淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1408201214365900
中文論文名稱 藉由與銀複合來提升ZnO的光催化能力
英文論文名稱 Improving photocatalytic ability of ZnO by coupling with Ag
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 錢東緯
研究生英文姓名 Dong-Wei Qian
學號 699400312
學位類別 碩士
語文別 中文
口試日期 2012-07-17
論文頁數 87頁
口試委員 指導教授-余宣賦
委員-張裕祺
委員-尹庚鳴
中文關鍵字 ZnO  多元醇法  光化學還原法  光觸媒  光催化能力 
英文關鍵字 Zinc oxide  Polyol process  Photochemcial reduction  Photocatalyst  Photocatalysis 
學科別分類
中文摘要 本實驗結合多元醇法與光化學還原法來製備Ag/ZnO複合型光觸媒粉體。研究過程中,觀察和探討不同硝酸銀添加量與粉體煆燒溫度對所製得Ag/ZnO複合型光觸媒粉體性質及光催化能力的影響,並與市售TiO2粉體Degussa-P25的性質與光催化能力做比較。第一部分實驗中,主要以多元醇法來製備ZnO奈米粉體。過程中有系統的探討煆燒溫度的變化對其晶粒尺寸、比表面積、顯微結構及光催化能力的影響。隨著煆燒溫度的提升晶粒尺寸逐漸成長變大,但其比表面積則隨著溫度的提升而下降,粒子團聚也愈趨嚴重。在對亞甲基藍的紫外光催化降解測試中發現500oC的ZnO擁有最佳的光催化能力且其催化性能優於Degussa-P25。第二部分實驗中,則利用光化學還原法將金屬銀負載在先前製備出的ZnO奈米粉體上,藉由金屬銀的複合來延緩ZnO受光激發之電子與電洞的再結合速率以達到提升光催化能力的效果。光化學還原法將金屬銀負載在ZnO粉體上並不會影響ZnO
既有的晶粒尺寸及其顯微結構,且ZnO煆燒溫度的提升會促使金屬銀負載量的增加。600oC的ZnO負載莫耳比0.045的金屬銀其比表面積、晶粒尺寸與負載金屬銀的量三者達到最佳組合,此時的Ag/ZnO在對亞甲基藍的紫外光催化降解測試中所對應單位光觸媒質量的反應速率常數值(km)高達1.93m3/(kg•min),為P25之km值(= 0.39 m3/(kg•min))的4.9倍。
英文摘要 The ZnO and Ag-coupled ZnO (Ag/ZnO) photocatalytic particles were synthesized using a polyol process and/or a photochemical reduction technique. Effects of Ag contents and calcination temperature on characteristics and photocatalytic abilities of the ZnO and Ag/ZnO particles were investigated using thermal analysis, x-ray diffraction, infrared spectroscopy, diffusion-reflectance spectroscopy, BET specific surface area measurement, scanning electronic microscopy, transmission electronic microscopy and photocatalytic reaction test system. The properties and photocatalytic abilities of the obtained ZnO and Ag/ZnO particles were also compared with those of a commercial photocatalyst TiO2 (P25, Degussa, Germany). The ZnO powders were prepared using the polyol method, followed by calcining at different temperatures. While increasing the calcination temperature increased the average crystallite sizes and the degree of agglomeration of the ZnO particles, the specific surface area decreased with increasing the calcination temperature. By photocatalytically decomposing the methylene blue in water under the irradiation of 365-nm ultraviolet light, it was found that the ZnO calcined at 500oC exhibited better photocatalytic performance than the ZnO calcined at other temperatures and the P25. The Ag/ZnO particles were prepared by photochemically reducing Ag+ to metallic Ag on the surface of the calcined ZnO particles. Ag loaded on the surface of ZnO particles can trap the light-excited electrons from the ZnO and retard the electron-electron hole recombination rate, which should result in enhancement of photocatalytic abilities of the ZnO. It is found that the ZnO calcined at higher temperature can have more Ag nanoparticles loaded on the surface of ZnO particles. Regardless the calcination temperature used, the Ag/ZnO particles possessed better photocatalytic abilities than the ZnO particles and the P25. For photocatalytically decomposing the methylene blue in water under 365-nm ultraviolet light irradiation, the Ag/ZnO prepared using the ZnO calcined at 600oC and a Ag/ZnO molar ratio of 0.045 had a reaction rate constant (based on the mass of the photocatalyst used) km = 1.93m3/(kg•min), which was about 4.9 times of that of the Degussa-P25 (km = 0.39 m3/(kg•min)).
論文目次 中文摘要....................................................I
英文摘要..................................................III
主目錄.....................................................V
圖目錄..................................................VIII
表目錄...................................................XII
第一章 緒論...............................................1
第二章 文獻回顧............................................4
2-1 氧化鋅的結構與特性.......................................4
2-2氧化鋅的製備方法..........................................7
2-2-1水熱法 (hydrothermal method)..........................7
2-2-2多元醇法 (polyol process)..............................8
2-2-3噴霧熱解法 (spray pyrolysis method)....................9
2-3光觸媒與光催化的原理.....................................10
2-3-1提升光催化方法.........................................11
2-4量子效應................................................17
第三章 實驗步驟與方法.......................................20
3-1實驗藥品................................................20
3-2 ZnO奈米粉體之製備.......................................20
3-3 Ag/ZnO複合型奈米粉體之製備..............................22
3-4特性分析儀器............................................23
3-4-1 X光繞射分析儀 (X-ray diffractometer, XRD)............25
3-4-2傅立葉紅外線光譜儀(Fourier-transform infrared spectrometer, FTIR)[39]...................................27
3-4-3掃描式電子顯微鏡 (scanning electronic microscope, SEM) [40,41]...................................................29
3-4-4穿透式電子顯微鏡(transmission electronic microscope, TEM)[42]......................................................30
3-4-5熱重與熱示差掃描分析儀 (thermogravimetric and differential scanning calorimetry, TG-DSC) [43]........................31
3-4-6紫外光-可見光反射吸收光譜儀 (UV-visible spectrophotometer) ..........................................................33
3-4-7比表面積測定儀 (BET sorptometer)[46]...................33
3-5光觸媒催化活性檢測.......................................34
第四章 結果與討論...........................................37
4-1多元醇法所製備ZnO粉體的特性分析與光催化能力.................37
4-2 ZnO負載金屬銀顆粒對光催化能力的影響.......................50
第五章 結論................................................68
參考文獻...................................................70
附錄:.....................................................76
圖1-1:常見化合物半導體的能帶示意圖[1].........................2
圖2-1:六方晶系纖鋅礦結構[5]..................................6
圖2-2:水的壓力與溫度關係圖 [6] ..............................8
圖2-3:N/ZnO的能隙圖[21]...................................13
圖2-4:不同複合半導體受光激發之電子轉移能量圖[26]...............15
圖2-5:多元醇還原法製備微米尺寸球體Ag/ZnO的示意圖[18]..........16
圖2-6:光化學還原法的示意圖[33]..............................17
圖2-7:為能隙能量隨粒徑減小而增加[1]. ........................19
圖3-1:ZnO奈米粉體製備流程圖.................................22
圖3-2:金屬複合型ZnO製備流程圖...............................23
圖3-3:X光對晶格所產生之繞射.................................26
圖3-4:掃描式電子顯微鏡剖面機構示意圖.........................30
圖3-5:亞甲基藍化學結構式....................................35
圖4-1:前驅粉體的TG-DSC圖...................................38
圖4-2:前驅粉體加熱至不同溫度後的XRD圖 : (a)前驅粉體、(b) 410oC、(c) 500oC.................................................39
圖4-3:前驅粉體加熱至不同溫度後的IR圖 : (a)前驅粉體、(b) 410oC、(c) 500oC.................................................40
圖4-4:前驅粉體不同溫度煆燒下的XRD圖 : (a) 400oC、(b) 500oC、(c) 600oC、(d) 700oC和(e) 800oC...............................43
圖4-5:不同煆燒溫度所製得ZnO粉體在365-nm紫外光照射20分鐘後光催化降解MB的量..................................................44
圖4-6:不同溫度煆燒後ZnO粉體光降解的MB濃度隨時間的變化..........47
圖4-7:不同溫度煆燒後ZnO粉體的晶粒尺寸與比表面積................48
圖4-8:不同溫度煆燒後ZnO粉體的SEM圖 : (a) 400oC、(b) 500oC、(c) 600oC、(d) 700oC和(e) 800oC...............................49
圖4-9:不同溫度煆燒後ZnO粉體對MB(aq)光催化反應的反應速率常數km與kBET......................................................50
圖4-10:Ag/ZnO(0.015/T)複合型光觸媒之XRD圖 : (a) T=400oC、(b) T=500oC、(c) T=600oC、(d) T=700oC和(e) T=800oC............52
圖4-11:Ag/ZnO(0.015/T)複合型光觸媒之IR圖 : (a) T=400oC、(b) T=500oC、(c) T=600oC、(d) T=700oC和(e) T=800oC............53
圖4-12:Ag/ZnO(x/T)複合型光觸媒之TEM圖:(a) x = 0, T = 500oC、(b) x = 0.035, T=500oC、(c) x = 0.035, T=600oC和(d) x = 0.035, T=800oC............................................54
圖4-13:不同Ag/ZnO(x/T)中ZnO的ZnO晶粒尺寸大小關係.............55
圖4-14:Ag/ZnO(x/500)複合型光觸媒的DRS圖....................56
圖4-15:Ag/ZnO(0.015/T) 複合型光觸媒的DRS圖.................57
圖4-16:Ag/ZnO(x /500)複合型光觸媒的SEM圖 : (a) x = 0、(b) x = 0.015、(c) x = 0.02、(d) x = 0.025、(e) x = 0.03和(f) x = 0.035.....................................................58
圖4-17:Ag/ZnO(x/600)複合型光觸媒的TEM圖 : (a) x = 0、(b) x = 0.025、(c) x = 0.035和(d) x = 0.05........................59
圖4-18:Ag/ZnO(0.015/T)複合型光觸媒在365-nm紫外光照射20分鐘後移除MB的莫耳百分比.............................................60
圖4-19:Ag/ZnO(x/500)複合型光觸媒在365-nm紫外光照射20分鐘後移除MB的莫耳百分比...............................................61
圖4-20:不同比例的Ag/ZnO(x/T)複合型光觸媒之km變化趨勢圖........63
圖4-21:不同比例Ag/ZnO(x/T)複合型光觸媒的km..圖...............63
圖4-22:Ag/ZnO(x/500)複合型光觸媒的比表面積與kBET圖...........64
圖4-23:Ag/ZnO(0.045/600)複合型光觸媒在不同亞甲基藍溶液光降解溫度下其km隨反應溫度(T)的變化..................................66
圖4-24:Ag/ZnO(0.045/600)複合型光觸媒回收再使用四次分別在365-nm紫外光照射20分鐘後移除MB的莫耳百分比............................67
圖A-2:Ag/ZnO(0.025/T)複合型光觸媒之XRD圖 : (a) T=400oC、(b) T=500oC、(c) T=600oC、(d) T=700oC和(e) T=800oC............78
圖A-3:Ag/ZnO(0.035/T)複合型光觸媒之XRD圖 : (a) T=400oC、(b) T=500oC、(c) T=600oC、(d) T=700oC和(e) T=800oC............79
圖A-4:Ag/ZnO(0.025/T)複合型光觸媒之IR圖 : (a) T=400oC、(b) T=500oC、(c) T=600oC、(d) T=700oC和(e) T=800oC............80
圖A-5:Ag/ZnO(0.035/T)複合型光觸媒之IR圖 : (a) T=400oC、(b) T=500oC、(c) T=600oC、(d) T=700oC和(e) T=800oC............81
圖A-6:Ag/ZnO(0.025/T) 複合型光觸媒的DRS圖..................82
圖A-7:Ag/ZnO(0.035/T) 複合型光觸媒的DRS圖..................82
圖A-8:Ag/ZnO(0.025/T)複合型光觸媒在365-nm紫外光照射20分鐘後移除MB的莫耳百分比.............................................83
圖A-9:Ag/ZnO(0.035/T)複合型光觸媒在365-nm紫外光照射20分鐘後移除MB的莫耳百分比.............................................84
圖A-10:Ag/ZnO(0.015/T)複合型光觸媒粉體光降解的MB濃度隨時間的變化........................................................85
表 2-1氧化鋅的物理性質 [5]...................................6
表3-1 實驗使用的主要化學藥品.................................20
表4-1:多元醇法製得ZnO前驅粉體在不同熱處理溫度的組成變化.........41
表A-11:各個溫度與各個比例下Ag/ZnO複合型光觸媒假設一階反應的R2值.86
表A-12:Ag/ZnO(x/T)複合型光觸媒在MB(aq)光降解反應所對應的km值..87
參考文獻 1. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735-758(1995).
2. M. Gopal, W. J. Moberly Chan, and L. C. De Jonghe, “Room temperature synthesis of crystalline metal oxides,” J. Mater. Sci. 32, 6001-6008 (1997).
3.林敬二、楊美惠、楊寶旺、廖德章、薛敬和,化學大辭典。第二版,高立圖書公司,2000
4.余樹楨,晶體之結構與性質。第二版,渤海堂文化事業有限公司發行,2003
5.周宏宇,製程添加物:葡萄糖對製得氧化鋅粉體之特性分析,私立淡江大學, 2011
6. R. I. Walton, “Subcritical solvothermal synthesis of condensed inorganic materials,” Chem. Soc. Rev., 31, 230-238 (2002)
7. D. J. Watson, C. A. Randall, “Hydrothermal formation diagram in the lead titanate System”, Am. Ceram. Soc. Inc., 1, 154-162 (1988). 83
8. F. Fie’vet, J. P. Lagier, M. Figlarz, “Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Size by The Polyol Process,” Mater. Res. Bull., 14:29–34 (1989).
9. P. Toneguzzo, G. Viau, O. Acher, F. Fie’vet-Vincent, F. Fie’vet, “Monodisperse Ferromagnetic Particles for Microwave Applications,” AdV. Mater., 10, 1032–1035 (1998).
10. S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, 287, 1989-1992 (2000).
11. Y. Sun, Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science, 298, 2176–2179 (2002).
12. B. Wiley, Y. Sun, B. Mayers, Y. Xia, “Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver,” J. Chem. A Eur., 11, 454–463 (2005).
13. C. Feldmann, H. O. Jungk, “Polyol-mediated preparation of nanoscale oxide particles,” Angew. Chem. Int. Ed. 40, 359-362 (2001)
14. C. Feldmann, C. Metzmacher, “Polyol Mediated Synthesis of Nanoscale MS Particles (M = Zn, Cd, Hg),” J. Mater. Chem., 11, 2603–2606 (2001).
15. R. Harpeness, O. Palchik, A. Gedanken, V. Palchik, S. Amiel, M. A. Slifkin, A. M. Weiss, “Preparation and Characterization of Ag2E (E: Se, Te) Using the Sonochemically Assisted Polyol Method,” Chem. Mater., 14, 2094–2102(2002).
16. J. Zhang, P. Zhu, Z. Li, J. Chen, Z. Wu, Z. Zhang, “Fabrication of polycrystalline tubular ZnO via a modified ultrasonically assisted two-step polyol process and characterization of the nanotubes,” J. Nanosci. Nanotechnol., 19, 165605(7pp) (2008).
17. J. Zhang, P. Zhu, Z. Li, J. Chen, Z. Wu, Z. Zhang, “Fabrication of Octahedral-Shaped Polyol-Based Zinc Alkoxide Particles and Their Conversion to Octahedral Polycrystalline ZnO or Single-Crystal ZnO Nanoparticles,” J. Crystal Growth and Design, 2329-2334(2009).
18. C. Tian, W. Li, K. Pan, Q. Zhang, G. Tian, W. Zhou, H. Fu, “One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance,” J. Solid State Chem., 183, 2720-2725 (2010).
19. A. El Hichou, M. Addou, J. Ebothe, M. Troyon, “Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis,” J. Lumin., 113,183–190 (2005).
20. K. Okuyama, I. W. Lenggoro, “Preparation of nanoparticles via spray route,” Chem. Eng. Sci., 58, 537 – 547 (2003).
21. D. Li, H. Haneda, “Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition,” J. Photochem. and Photobiol. A: Chem., 155, 171–178 (2003).
22. H. Lin, S. Liao, S. Hung, “The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst,” J. Photochem. Photobiol., A. 174,82–87 (2005).
23. A. P. Davis, C. P. Huang, “The photocatalytic oxidation of sulfur-containing organic compounds using cadmium sulfide and the effect on CdS photocorrosion,” Wat. Res. 25(10), pp. 1273-1278 (1991).
24. A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results,” Chem. Rev. 95, 735-758 (1995).
25. R. Asahi, T. Morikawa, T. Ohwaki, K. Ohki, Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides.” Science, 293, 269-271 (2001).
26. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors,” J. Photochem. Photobiol. A., 85, 247-255 (1995).
27. C. Wang, J. Zhou. X. Wang, B. Mai, G. Sheng, P. Peng, J. Hu, “Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts,” Appl. Catal., B. 39, 269–279 (2002).
28. Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, L. Liu, “Enhance photocatalytic activity of new photocatalyst Ag/AgCl/ZnO,” J. Alloys and Compunds, 509, 3286-3292 (2011).
29. J. Xia, A. Wang, X. Liu, Z. Su, “Preparation and characterization of bifunctional, Fe3O4/ZnO nanocomposites and their use as photocatalysts,” J. Appl. Surf. Sci., 257, 9724-9732 (2011).
30. K. Hirano, H. Asayama, A. Haoshino, H.WakatsuKi, “Metal powder addition effect on the photocatalytic reactions and the photo-generated electric charge collected at an inert electrode in aqueous TiO2 suspensions,” J. Potochem. Photobiol. A., 110, 307 (1997).
31. Y. Nakato, K. Ueda, H. Yano, and H. Tsubomura, “Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion,” J. Phys. Chem. A, 92, 2316 (1988).
32. R. Justin Joseyphus, D. Kodama, T. Matsumoto, Y. Sato, B. Jeyadevan, K. Tohji, “Role of polyol in the synthesis of Fe particles,” J. Magnetism and Magnetic Materials, 310, 2393-2395 (2007).
33. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. lv, T. Guo, Y. Zhao, C. Zhu, “Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance,” J. Hazard. Mater., 182, 123-129 (2010).
34. J. Wang, X.M. Fan, Z.W. Zhou, K. Tian, “Preparation of Ag nanoparticles coated tetrapod-like ZnO whisker photocatalysts using photoreduction,” J. Materials Science and Engineering B, 176, 978– 983 (2011).
35. S. Ko , C. K. Banerjee, J. Sankar, “Photochemical synthesis and photocatalytic activity in simulated solar light of nanosized Ag doped TiO2 nanoparticle composite,” J. Composites: Part B, 42, 579–583 (2011).
36.羅於陵、蕭雅柏主編, 奈米科學與技術導論, 經濟部工業局, 2002
37. W.L Bragg, “The diffraction of short electromagnetic waves by a crystal”, Proceeding of the Cambridge Philosophical Society, 17, 43-57, (1914).
38. A.L. Patterson, “The scherrer formula for X-ray particle size determination”, Phys. Rev. 56, 978-982(1939).
39. 汪建民主編,材料分析,中國材料科學學會,(1998)。
40. 邱承美編著,陶金華校訂,儀器分析原理(修訂三版),科文出版社。
41. 楊永盛、楊慶宗編著,電子顯微鏡原理與應用,文京圖書有限公司。
42.陳季南、周釗生,穿透式電子顯微鏡在半導體製程之應用,電子月刊第三卷第三期(1997)
43. G. Lombardl, “For Better Thermal Analysis,” 2nd , ICTA, p264(1980).
44. F. Paulik, J. Paulik, “Thermoanalytical Examination Under Quasi-Isothermal-Quasi-Isobaric Conditions,” Thermochimica Acta, 100,23-59 (1986).
45. W. Wm. Wendlandt, Thermal Analysis 1st, 13(1992)
46. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal., B. 31, 145–157 (2001).
47. H. F. Yu, “Photocatalytic abilities of gel-derived P-doped TiO2,” J. Physics and Chemistry of Solids, 68,600–607 (2007).
48. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan, “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst,” Water Res., 38, 2004
49. A. Dawson, P. V. Kamat, “Semiconductor-Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles,” J. Phys. Chem. B, 105, 960-966 (2001).
50. W. Kubo, T. Tatsuma, “Photocatalytic Remote Oxidation with Various Photocatalysts and Enhancement of its Activity,” J. Mater. Chem., 15, 3104 – 3108 (2005).
51.李定粵,觸媒的原理與應用,正中書局。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信