淡江大學覺生紀念圖書館 (TKU Library)

系統識別號 U0002-1407201417360100
中文論文名稱 在重力驅動之斜坡異重流的不穩定性
英文論文名稱 On the instability of a buoyancy-driven downflow
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 陳克榮
研究生英文姓名 Ke-Jung Chen
學號 601480568
學位類別 碩士
語文別 中文
口試日期 2014-06-20
論文頁數 34頁
口試委員 指導教授-戴璽恆
中文關鍵字 地球物理和地質流  異重流  不穩定 
英文關鍵字 Geophysical and geological flows  gravity currents  instability 
學科別分類 學科別應用科學環境工程
中文摘要 下坡之異重流又稱為downflow,可以觀察到大規模不穩定發生在高坡度而且在低坡度不存在劇烈的不穩定。根據線性穩定度分析,我們發現兩個不穩定的現象在0°<θ<90°。上方的不穩定是在小角度的地方,而下方的不穩定則發生在高角度的部分,存在一個過渡的角度θ_E≈0.04°,越過這個角度不穩定就會變換。而我們的研究結果與之前的文章有些符合。臨界雷諾數,當低於該值流體是穩定的。坡底的作用力有兩個,一個是,在重力在下坡方向的分力是驅動downflow,另一個則是重力發生在法線方向,可以達到分層的效果。因此減小坡度可以達到更明顯的分層效果,而導致臨界雷諾數提高。當downflow傳播在足夠低坡度的運動過程中,低驅動力且分層效果強化可能使downflow轉換成另外一個狀態而且不容易維持流體的擾動,這便是異重流的最終階段。
英文摘要 Gravity currents transport on the slope, also called downflow. We can observe a larger scale instability on the high slope, and on the low slope there is no violent instability. According to the linear stability analysis, we find two branches of the stability at . The upper branch occurs at the low slopes and lower branch occurs at the high slopes. There exists a transitional slope angle, . Over this angle, the instability will be transitional. Our research conclusion conforms with previously reports. At lower Critical Reynolds number, the flows will be stable. Gravity plays a dual role. On one hand, the downslope component of gravity acts as the driving force for downflows. On the other hand, the wall-normal component of gravity acts for the stratification effect. Therefore, decreasing slope angles can be cause stronger stratification effect and increase critical Reynolds numbers. When a downflow propagates onto a sufficiently low slope angle, the low driving force and intensified stratification effect would make the downflow less prone to sustain a turbulent state of flow, which ultimately leads to the final stage of a gravity current event.
論文目次 目錄 1
圖目錄 2
第一章 緒論 3
1.1 前言 3
1.2 研究動機與目的 4
第二章 文獻回顧 5
第三章 研究方法 8
3.1線性穩定分析 8
3.1.1基流 11
3.1.2擾動方程 13
3.2 數值方法 16
第四章 結果與分析 19
第五章 結論與建議 25
5.1結論 25
5.2總結 27
參考文獻 28
附錄 32
圖3.1 downflow的模型圖 9
圖3.2 穩態速度和剪應力曲線圖 12
圖4.1 downflow的中性穩定曲線 21
圖4.2 各角度的臨界雷諾數 22
圖4.3 成長速率與波數的關係圖 23
圖4.4 特徵方程式 u' 和 w' 24

參考文獻 1. Adduce, C., Sciortino, G. & Proietti, S. 2012 Gravity currents by lock-exchange: experiments and simulations with a two layer shallow-watermodel with entrainment. J. Hydraul Eng, 138(2), 111-121.
2. Allen, J., 1985. Principles of Physical Sedimentology, Allen and Unwin.
3. Baines, P. G., 2001. Mixing in flows down gentle slopes into stratified environments. J. Fluid Meth, 443, 237-270.
4. Baines, P. G., 2005. Mixing regimes for the flow of dense fluid down slopes into stratified environments. J. Fluid Mech, 538, 245-267.
5. Beghin, P., Hopfinger, E. J. & Britter, R. E. 1981. Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech, 107, 407-422.
6. Boyd, J. P., 2001. Chebyshev and Fourier Spectral Methods 2nd edition, Dover.
7. Britter, R. E. & Linden, P. F. 1980. The motion of the front of a gravity current travelling down an incline. J. Fluid Mech, 99, 531-543.
8. Cantero, M., Balachandar, S. Cantelli, A. Pirmez, C. & Parker, G. 2009a. Turbidity current with a roof: Direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment. Journal of Geophysical Research, 114, C03008.
9. Cantero, M., Balachandar, S. & Parker, G. 2009b. Direct numerical simulation of stratification effects in a sediment-laden turbulent channel flow. Journal of Turbulencd, 10, 1-28.
10. Cantero, M., Lee, J. Balachandar, S. & Garcia, M. 2007. On the front velocity of gravity current. J. Fluid Mech, 568, 1-39.
11. Chandrasekhar, S., 1981. Hydrodynamic and Hydromagnetic Stability, Dover.
12. Choux, C. M. A., Bass, J. H., McCaffrey, W. D. & Haughton, P. D. W. 2005. Comparison of spatio-temporal evolution of experimental particulate gravity flows at two different initial concentrations, based on velocity, grain size and density data. Sedimentary Geology, 179, 49-69.
13. Dai, A. 2013. Experiments on gravity currents propagating on different bottom slopes. J.Fluid Mech, 731, 117-141.
14. Drazin, P. G. & Reid, W.H. 1981. Hydrodynamic Stability, Cambridge University Press.
15. Fannelop T. K. 1994. Fluid Mechanics for Industial Satety and Environmental Protection, Elsevier.
16. Felix, M., Sturton, S. & Peakall, J. 2005. Combined measurements of velocity and cencentration in experimental turbidity currents. Sedimentary Geology, 179, 31-47.
17. Halloworth, M. A., Huppert, H., Phillips, J. C. & Sparks, R. S. J. 1996. Entrainment into two-dimensional and axisymmetric turbulent gravity currents. J. Fluid Mech, 308, 289-311.
18. Hartel, C., Meiburg, E. & Necker, F. 2000. Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip no-slip boundaries. J. Fluid Mech, 418, 189-212.
19. Hartel, C., Caelsson, F. & Thunblom, M. 2000. Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech, 418, 213-229.
20. Hopfinger, H. J., 1983. Snow avalanche motion and related phenomena. Annu. Rev. Fluid Mech, 15, 47-76.
21. Huppert, H., 2006. Gravity currents: a personal perspective. J. Fluid Mech, 554, 299-322.
22. La Rocca, M., Adduce, C., Sciortino, G. & Pinzon, A. B. 2008. Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom. Physical of Fluids, 20(10), 106603.
23. Marino, B., Thomas, L. & Linden, P. 2005. The front condition of gravity currents. J. Fluid Mech, 536, 49-78.
24. Maxworthy, T. 2010. Experiments on gravity currents propagating down slopes. Part 2. The evolution of a fixed volume of fluid released from closed locks into a long, open channel. J. Fluid Mech, 647, 25-51.
25. McCaffrey, W. D., Choux, C. M., Bass, J. H. & Haughton, P. D. W. 2003. Spatiotemporal evolution of velocity structure, concentration and grain-size stratification within experimental particulate gravity currents. Marine and Petroleum Geology, 20, 851-860.
26. Mulder T. & Alexander J. 2001. The physical character of subaqueous sedimentary density flows and their deposits, 48, 269-299.
27. Necker, F., Hartel, C., Kleiser, L. & Meiburg, E. 2005. Mixing and dissipation in particle-driven gravity currents. J. Fluid Mech, 545, 339-372.
28. Nielsen, M. H., Pratt, L. & Helfrich, K. 2004. Mixing and entrainment in hydraulically driven stratified sill flows. J. Fluid Mech, 515, 415-443.
29. Rastello, M., & Hopfinger, E.J. 2004. Sediment-entraining suspension clouds: a model of poweer-snow avalanches. J. Fluid Mech, 509, 181-206.
30. Snin, J., Dalziel, S. & Linden, P. 2004. Gravity currents produced by lock exchange. J. Fluid Mech, 521, 1-34.
31. Shringarpure, M., Cantero, M. I. & Balachandar, S. 2012. Dynamics of complete turbulence suppression in turbidity currents driven by monodisperse suspensions of sediment. J. Fluid Mech, 712, 384-417.
32. Simpson, J. 1972. Effects of the lower boundary on the head of a gravity current. J. Fluid Mech, 53, 759-768.
33. Simpson, J. 1997. Gravity Currents, 2nd edn, Cambridge University Press.
34. Talling, P. J., Wynn, R. B., Masson, D. G., Frenz, M., Cronin, B. T., Schiebel, R., Akhmetzhanov, A. M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P. P. E., Georgiopoulou, A., Zuhlsdorff, C. & Amy, L. A. 2007. Onset of submarine debris flow deposition far from original giant landslide, 450, 541-544.
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-17起公開。

  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw