. 1992, 31, 3956.
12.Cathey, C. J.; Constable, E. C.; Hannon, M. J.; Tocher, D. A.; Ward, M. D. J. Chem. Soc., Chem. Commun. 1990, 621.
13.Samanta, S.; Mukhopadhyay, S.; Burckel P.; Chaudhury, M. Inorg. Chem. 2002, 41, 2946.
14.Smith, V. C. M.; Lehn, J.-M. Chem. Commun. 1996, 2733.
15.Piguet, C.; Bernardinelli, G.; Williams, A. F. Inorg. Chem. 1989, 28, 2920.
16.Albrecht, M.; Janser, I. J.; Wang, Y., Raabea, G. Mendeleev Common. 2004, 14. 250.
17.Wei, C.-H.; Marc, S.; Shao, A.-H.; Lai, C.-W.; Tsai, J.-L.; Bihyaw, J.; Lee, G.-H.; Peng, S.-M. Chem.Commun. 2016, 52, 12380.
18.Lai, S.-Y.; Lin, T.-W.; Chen Y.-H.; Wang, C.-C.; Lee, G.-H.; Yang, M.-H.; Peng, S.-M. J. Am. Chem. Soc. 1999, 1, 251.
19.Hou, L.; Li, D. Inorg. Chem. Common. 2005, 8, 128.
20.張清森, 淡江大學化學研究所博士論文, 民國89年.
21.湯上慰, 淡江大學化學研究所碩士論文, 民國89年.
22.Kulijeet, S.; Jeffrey, R. L.; Pericles. S. J. Am. Chem. Soc. 1997, 119, 2942.
23.湯上慰, 淡江大學化學研究所博士論文, 民國95年.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信