淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1408201314523100
中文論文名稱 各種屋頂形狀與材質對超寬頻通道容量影響之研究
英文論文名稱 Channel Capacity of UWB Communication Systems for Various Roofs and Materials of Environments
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 余佳盈
研究生英文姓名 Chia-Ying Yu
學號 601440034
學位類別 碩士
語文別 中文
口試日期 2013-07-17
論文頁數 51頁
口試委員 指導教授-丘建青
委員-方文賢
委員-李慶烈
中文關鍵字 多輸入多輸出  超寬頻  射線彈跳  通道容量  多輸入多輸出天線 
英文關鍵字 MIMO-UWB  ray-tracing approach  channel capacity  MIMO antennas 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文主要由射線彈跳法去模擬研究四種不同屋頂和兩種不同環境材質,求得超寬頻多輸入多輸出系統的頻率響應,並計算和比較超寬頻通訊的通道容量,其中多輸出多輸入系統其通道容量與天線數量呈現線性成長,帶來高傳輸率以及高傳輸品質,藉此能提升系統傳輸率。
  本論文研究使用的四種不同屋頂分別為:1.平面屋頂 2.三角形屋頂 3.栱形屋頂 4.金字塔形屋頂。兩種不同環境材質分別為:1.混凝土2.鐵皮屋。其次,使用2x2MIMO天線,以及4x4 MIMO天線對於此系統通道容量的影響,並發現到不論在何種環境之中,天線數量與通道容量呈現性關係,這些模擬的情形,在金字塔型屋頂有較高的通道容量且性能明顯的好於其他屋頂形狀。
英文摘要 This paper focuses on the research of channel capacity of Multiple-Input Multiple-Output (MIMO) system for four different geometrical shapes of roof in the materials of concrete and iron in the same environments are investigated. These four roofs include the flat shape roof, the triangle shape roof, the arched shape roof, and the pyramid shape roof.
A ray-tracing technique is developed to calculate channel frequency responses in four different geometrical shape roofs, and the channel frequency response is further used to calculate corresponding channel capacity.
The channel capacities are calculated based on the realistic environment in this thesis. First, channel capacities of MIMO-UWB System with 2x2 MIMO antennas. Next, the of MIMO-UWB System with 4x4 MIMO antennas are calculated. The channel capacity of narrowband or wideband systems combining with MIMO have been shown that increases approximately linearly with the number of transmitting and receiving antennas.
論文目次 第一章 概論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究內容簡介 8
第二章 通道計算模型 9
2.1 無線電波傳播通道分析 9
2.2 通道計算模型分析 10
2.3 射線彈跳追蹤法程式流程分析 13
第三章 系統介紹 17
3.1 多輸入多輸出窄頻系統 17
3.2 多輸入多輸出窄頻系統通道容量 21
3.2.1 建立在 CSI-B 狀態下 21
3.2.2 建立在只有 CSI-R 狀態下 22
3.3 影響MIMO容量因素 24
3.3.1 空間自由度(Spatial degree of freedom) 24
3.3.2 特徵矩陣(Eigenmatrix)和條件數目(Condition number 26
3.4 MIMO-UWB系統之通道容量 27
第四章 模擬數值結果 28
4.1 模擬實驗的環境 28
4.2 模擬結果分析與比較 34
第五章 結論 45
參考文獻 46


圖目錄

圖1.1 SISO, SIMO, MISO和MIMO 示意圖 2
圖2.1求得通道頻率響應 10
圖2.2 SBR/Image 程式流程圖 16
圖3.1多輸入多輸出窄頻系統矩陣示意圖 17
圖3.2多輸入多輸出窄頻系統示意圖 19
圖3.3建立在 CSI-B 狀態下多輸入多輸出窄頻系統的等效架構圖 20
圖4.1平面屋頂之3D立體圖 30
圖4.2三角形屋頂之3D立體圖 31
圖4.3金字塔形屋頂之3D立體圖 32
圖4.4拱形屋頂之3D立體圖 33
圖4.5平面屋頂時不同材質屋頂與不同天線數量之通道容量比較圖 37
圖4.6三角屋頂時不同材質屋頂與不同天線數量之通道容量比較圖 38
圖4.7金字塔屋頂時不同材質屋頂與不同天線數量之通道容量比較圖 39
圖4.8拱形屋頂時不同材質屋頂與不同天線數量之通道容量比較圖 40
圖4.9 2x2MIMO在混凝土材質各種屋頂形狀之通道容量比較圖 41
圖4.10 3x3MIMO在混凝土材質各種屋頂形狀之通道容量比較圖 42
圖4.11 4x4MIMO在鐵皮材質各種屋頂形狀之通道容量比較圖 43
圖4.12 2x2MIMO在鐵皮材質各種屋頂形狀之通道容量比較圖 44
圖4.12 3x3MIMO在鐵皮材質各種屋頂形狀之通道容量比較圖 45
圖4.12 4x4MIMO在鐵皮材質各種屋頂形狀之通道容量比較圖 46

表目錄
表2.1 對應不同系統中空間自由度的數目 25
參考文獻 [1].Federal Communications Commission, “Revision of Part 15 of the Commission`s
Rules Regarding Ultra–Wideband Transmission System, First Peport and Order,” ET
Docket 98–153, FCC 02–48, Feb. 14, 2002, pp. 1–118.
[2]. Hovinen, V., Hamalainen, M. and Patsi, T.; “Ultra Wideband Indoor Radio Channel Models: Preliminary Results,” IEEE conference on Ultra Wideband Systems and Technologies, May 2002.
[3]. I. Oppermann, M. Hamalainen and J. Iinatti, UWB Theory and Applications, John
Wiley & Sons, 2004.
[4]. H. Jeffrey and Reed, An Introduction to Ultra Wideband Communication Systems,
Prentice Hall PTR, 2005.
[5] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, United
Kingdom,” Cambridge University Press, 2005.
[6].J. G Prokis and M. Salehi, Digital Communications, McGraw-Hill, 2008
[7]. S.Haykin and M Moher, Modern Wireless Communications, Pearson Prentice Hall, 2005.
[8]. N. Costa and S. Haykin, Multiple-Input Multiple-Output Channel Models, Wiley, 2010.
[9]. B. S. Paul and R. Bhattacharjee, ‘MIMO Channel Modeling:A Review,” IETE
Technical, vol. 25, issue 6, Nov–Dec. 2008.
[10]. J.G. Andrews et al , Fundamentals of WiMAX , Prentice-Hall, 2007
[11] Gergory D. Durgin, Space-Time Wireless Channels. New Jersey: Prentice Hall PTR,
2003.
[12] Zhemin Xu, Sana Sfar and Rick S. Blum, “Analysis of MIMO Systems With Receive
Antenna Selection in Spatially Correlated Rayleigh Fading Channels,” IEEE Trans.
Veh. Technol., vol.58, no.1, Jan. 2009, pp. 251-262.
[13] Cheng-shan Xiao, and Yahong Rosa Zheng, “On the Ergodic Capacity of MIMO
Triply Selective Rayleigh Fading Channels,” IEEE Trans. Wireless Commun., vol.7,
no.61, June 2008, pp. 2272-2279.
[14] Maria-Gabriella Di Benedetto and Guerion Giancola, Understanding Ultra Wide Band
Radio Fundamentals. New Jersey: Prentice Hall PTR, 2004.
[15] B. Sklar, Digital Communications:Fundamentals and Applications 2/e, Prentice Hall
PTR, 2004
[16] Huseyin Arslan, Zhi-Ning Chen and Maria-Gabriella Di Benedetto, ULTRA
WIDEBAND WIRELESS COMMUNICATION. New Jersey: John Wiley & Sons, Inc.,
2006.
[17]. R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE Journal on Selected Areas in Communications , Vol. 20, No.9, December 2002, pp. 1628-1637.
[18]. B. Uguen, E. Plouhinee, Y. Lostanlen, and G. Chassay, “A deterministic ultra-wideband channel modeling,” IEEE Conference on Ultra-Wideband System Technologies, May 2002, pp. 1-5.
[19]. Y. Zhang, “Ultra-wide bandwidth channel analysis in time domain using 3-D ray tracing,” High Frequency Postgraduate Student Colloquium of IEEE, Sept. 2004, pp. 189-194.
[20] E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Weband Matlab, Prentice-Hall, 2000.
[21]. B. S. Paul and R. Bhattacharjee, ‘MIMO Channel Modeling:A Review,” IETE
Technical, vol. 25, issue 6, Nov–Dec. 2008.
[22]. C. Oestges and B. Clerckx, “MIMO Wireless Cimmunications,” Elsevier Ltd., Mar.
2007.
[23]. H. Ling, R. Chou and S. Lee, “Shooting and Bouncing Rays:Calculating the RCS of
an Arbitrarily Shaped Cavity,” IEEE Trans. Antennas Propagate, vol. 37, Feb. 1989,
pp. 194–205.
[24]. G. Liang and H. L. Bertoni, “A New Approach to 3–D Ray Tracing for Propagation
Prediction in cities,” IEEE Trans. Antennas Propagate, vol. 46, June 1998, pp.
853–863.
[25]. S. Y. Seidel and T. S. Rappaport, “Site–Specific Propagation Prediction for Wireless
in–Building Personal Communication System Design,” IEEE Trans. on Vehicular
Technol., vol. 43, Nov. 1994, pp. 879–891.
[26]. M. F. Iskander and Z. Yun, “Propagation Prediction Models for Wireless
Communication Systems,” IEEE Trans. on Microwave Theory and Techniques., vol.
50, issue 3, Mar. 2002, pp. 662–673.
[27]. Z. Genc, W. V. Thillo, A. Bourdoux and E. Onur, “60 GHz PHY Performance
Evaluation with 3D Ray Tracing under Human Shadowing,” Wireless
Communications Letters, IEEE Journals & Magazines, vol. 1, issue 2, 2012. pp.
117–120.
[28]. D. E. Goldberg, Genetic Algorithm in Search Optimization and Machine Learning,
Addison Wesley, 1989.
[29]. J. M. Johnson and Y. R. Samii, “Genetic Algorithms in Engineering
Electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 39, issue4, Aug.
1997, pp.7–21.
[30]. R. Storn and K. Price, “Differential Evolution–A Simple and Efficient Heuristic for
Global Optimization over Continuous Space,” Journal of Global Optimization, vol. 11,1997, pp. 341–359.
[31]. S. H. Chen and S. K. Jeng ,“An SBR/Image approach for indoor radio propagation in a corridor,” IEICE Trans. Electron., Vol. E78-C, pp. 1058-1062, Aug. 1995.
[32]. S. H. Chen and S. K. Jeng ,“SBR/Image approach for radio wave propagation in tunnels with and without traffic,” IEICE Trans. Veh. Technol., Vol. 45, pp. 570-578, Aug. 1996.
[33]. C. H. Chen, C. L. Liu, C. C. Chiu and T. M. Hu, “Ultra-Wide Band Channel Calculation by SBR/Image Techniques for Indoor Communication,” Journal of Electromagnetic Waves and Applications Vol. 20, No. 1, pp. 2169-2179, 2006.
[34]. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley & Sons, 1991.
[35]. Z. Xu, S. Sfar and R. S. Blum, “Analysis of MIMO Systems With Receive Antenna Selection in Spatially Correlated Rayleigh Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, Jan. 2009, pp. 251-262.
[36]. W. J. Chang, J. H. Tarng and S. Y. Peng, “Frequency-Space-Polarization on UWB MIMO Performance for Body Area Network Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 7, 2008, pp.577-580.
[37]. J. F. Valenzuela-Valdes, M. A. Garcia-Fernandez, A. M. Martinez-Gonzalez, and D. A. Sanchez-Hernandez, “The Influence of Efficiency on Receive Diversity and MIMO Capacity for Rayleigh-Fading Channels,” IEEE Trans. Antennas Propagat., vol. 56, no. 5, May 2008, pp. 1444-1450.
[38]. J. B. Andersen, “Array gain and capacity for known random channels with multiple element arrays at both ends,” IEEE J. Sel. Areas Commun., vol. 18, no. 11, Nov. 2000, pp. 2172–2178.
[39]. A. J. Paulraj, R. Nabar and D. Gore, Introduction to Space-Time Wireless Communication. U.K.: Cambridge Univ. Press, 2003.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-09-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-09-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信