§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1407201416560500
DOI 10.6846/TKU.2014.00445
論文名稱(中文) 批次高壓好氧顆粒硝化脫硝程序
論文名稱(英文) High pressure aerobic granulation nitrification/denitrification sequencing batch reactor processes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 楊佑蘭
研究生(英文) You-Lan Yang
學號 601480147
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-06-23
論文頁數 85頁
口試委員 指導教授 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 陳孝行(f10919@ntut.edu.tw)
委員 - 李柏青(pclee@mail.tku.edu.tw)
委員 - 李奇旺(chiwang@mail.tku.edu.tw)
關鍵字(中) 高壓、好氧顆粒、生物硝化脫硝、前置缺氧程序、C/NTON
關鍵字(英) High pressure、 Aerobic granule、 Nitrification /Denitrification、pre-anoxic processes、 C/NTON
第三語言關鍵字
學科別分類
中文摘要
利用高壓(High Pressure, HP)(3 kg/cm2)反應器培養好氧顆粒進行硝化,比起常壓(Ambient Pressure, AP)系統的好氧顆粒有更好的硝化效果,在短時間內就能達成部分硝化(氨氮氧化成亞硝酸鹽氮),在不同銨氮負荷條件下操作,銨氮去除率達92%。AP系統需要較長的時間累積硝化菌,所培養出的顆粒尺寸較大,具有同步硝化脫硝的能力,AP系統的總氮去除率達32.0±10.3%。
    為了探討HP及AP系統的除氮效率,在兩系統中加入了前置缺氧程序,並植入植種污泥重新培養好氧顆粒。將進流基質C/NTAN控制在3,系統操作在低有機負荷(2.2kg COD/m3-day)下,短時間內不易形成好氧顆粒。實驗結果發現,透過生物同化作用攝取水中的氮源合成細胞,再搭配生物硝化脫硝作用,兩系統總氮去除率可達93%以上。另外在缺氧脫氮過程中,污泥內部會挾帶氮氣,造成污泥結構鬆散及污泥上浮的問題,顆粒也會因為機械攪拌使顆粒結構受到破壞,導致顆粒解體而流失,懸浮性的污泥也無法忍受突增負荷。
    重新培養好氧顆粒之後,在缺氧階段改用間歇曝氣攪拌,可避免顆粒受到機械破壞。結果顯示,兩系統操作140天後HP、AP系統MLSS分別為13.4 g/L及7.93 g/L,而SVI30分別為24.6 mL/g及39.1 mL/g,均有明顯的顆粒化效果。兩系統培養好氧顆粒硝化脫硝的研究結果發現在缺氧期C/NTON控制在10~12,HP系統的總氮去除率達43.4±5.8%,比C/NTON為4~5的條件下之總氮去除率為34.0±15.6%更為穩定,較不會有總氧化氮(Total oxidized nitrogen, TON)累積的問題發生。而AP系統在短時間內沒有硝化脫硝的效果出現。
英文摘要
Nitrification of aerobic granules cultivated by high pressure reactor (HP) (3 kg/cm2) is better than that of aerobic granules cultivated by ambient pressure reactor (AP). Aerobic granules cultivated by HP reactor reached partial nitrification, i.e., oxidation of ammonium to nitrite, in the short period of time after HP reactor being commenced. Under various ammonium loading rates, ammonium removal efficiency of 92% can be reached. Accumulation of nitrifying bacteria in AP reactor is not as effective as that in HP, and longer time is needed for aerobic granules cultivated by AP reactor to reach partial nitrification. The granule size of aerobic granules cultivated by AP reactor is bigger than that of aerobic granules cultivated by HP reactor. Aerobic granules cultivated by AP reactor show simultaneous nitrification– denitrification (SNDN) capability. TN removal efficiency of 32.0±10.3% could be reached by AP system.
    To evaluate the capability of HP and AP for TN removal, a pre-anoxic step was integrated into the operation sequence, and both systems were restarted with new seeding sludges. Both systems were operated with low organic loading rate (OLR) of 2.2 kg COD/m3-day and C/N ratio of 3. Although, aerobic granules were not formed successfully in short period of time, the results show that TN is removed by biological nitrification/denitrification process and by assimilation into biomass with removal efficiency of above 93% for both of systems being reached. The reasons that aerobic granules did not form successfully might be due to disintegration of granules by the mechanical mixing during anoxic period. It is also possible that granules might contain N2 gas generated from denitrification process, resulting in flotation and washout of during discharge period.
Mechanical mixing was replaced with intermittent aeration by recycling air inside the reactor during anoxic period to reduce the destruction of aerobic granules, and both systems were restarted with new seeding sludges. Aerobic granules formed successfully for both systems. After 140-day operation, MLSS were 13.4 g/L and 7.93 g/L, and SVI30 were 24.6 mL/g and 39.1 mL/g, respectively, in HP and AP. TN is removed by pre-anoxic processes of HP system, Compared the two TN removal efficiency (34.0±15.6%, 43.4±5.8%) resulted from different C/NTON ratios (4~5, 10~12), system operated at the higher C/NTON ratios (10~12) is more stable and does not cause accumulation of total oxidized nitrogen (TON). Nitrification– denitrification doesn’t reach by AP system in the short period of time.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	IV
表目錄	VII
第一章、前言	1
1.1研究緣起	1
1.2研究目的	2
第二章、文獻回顧	4
2.1好氧顆粒之優缺點	4
2.2好氧顆粒形成	4
2.2.1饗宴期及飢餓期	5
2.2.2選擇壓力(控制沉降時間)	5
2.2.3有機負荷及食微比(F/M)	5
2.2.4基質組成	6
2.2.5添加陽離子	8
2.2.6胞外聚合物EPS	8
2.2.7曝氣條件、水剪切力、溶氧	9
2.2.8定期清洗反應槽	9
2.3好氧顆粒除氮技術	10
2.3.1 同化作用	10
2.3.2 硝化作用	10
2.3.3脫硝作用	12
2.3.4應用好氧顆粒於硝化脫硝程序	12
第三章、實驗設備及方法	15
3.1實驗介紹	15
3.2 好氧顆粒硝化	15
3.2.1 好氧顆粒污泥反應器操作與控制	15
3.2.2 培養硝化好氧顆粒污泥	17
3.2.3 進流廢水成分	17
3.3好氧顆粒硝化脫硝	20
3.3.1 系統操作與控制	20
3.3.2 植種污泥	22
3.3.3 進流基質	22
3.4 化學分析與操作	24
3.4.1 溫度及pH值	24
3.4.2 氧化還原電位(Oxidation Reduction Potential, ORP)檢測	24
3.4.3 攝氧率及氧呼吸率	25
3.4.4 30分鐘時污泥沉降體積 (Thirty-minute settled sludge volume, SV30)/污泥容積指數(Sludge Volume Index, SVI)	27
3.4.5 各項水質分析	27
3.4.6 顆粒粒徑分析	31
3.4.7 其它實驗設備	31
第四章、結果與討論	32
4.1 高壓好氧顆粒硝化	32
4.1.1好氧顆粒污泥特性	32
4.1.2系統硝化效果	37
4.1.3改變換氣條件對硝化脫硝的影響	43
4.1.4攝氧率(OUR)與比攝氧率(SOUR)	47
4.2 操作低負荷條件下進行硝化脫硝	52
4.2.1系統操作條件	52
4.2.2 系統COD去除效率	52
4.2.3系統MLSS及SVI30變化	54
4.2.4粒徑分析	56
4.2.5系統總氮去除效率	57
4.3 高壓好氧顆粒硝化脫硝程序	61
4.3.1 系統啟動與顆粒形成	61
4.3.2 系統污泥特性、MLSS及SVI30變化	61
4.3.3 好氧顆粒沉降特性	64
4.3.4 顆粒粒徑	67
4.3.5 系統COD去除效率	70
4.3.6 比較高壓及常壓系統硝化/脫硝效率	71
第五章、結論與建議	76
5.1結論	76
5.2 建議	77
Reference	78
附錄(一) 低負荷下硝化脫硝階段HP及AP系統pH及ORP變化	81
附錄(二) 硝化脫硝階段HP及AP系統pH及ORP變化	82

 
圖目錄
圖1、HP與AP好氧顆粒硝化脫硝系統示意圖	16
圖2、高壓硝化反應流程圖	16
圖3、高壓硝化脫硝反應流程圖	20
圖4、高壓pH和ORP檢測模組示意圖	25
圖5、AP與HP系統在反應時間70min下所測得的DO與時間之變化	26
圖6、硝酸鹽氮及亞硝酸鹽氮FIA之分析組裝架構(NIEA W436.50C)	29
圖7 、硝酸鹽氮及亞硝酸鹽氮鎘還原流動注入分析法之標準曲線	30
圖 8、氨氮FIA分析組裝架構(NIEA W437.51C)	30
圖9、水中氨氮之流動注入分析法之標準曲線	31
圖10、HP及AP系統之TOC去除效率	34
圖11、HP及AP系統之MLSS及SVI30變化	35
圖12、HP及AP系統之SVI30/SVI5變化	35
圖13、HP及AP系統操作300天時顆粒尺寸外觀	36
圖14、HP及AP系統操作396天時之粒徑分析	36
圖15、好氧顆粒硝化系統phaseⅡ兩系統之硝化效果	41
圖16、好氧顆粒硝化系統phaseⅡ兩系統之銨氮去除率	42
圖17  改變換氣時間對總氮的影響	44
圖18、進流水NLR在0.90 kgNH4+-N L-1 d-1、換氣時間16.65分鐘下2小時內HP反應槽中水質變化	45
圖19、進流水NLR在0.90 kgNH4+-N L-1 d-1、換氣時間16.65分鐘下2小時內AP反應槽中水質變化	45
圖20、進流水NLR在0.90 kgNH4+-N L-1 d-1、換氣時間8.3分鐘下2小時內HP反應槽中水質變化	46
圖21、進流水NLR在0.90 kgNH4+-N L-1 d-1、換氣時間8.3分鐘下2小時內AP反應槽中水質變化	46
圖 22、AP與HP在2小時內之OUR變化關係	47
圖 23、AP與HP在2小時內之SOUR變化關係	48
圖 24、NH4+-N濃度在150 mg/L及不同pH下對SOUR的影響	49
圖 25、pH 在7.5時,不同NH4-N濃度下對SOUR的變化	50
圖 26、NO2--N濃度在200 mg/L及不同pH下對SOUR的影響	51
圖 27、pH 在7.5時,不同NO2--N濃度下對SOUR的變化	51
圖28、HP與AP前置缺氧顆粒系統COD變化	53
圖29、HP與AP前置缺氧顆粒系統COD去除率	53
圖30、HP與AP前置缺氧顆粒系統MLSS及SVI30變化	55
圖31、HP與AP前置缺氧顆粒系統SVI30/SVI5變化	55
圖32、HP、AP 系統操作於第41天時之粒徑分析	56
圖33、HP與AP系統除氮效率	58
圖34、HP 系統缺氧好氧條件下2小時內氮與COD變化	59
圖35、AP 系統缺氧好氧條件下2小時內氮與COD變化	59
圖36、兩系統在缺氧期之C/NTON與總氮去除率關係	60
圖37、HP與AP系統MLSS及SVI30變化	63
圖38、HP及AP好氧顆粒沉降曲線	65
圖39、HP及AP好氧顆粒系統之SVI5及SVI30變化	66
圖40、HP及AP系統操作71天時顆粒外觀及尺寸	67
圖41、HP及AP系統操作81天時顆粒外觀及尺寸	68
圖42、HP及AP系統操作94天時顆粒外觀及尺寸	68
圖43、HP及AP系統在不同操作期間之粒徑分析	69
圖44、HP及AP好氧顆粒系統COD負荷及濃度變化	70
圖45、HP及AP好氧顆粒系統之食微比	71
圖46、HP及AP好氧顆粒系統之氮去除效率	73
圖47、HP缺氧期之碳氮比與總氮去除率之變化	74
圖48、HP系統於105天時單一循環操作下COD及TN濃度變化	74
圖49、AP系統於105天時單一循環操作下COD及TN濃度變化	75
圖50、HP及AP 系統沉水馬達缺氧攪拌好氧曝氣條件下2小時內pH變化	81
圖51、HP及AP 系統沉水馬達缺氧攪拌好氧曝氣條件下2小時內DO及ORP變化	81
圖52、HP及AP於第63天ORP、pH、DO變化	82
圖53、HP及AP於第74天ORP、pH、DO變化	83
圖54、HP及AP於第96天ORP、pH、DO變化	84
圖55、HP及AP於第105天ORP、pH、DO變化	85

表目錄
表 1、利用實廠廢水培養好氧顆粒之研究	6
表 2、應用好氧顆粒於硝化脫硝程序之研究	14
表 3、好氧顆粒系統硝化階段各項操作參數	17
表 4、硝化階段進流水質及操作條件	18
表 5、硝化階段基質濃縮液合成成分	19
表 6、低負荷硝化脫硝階段測試各項參數控制	21
表 7、低負荷硝化脫硝階段進流水質及操作條件	21
表 8、好氧顆粒硝化脫硝階段各項參數控制	21
表 9、硝化脫硝階段進流水質及操作條件	22
表10、低負荷條件下硝化脫硝階段進流基質成分	23
表 11、高負荷條件下硝化脫硝階段進流基質成分	24
表 12、系統進出流水採樣/分析頻率	28
表 13、各項水質分析之檢測方法	28
表14、好氧顆粒硝化階段兩系統硝化效果	40
表15、在不同粒徑範圍下之顆粒百分比	56
表16、在不同粒徑範圍下之顆粒百分比	68
表17、缺氧階段時C/NTON與高壓系統TN 去除率之關係	73
參考文獻
Reference
1.	Vazquez-Padin, J. R.; Figueroa, M.; Campos, J. L.; Mosquera-Corral, A.; Mendez, R., Nitrifying granular systems: A suitable technology to obtain stable partial nitrification at room temperature. Sep. Purif. Technol. 2010, 74, (2), 178-186.
2.	Erşan, Y. C.; Erguder, T. H., The effects of aerobic/anoxic period sequence on aerobic granulation and COD/N treatment efficiency. Bioresour. Technol. 2013, 148, (0), 149-156.
3.	Chen, F.-Y.; Liu, Y.-Q.; Tay, J.-H.; Ning, P., Alternating anoxic/oxic condition combined with step-feeding mode for nitrogen removal in granular sequencing batch reactors (GSBRs). Sep. Purif. Technol. 2013, 105, (0), 63-68.
4.	Liang, Y.-M.; Chen, J.-Y.; Marchesini, G.; Li, C.-W.; Chen, S.-S., Granulation of biological flocs under elevated pressure: characteristics of granules. Water Sci. Technol. 2013, 67, (12), 2850-2855.
5.	Liang, Y.-M.; Yang, Y.-L.; Chang, Y.-W.; Chen, J.-Y.; Li, C.-W.; Yu, J.-H.; Chen, S.-S., Comparison of high pressure and ambient pressure aerobic granulation sequential batch reactor processes. Bioresour. Technol. 2013, 140, (0), 28-35.
6.	Tay, J. H.; Ivanov, V.; Pan, S.; Tay, S. T. L., Specific layers in aerobically grown microbial granules. Lett. Appl. Microbiol. 2002, 34, (4), 254-257.
7.	Wan, J.; Sperandio, M., Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor. Chemosphere 2009, 75, (2), 220-227.
8.	Liu, Y.; Tay, J.-H., State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 2004, 22, (7), 533-563.
9.	Di Bella, G.; Torregrossa, M., Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration. Bioresour. Technol. 2013, 142, (0), 706-713.
10.	de Kreuk, M. K.; Pronk, M.; van Loosdrecht, M. C. M., Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Res. 2005, 39, (18), 4476-4484.
11.	Li, A.-j.; Li, X.-y.; Yu, H.-q., Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules. Process Biochem. 2011, 46, (12), 2269-2276.
12.	Ni, B.-J.; Xie, W.-M.; Liu, S.-G.; Yu, H.-Q.; Wang, Y.-Z.; Wang, G.; Dai, X.-L., Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 2009, 43, (3), 751-761.
13.	Abdullah, N.; Yuzir, A.; Curtis, T. P.; Yahya, A.; Ujang, Z., Characterization of aerobic granular sludge treating high strength agro-based wastewater at different volumetric loadings. Bioresour. Technol. 2013, 127, (0), 181-187.
14.	Adav, S.; Lee, D.-J.; Lai, J.-Y., Biological nitrification–denitrification with alternating oxic and anoxic operations using aerobic granules. Appl. Microbiol. Biotechnol. 2009, 84, (6), 1181-1189.
15.	Qin, L.; Liu, Y.; Tay, J.-H., Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem. Eng. J. 2004, 21, (1), 47-52.
16.	梁洋銘, 比較高壓與常壓好氧顆粒污泥程序. 碩士論文, 淡江大學 2013.
17.	McSwain, B. S.; Irvine, R. L.; Wilderer, P. A., The influence of settling time on the formation of aerobic
granules. Water Sci. Technol. 2004, 50, (10), 195-202.
18.	McSwain, B. S.; Irvine, R. L.; Wilderer, P. A., The influence of settling time on the formation of aerobic granules. Water Sci. Technol. 2004, 50, (10), 195-202.
19.	Adav, S. S.; Lee, D.-J.; Show, K.-Y.; Tay, J.-H., Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008, 26, (5), 411-423.
20.	Arrojo, B.; Mosquera-Corral, A.; Garrido, J. M.; Mendez, R., Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res. 2004, 38, (14–15), 3389-3399.
21.	Wang, S.-G.; Liu, X.-W.; Gong, W.-X.; Gao, B.-Y.; Zhang, D.-H.; Yu, H.-Q., Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresour. Technol. 2007, 98, (11), 2142-2147.
22.	Su, K.-Z.; Yu, H.-Q., Formation and Characterization of Aerobic Granules in a Sequencing Batch Reactor Treating Soybean-Processing Wastewater. Environ. Sci. Technol. 2005, 39, (8), 2818-2827.
23.	Kreuk, M. K. d.; Loosdrecht, M. C. M. v., Formation of Aerobic Granules with Domestic Sewage. J. Environ. Eng. Sci. 2006, 132, (6), 694-697.
24.	Mahoney, E. M.; Varangu, L. K.; Cairns, W. L., The effect of calcium on microbial aggregation during uasb reactor start-up. Water Sci. Technol. 1987, 19, (1-2), 249-260.
25.	Loosdrecht, M. C. v.; Lyklema, J.; Norde, W.; Schraa, G.; Zehnder, A. J., Electrophoretic Mobility and Hydrophobicity as a Measure To Predict the Initial Steps of Bacterial Adhesion. ApEnM 1987, 53, (8), 1898-1901.
26.	Jiang, H.-L.; Tay, J.-H.; Liu, Y.; Tay, S. T.-L., Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol. Lett 2003, 25, 95-99.
27.	Wang, Z.; Liu, L.; Yao, J.; Cai, W., Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere 2006, 63, (10), 1728-1735.
28.	Fletcher, M.; Floodgate, G. D., An Electron-microscopic Demonstration of an Acidic Polysaccharide Involved in the Adhesion of a Marine Bacterium to Solid Surfaces. J. Gen. Microbiol. 1972, 74, 325-334.
29.	Li, Y.; Liu, Y.; Shen, L.; Chen, F., DO diffusion profile in aerobic granule and its microbiological implications. Enzyme Microb. Technol. 2008, 43, (4–5), 349-354.
30.	Eddy, M.; Tchobanoglous, G.; Burton, F. L.; Stensel, H. D., Wastewater Engineering, Treatment and Reuse. In 4th ed.; Boston: McGraw-Hill, 2004; p 616.
31.	Shi, Y.-J.; Wang, X.-H.; Yu, H.-B.; Xie, H.-J.; Teng, S.-X.; Sun, X.-F.; Tian, B.-H.; Wang, S.-G., Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide. Bioresour. Technol. 2011, 102, (3), 2536-2541.
32.	USEPA, Nutrient Control Design Manual. 2010.
33.	Yang, S.-F.; Tay, J.-H.; Liu, Y., Inhibition of free ammonia to the formation of aerobic granules. Biochem. Eng. J. 2004, 17, (1), 41-48.
34.	謝汶興, 單槽連續回分式活性污泥系統處理特性之研究. 國立中央大學環境工程研究所碩士論文 1994.
35.	Ruiz, G.; Jeison, D.; Chamy, R., Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 2003, 37, (6), 1371-1377.
36.	Shi, X.-Y.; Yu, H.-Q.; Sun, Y.-J.; Huang, X., Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor. Chem. Eng. J. 2009, 147, (2–3), 102-109.
37.	Anthonisen, A. C.; Loehr, R. C.; Prakasam, T. B. S.; Srinath, E. G., Inhibition of Nitrification by Ammonia and Nitrous Acid. Water Pollut Con. F. 1976, 48, (5), 835-852.
38.	Li, L.-y.; Peng, Y.-z.; Wang, S.-y.; Wu, L.; Ma, Y.; Takigawa, A.; Li, D., Formation and characteristics of nitritation granules cultivated in sequencing batch reactor by stepwise increase of N/C ratio. Water Sci. Technol. 2011, 64, (7), 1479-1487.
39.	Qin, L.; Liu, Y.; Tay, J.-H., Denitrification on poly-β-hydroxybutyrate in microbial granular sludge sequencing batch reactor. Water Res. 2005, 39, (8), 1503-1510.
40.	Zheng, Y.-M.; Yu, H.-Q.; Liu, S.-J.; Liu, X.-Z., Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 2006, 63, (10), 1791-1800.
41.	Qin, L.; Liu, Y., Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor. Chemosphere 2006, 63, (6), 926-933.
42.	Schwarzenbeck, N.; Erley, R.; Wilderer, P. A., Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci. Technol. 2004, 49, (11-12), 41–46.
43.	Villaverde, S.; Fdz-Polanco, F.; Garcı́a, P. A., Nitrifying biofilm acclimation to free ammonia in submerged biofilters. Water Res. 2000, 34, (2), 602-610.
44.	Tay, J. H.; Liu, Q. S.; Liu, Y., Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol. 2001, 91, (1), 168-175.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信