§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1407201410461400
DOI 10.6846/TKU.2014.00420
論文名稱(中文) 利用雙酵素的氧氣消耗競爭行為來建立新型異嘌呤醇生化感測器
論文名稱(英文) A novel strategy for determination of allopurinol based on competitive behavior of oxygen-consumption by dual-enzyme biosensor
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 周政郁
研究生(英文) Chwn-Yu Chou
學號 600160278
學位類別 碩士
語言別 英文
第二語言別
口試日期 2014-06-06
論文頁數 83頁
口試委員 指導教授 - 林孟山
委員 - 傅明仁
委員 - 蔡東湖
關鍵字(中) 異嘌呤醇
抑制劑
生化感測器
關鍵字(英) Allopurinol
Inhibitor
Biosensor
第三語言關鍵字
學科別分類
中文摘要
本實驗利用黃嘌呤氧化酶 (Xanthine oxidase, EC 1.17.3.2) 氧化次黃嘌呤(Hypoxanthine) 和酪氨酸酶 (Tyrosinase, EC 1.14.18.1)氧化兒茶酚(catechol)這兩個平行的競爭氧氣酵素反應來建立新型異嘌呤醇(Allopurinol)生化感測器。在本方法中,抑制劑異嘌呤醇的濃度上升會抑制黃嘌呤氧化酶的活性而降低氧氣的消耗,同時酪氨酸酶可以得到較多的氧氣催化更多的兒茶酚氧化物,並能在電極上以0.0V(相對於 Ag/AgCl參考電極)偵測到更多來自兒茶酚氧化物的還原電流。有別於傳統抑制型的測量方式,異嘌呤醇的濃度和訊號成反比,但是本實驗中,可以得到與異嘌呤醇的濃度成正比的訊號。另外,此異嘌呤醇生化感測器採用單層酵素修飾電極以0.0V作為偵測電位有效的防止常見氧化物的干擾且得到快速的響應時間( t90%-10%)為2.9秒。線性範圍可達5μM-100μM (R=0.998)可適用藥物體內濃度5mg-15mg。靈敏度為8.79 nA/μM,偵測極限為1.4μM,連續重複20次的注射異嘌呤醇樣品,所得到的標準偏差(RSD)為4.2%。
異嘌呤醇是治療高尿酸血症(Hyperuricemia)及其併發症的一級用藥,但是在某些病患會發生嚴重的過敏反應例如史蒂芬斯-強森症候群(Stevens–Johnson syndrome)和毒性表皮溶解症(Toxic epidermal necrolysis),致死率可達20-30%,因此不管是在臨床檢驗或是製藥品管方面,異嘌呤醇的定量都是有必要的。
英文摘要
Two parallel enzymatic oxygen-consumed reaction including oxidation of hypoxanthine by xanthine oxidase (EC 1.17.3.2) and oxidation of catechol by tyrosinase (EC 1.14.18.1) were utilized to constructed novel allopurinol biosensor. In this project, the concentration increase of allopurinol (inhibitor) would inhibit the activity of enzymatic oxygen-consumption by xanthine oxidase. Subsequently, tyrosinase could divvy more oxygen to produce catechol quinone, and it could be observed that more current response was recorded from electrochemical reduction of catechol quinone at 0.0V (vs. Ag/AgCl). In contrast to the determination of traditional inhibition type which the signal was inverse proportional to the concentration of inhibitor, the signal is proportional to the concentration of allopurinol. Moreover, in this biosensor, the monolayer of enzyme modifier and 0.0V detection potential were adapted to obtains fast response (t90%-10% = 2.9 second) and efficiently avoids common interference of substances that co-exist in serum. This allopurinol biosensor possesses linear range 5μM-100μM (R=0.998) that satisfy with therapeutic range (5-15mg/L), sensitivity is 8.79 nA/μM, detection limit is 1.4μM, the relative standard deviation (RSD) is 4.2%.
Allopurinol was used to primary treatment of hyperuricemia and its complication. However, it potentially causes serious hypersensitivity such as Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TENS) on several patients after allopurinol treating. Therefore, the determination of allopurinol is important and necessary for clinical monitoring and quality assurance of pharmacy.
第三語言摘要
論文目次
TABLE OF CONTENTS

Abstract
LIST OF FIGURES	VII
LIST OF TABLES	IX
CHAPTER 1 INTRODUCTION	1
1-1 Definition and composition of biosensors	1
1-1-1 Recognition element	1
1-1-2 Types of transducers	3
1-1-3 Electrochemical sensors	7
1-2 Enzyme immobilizations	14
1-2-1 Adsorption method	14
1-2-2 Entrapment method	15
1-2-3 Heterogeneous Blending method	16
1-2-4 Covalent attachment	16
1-3 Research of allopurinol	22
1-3-1 Introduction of uric acid and relative disease	22
1-3-2 Clinical significant of allopurinol	22
1-3-3 Determination of allopurinol	24
1-4 Research goals	31
CHAPTER 2 EXPERIMENTAL SECTION	32
2-1 Materials and reagents	32
2-2 Instrumentations and measurements	32
2-3 Enzyme-modified electrode preparation	33
2-3-1 Graphite modified electrode preparation	33
2-3-2 Enzyme immobilized electrode preparation	34
2-3-3 Enzyme-modified RGDE preparation	34
2-4 Experimental design	34
2-4-1 Preparation of modified electrode	35
2-4-2 Optimization of operation parameter	36
2-4-3 Estimation of analytical performace	39
CHAPTER 3 RESULTS AND DISCUSSION	40
3-1 Mechanism of detection	40
3-2 Electrode pretreatment investigation	42
3-2-1 Effect of period pre-anodization	46
3-2-2 Graphite coating ratio study	47
3-2-3 Effect of enzyme loading amount	50
3-3 Determination of allopurinol optimization	52
3-3-1 Relationship between working potential and sensitivity	52
3-3-2 Effect of acidity	53
3-3-3 Influence of electrolyte	56
3-3-4 Influence of buffer ionic strength	57
3-3-4 Investigation of hypoxanthine and catechol in running buffer	58
3-3-5 Flow rate optimization	60
3-3-6 Sample loop optimization	61
3-4 Evaluation of analytical features for allopurinol biosensor	62
3-4-1 Evaluation of analytical performance	62
3-4-2 Correlation with other method	66
3-4-3 Evaluation of kinetic parameter after enzyme immobilization	67
3-4-4 Interference study	71
CHAPTER 4. CONCLUSION	72


 
List of Figures

Figure 1-1 Relation between potential and time in single-step chronoamperometry	12
Figure 1-2 Typical current response of single-step chronoamperometry	13
Figure 1-3 Series process activates cellulose to carboxymethyl azide and coupling with enzyme.	17
Figure 1-4 Coupling reaction is an alkylation reaction involving the primary amino groups of the enzyme.	18
Figure 1-5 Primary amine of poly-p-styrene are activated to give diazonium, isocyanato and isothiocyanoto group and further coupling with enzyme.	20
Figure 1-6 Reactions involving EDC, including activation as an NHS ester.	21
Figure 1-7 Metabolic pathway of allopurinol.	24
Figure 3-1 Mechanism of allopurinol sensing.	41
Figure 3-2 IR spectra of modified electrode step by step	44
Figure 3-3 Impedance test of electrode modification step by step	45
Figure 3-4 Time of pre-anodization study.	48
Figure 3-5 Weight percent of graphite and ink mixture.	49
Figure 3-6 Effect of enzyme loading amount.	51
Figure 3-7 Potential study.	53
Figure 3-8 Effect of pH for catechol solution storage.	54
Figure 3-9 Acdity study.	59
Figure 3-10 Type of buffer solution study	56
Figure 3-11 Amperometric current response in various buffer concentrations.	58
Figure 3-12 Investigation of hypoxanthine and catechol and in running buffer.	59
Figure 3-13 The relationship between flow rate and peak resolution.	60
Figure 3-14 Influence of sample loop for peak resolution.	61
Figure 3-15 Typical amperometric calibration curve of allopurinol biosensor.	64
Figure 3-16 Reproducibility of continuously measurement by twenty successful injections.	65
Figure 3-17 Correlation plot with other method.    66
Figure 3-18 Effect of different rotating speed to mass transfer in RGDE system.	68
Figure 3-19 “Lineweaver-Burk like” reciprocal plots in steady-state current	70
 








List of Tables
Table 3-1 List of optimal operation parameter.	65
Table 3-2 Analytical performance of the allopurinol biosensor after optimizing.	68
Table 4-1 Comparison analytical performance with published literature for determination for allopurinol.	75
參考文獻
L. C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29-45.
  D. G. Burek, Biosensors theory and application, (1993) CRC Press.
  Y. Q. Zhang, W. D. Shen, R. A. Gu, J. Zhu, R. Y. Xue, Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane, Anal. Chim. Acta 369 (1998) 123-128.
  S. Kuriyama, G. A. Rechnitz, Plant tissue-based bioselective membrane electrode for glutamate, Anal. Chim. Acta 131 (1981) 91-96.
  T. -K. Lim, H. Ohta, T. Matsunaga, Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples, Anal. Chem. 75 (2003) 3316-3321.
  J. Tang, D. Tang, R. Niessner, G. Chen, D. Knopp, Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags, Anal. Chem. 83 (2011) 5407-5414.
  G. Lai, H. Zhang, T. Tamanna, A. Yu, Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline, Anal. Chem. 86 (2014) 1789-1793.
  R. M. Buch, G. A. Rechnitz, Neuronal Biosensors, Anal. Chem. 61 (1989) 533-542.
  X. Zhou, M A. Arnold, Internal enzyme fiber-optic biosensors for hydrogen peroxide and glucose, Anal. Chim. Acta 304 (1995) 147-156.
  A. Neubauer, D. Pum, U. B. Sleytr, I. Klimant, O. S. Wolfbeis, Internal enzyme fiber-optic biosensors for hydrogen peroxide and glucose, Biosens. Bioelectron. 11 (1996) 317-325.
  L. Li, D. R. Walt, Dual-Analyte, Fiber-Optic Sensor for the Simultaneous and Continuous Measurement of Glucose and Oxygen, Anal. Chem. 67 (1995) 3746-3752
  I. Chudobova, E. Vrbova, M. Kodiček, J. Janovcova, J. Kaš, Fibre optic biosensor for the determination of d-glucose based on absorption changes of immobilized glucose oxidase, Anal. Chim. Acta 319 (1996) 103-110.
  M. Shimohigoshia, K. Yokoyamab, I. Karube, Development of a bio-thermochip and its application for the detection of glucose in urine, Anal. Chim. Acta 303 (1995) 295-299.
  C. Tran-Minn, D. Vallin,Enzyme-bound thermistor as an enthalpimetric sensor, Anal. Chem. 50 (1978) 1874-1878.
  S. Rich , R. M. Ianniello , N. D. Jespersen, Development and application of thermistor enzyme probe in the urea-urease system, Anal. Chem. 51 (1979) 204-206.
  S. P. Fulton , C. L. Cooney , J. C. Weaver, Thermal enzyme probe with differential temperature measurements in a laminar flow-through cell, Anal. Chem. 52 (1980) 505-508. 
  M. Shimohigoshia, K. Yokoyamab, I. Karube, Development of a bio-thermochip and its application for the detection of glucose in urine, Anal. Chim. Acta 303 (1995) 295-299.
  B. Mattiassona, B. Danielssona, K. Mosbacha, Enzyme thermistor assay of cholesterol, glucose,lactose and uric acid in standard solutions as well as In biological samples, Anal. Lett. 9 (1976) 217-234.
  B. Xiea, B. Danielsson, An integrated thermal biosensor array for multianalyte determination demonstrated with glucose, urea and penicillin, Anal. Lett. 29 (1996) 1921-1932.
  F. Scheller, N. Siegbahn, B. Danielsson, K. Mosbach, High-sensitivity enzyme thermistor determination of L-lactate by substrate recycling, Anal. Chem. 57 (1985) 1740-1743.
  F. Schubert, S. Sainia, P.F. Turnera, F. Scheller, Organic phase enzyme electrodes for the determination of hydrogen peroxide and phenol, Sens. & Actuators B 7 (1992) 408-411.
  F. Schubert, Mediated amperometric enzyme electrode incorporating peroxidase for the determination of hydrogen peroxide in organic solvents, Anal. Chim. Acta 245 (1991) 133-138.
  B. Danielssona, K. Gadda, B. Mattiassona, K. Mosbacha, Determination of serum urea with an enzyme thermistor using immobilized urease, Anal. Lett. 9 (1976) 987-1001.
  M. R. Deakin , D. A. Buttry, Electrochemical applications of the quartz crystal microbalance, Anal. Chem. 61 (1989) 1147A-1154A.
  C. G. Marxer, M. C. Coen, H Bissing, U. F. Greber, L. Schlapbach, Simultaneous measurement of the maximum oscillation amplitude and the transient decay time constant of the QCM reveals stiffness changes of the adlayer, Anal. Bioanal. Chem. 377 (2003) 570-577.
  S. Wei, F. Zhao, B. Zeng, Electrochemical behavior and determination of uric acid at single-walled carbon nanotube modified gold electrodes, Michrochim. Acta 150 (2005) 219-224.
  T. R. I. Cataldi, A. Rubino, R. Ciriello, Sensitive quantification of iodide by ion-exchange chromatography with electrochemical detection at a modified platinum electrode, Anal. Bioanal. Chem. 382 (2005) 134-141.
  E. R. Lowe, C. E. Banks, R. G. Compton, Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine, Anal. Bioanal. Chem. 382 (2005) 1169-1174.
  S. A. John, Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution, J. Electroanal. Chem. 579 (2005) 249-256.
  M. J. Schoning, A. Poghossian, Recent advances in biologically sensitive field-effect transistors (BioFETs), Analyst 127 (2002) 1137-1151.
  A. A. Shul'ga, M. Koudelka-Hep , N. F. de Rooij , L. I. Netchiporouk, Glucose-sensitive enzyme field effect transistor using potassium ferricyanide as an oxidizing substrate, Anal. Chem. 66 (1994) 205-210.
  Y. Miyahara, T. Maruzmi, S. Shiokawa, H. Matsuoka, I. Karube, S. Suzuki, Micro urea sensor using semiconductor and enzyme immobilizing technologies, Chem. Soc. Japan 6 (1983) 823-830.
  K. Pihel, Q. D. Walker, R. M. Wightman, Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry, Anal. Chem. 68 (1996) 2084-2089.
  J. A. Ortuno, C. Serna, A. Molina, A. Gil, Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors, Anal. Chem. 78 (2006) 8129-8133.
  S. Kroger, A. P. F. Turner, K. Mosbach, K. Haupt, Imprinted polymer-based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes, Anal. Chem. 71 (1999) 3698-3702.
  C. J. Flora, E. Nieboer, Determination of nickel by differential pulse polarography at a dropping mercury electrode, Anal. Chem. 52 (1980) 1013-1020.
  A. Romani, M. Minunni, N. Mulinacci, P. Pinelli, F. F. Vincieri, Comparison among differential pulse voltammetry, amperometric biosensor, and HPLC/DAD analysis for polyphenol determination, Anal. Chem. J. Agric. Food Chem. 48 (2000) 1197-1203.
  J.-M. Zen, S. -H. Jeng, H.-J. Chen, Determination of paraquat by square-wave voltammetry at a perfluorosulfonated ionomer/clay-modified electrode, Anal. Chem. 68 (1996) 498-502.
  A. Mugweru, J. F. Rusling,Square wave voltammetric detection of chemical DNA damage with catalytic poly(4-vinylpyridine)−ru(bpy)22+ films, Anal. Chem. 74 (2002) 4044-4049.
  A. Molina, M. M. Moreno, C. Serna, M. Lopez-Tenes , J. Gonzalez, N. Abenza, Study of multicenter redox molecules with square wave voltammetry, J. Phys. Chem. C. 111 (2007) 12446-12453.
  S. V. Dzyadevicha, V. N. Arkhipovaa, A. P. Soldatkina, A. V. El'skayaa, A. A. Shul'gab, Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent, Anal. Chim. Acta 374 (1998) 11-18.
  W. -Y. Lee, S. –R. Kim, T. -H. Kim, K. S. Lee, M. -C. Shin, J. -K Park, Sol–gel-derived thick-film conductometric biosensor for urea determination in serum, Anal. Chim. Acta 404 (2000) 195-203.
  N. F. S. Jr, D. J. Mears, Model of an immobilized enzyme conductimetric urea biosensor, Biosens. Bioeletron. 11 (1996) 967-979.
  M.M. Castillo-Ortega, D.E. Rodrigueza, J.C. Encinasa, M. Plascenciaa, F.A. Mendez-Velardeb, R. Olayo, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites, Sens. & Actuators B 85 (2002) 19-25.
  O.O. Soldatkin, I.S. Kucherenko, V.M. Pyeshkova, A.L. Kukla, N. Jaffrezic-Renault, A.V. El'skaya, S.V. Dzyadevych, A.P. Soldatkin, Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry 83 (2012) 25-30.
  S. V. Dzyadevych, A. P. Soldatkin, J. -M. Chovelon, Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors, Anal. Chim. Acta 459 (2002) 33-41.
  T. D. Waite, F. M. M. Morel, Characterization of complexing agents in natural waters by copper (II)/copper (I) amperometry, Anal. Chem. 55 (1983) 1268-1274.
  K. Matsumoto, H. Kamikado, H. Matsubara, Y. Osajima, Simultaneous determination of glucose, fructose, and sucrose in mixtures by amperometric flow injection analysis with immobilized enzyme reactors, Anal. Chem. 60 (1988) 147-151.
  A. A. Kayakin, O. V. Gitelmacher, E. E. Kayakina, Prussian blue-based first-generation biosensor.a sensitive amperometric electrode for glucose, Anal. Chem. 67 (1995) 2419-2423.
  G. Cui, S. J. Kim, S. H. Choi, H. Nam, G. S. Cha, K. J. Paeng, A disposable amperometric sensor screen printed on a nitrocellulose strip:  a glucose biosensor employing lead oxide as an interference-removing agent, Anal. Chem. 72 (2000) 1925-1929.
  R. F. Lane, A. T. Hubbard, Electrochemistry of chemisorbed molecules. I. reactants connected to Electrodes through olefinic substituents, J. Phys. Chem. 77 (1973) 1401-1410.
  S. J. Updike, G. P. Hicks, The enzyme electrode, Nature 214 (1967) 986-988.
  J. R. Sandifer, Silver/silver chloride electrodes coated with cellulose acetate for the elimination of bormide and uric acid interference, Anal. Chem. 53 (1981) 1164-1170.
  H. Liu, J. Deng, Amperometric glucose sensor using tetrathiafulvalene in Nafion gel as electron shuttle, Anal. Chim. Acta 300 (1995) 65-70.
  B. C. Dave, B. Dunn, J. S. Valentine and J. I. Zink, Sol-gel encapsulation method for biosensors. Anal. Chem. Acta 66 (1994) 1120A-1127A.
  J. Wang, M. S. Lin, Mixed plant tissue carbon paste bioelectrode, Anal. Chem. 60 (1988) 1545-1548.
  F. Cespedes, E. Martinez-Fabregas, J. Bartroli, S. Alegret, Amperometric enzymatic glucose electrode based on an epoxy-graphite composite, Anal. Chim. Acta 273 (1993) 409-417.
  Joseph Wang, Fang Lu, David Lopez, Tyrosinase-based ruthenium dispersed carbon paste biosensor for phenols, Biosens. Bioelectron. 9 (1994) 9-15.
  M. A. Mitz, L. J. Summaria, Synthesis of biologically active cellulose derivatives of enymes, Nature 189 (1961) 576-577.
  G. KAY, E. M. Crook, Coupling of enzymes to cellulose using chloro-s-triazines, Nature 216 (1967) 514-515.
  G. KAY, M. D. Lilly, A. K. Sharp, R. J. H. Wilson, Preparation and use of porous sheets with enzyme action, Nature 217 (1968) 641-642.
  R. J. H. Wilson, G. Kay and M. D. Lilly, The preparation and kinetics of lactate dehydrogenase attached to water-insoluble particles and sheets, Biochem. J. 108 (1968) 845-853.
  N. Grubhofer, L. Schleith, Modified ion-exchange resins as specific adsorbents, Naturwissenschaften 40 (1953) 508
  N. Grubhofer, L. Schleith, Coupling of proteins on diazotized polyaminostyrene, Hoppe-Seyler’s Z. Physiol. Chem. 297 (1954) 108
  H Brandenberg, Methods for linking enzymes to insoluble carriers, Angew. Chem. 67 (1995) 661
  G Manecke, S Singer, Chemical transformations of polyaminostyrene, Makromol. Chem. 36 (1959) 119
  S. Budavari, The Merck Index, Merck Research Laboratories Division of Merck&Co. Inc., 12th ed., (1996 ) 1684.
  何敏夫, 臨床化學, 合計圖書出版社 (1992) 158.
  C. A. Burtis, E. R. Ashwood, Tietz fundamentals of clinical chemistry, 5th ed., W.B. Saunders Company (2001) 422.
  C. Y. C. Park, Medical management of nephrolithiasis, J. Urol. 128 (1982) 1157.
 原著: Baynes, Dominiczak; 潘淑芬譯, 醫學生物化學, 357
  H.K. Choi, K. Atkinson, E.W. Karlson, et al, Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals followup study, Archives of internal medicine 165 (2005) 742.
  T. Spector, Inhibition of urate production by allopurinol, Biochem. Pharmacol. 26 (1977) 355-358.
  S. Reiter, H. A. Simmonds, N. Zollner, S. L. Braun, M. Knedel, Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthiuric patents not forming oxypurinol, Clin. Chim. Acta 187 (1990) 221-234.
  K. Hande, E. Reed, B. Chabner, Allopurinol kinetics, 23 (1978) 598-605.
  T.F. Tsai, T.Y. Yeh. Allopurinol in dermatology, Am J Clin Dermatol. 11 (2010) 225-232.
  J.C. Roujeau, J.P Kelly, L. Naldi, B. Rzany, R.S. Stern, T. Anderson et al., Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis, N. Engl. J. Med. 333 (1995) 1600.
  A. T. Borchers, J. L. Lee, S. M. Naguwa, G. S. Cheema, M. E. Gershwin, Stevens–Johnson syndrome and toxic epidermal necrolysis, Autoimmunity Reviews 7 (2008) 598-605.
  S. Haleve, P. -D. Ghislain, M. Mockenhaupt, J. -P. Fagot, J. N. B. Bavinck, et al., Allopurinol is the most common cause of Stevens-Johson syndrome and toxid epidermal necrolysis in Europe and Isreal, J. Am. Acad. Dermatol, 58 (2008) 25-32.
  G.B. Elion, A. Kovensky, G. H. Hitchings, Metabolic studies of allopurinol an inhibitor of xanthine oxidase, Biochem. Pharmacology 15 (1966) 863-880.
  K. Safranow, Z. Machoy, K. Ciechanowski, Analysis of purines in urinary calculi by high-performance liquid chromatography, Anal. Biochem. 286 (2000) 224-230.
  M. K. Reinders, L. C. Nijdam, E. N. v. Roon, K. L. L. Movig, A simple method for quantification of allopurinol and oxipurinol in human serum by high-performance liquid chromatography with UV-detection, J. Pharm. Biomed. Anal. 45 (2007) 312-317.
Tim L.Th.A. Jansen d, Mart A.F.J. van de Laar e, Jacobus R.B.J. Brouwers
  X. Sun, W. Cao, X. Bai, X. Yang, E Wang, Determination of allopurinol and its active metabolite oxypurinol by capillary electrophoresis with end-column amperometric detection, Anal. Chim. Acta 442 (2001) 121-128.
  T. Perez-Ruiz, C. Mart’ınez-Lozano, V. Tomas, R. Galera, Development of a capillary electrophoresis method for the determination of allopurinol and its active metabolite oxypurinol, J. Chromatogr. B 798 (2003) 303-308.
  Y. Chi, J. Xie, G. Chen, Electrochemiluminescent behavior of allopurinol in the presence of Ru(bpy)3 2+, Talanta 68 (2006) 1544–1549.
  E. Palecek , J. Osteryoung , R. A. Osteryoung, Interactions of methylated adenine derivatives with the mercury electrode, Anal. Chem. 54 (1982) 1389-1394.
  G. Dryhurst, D. P. K., A direct electrochemical method for the determination of allopurinol and uric acid mixtures: Adsorption of uric acid at the pyrolytic graphite electrode, Anal. Chim. Acta, 58 (1972) 183-191.
  L. G. Chatten, M. Boyce, R. E. Moskalyk, B. S. Pons, D. K. Madan, Determination of allopurinol in tablets by differential-pulse polarography, Analyst 106 (1981) 365-368.
  T. R. I. Cataldi, F. Palmisano, P. G. Zambonin, flow injection with anodic polarographic detection for the determination of allopurinol in pharmaceutical formulations, Analyst 114 (1989) 1449-1452.
  J. -M. Zen, P. -Y. Chen, A. S. Kumar, Flow injection analysis of allopurinol by enzymeless approach at glassy carbon electrodes, Electroanalysis 14 (2002) 645-649.
  S. Hason, S. Stepankova, A. Kourilova, V. Vetterl, J. Lata, M. Fojta, F. Jelen, Simultaneous electrochemical monitoring of metabolites related to the xanthine oxidase pathway using a grinded carbon electrode, Anal. Chem. 81 (2009) 4302-4307.
  G. B. Martin, G. A. Rechnitz, Electrochemical determination of allopurinol based on its interaction with xanthine oxidase, Anal. Chim. Acta 237 (1990) 91-98.
  D. Shana, Y. Wang, M. Zhu, H. Xue, S. Cosnier, C. Wang, Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol, Biosens. Bioeletron. 24 (2009) 1171-1176.
  M. M. Rahman, A. Umar, K. Sawada, Development of amperometric glucose
biosensor based on glucose oxidase co-immobilized with multi-walled carbon
nanotubes at low potential, Sens. Actuators B 137 (2009) 327–333.
  C. Wang , Q. Yan , H. -B. Liu , X. -H. Zhou, S. -J. Xiao, Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions, Langmuir 27 (2011) 12058-12068.
  J. D. Ingle, Jr., S. R. Crouch, Spectrochemical Analysis, Upper Saddle River, NJ:Prentice-Hall (1988) 174.
  G. R. Rao, G. Kanjilal, K. R. Mohan, Extended application of Folin-Ciocalteu reagent in the determination of drugs, Analyst 103 (1978) 993-994.
  R. A. Kamin, G. S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal. Chem. 52 (1980) 1198-1205.
  J.E.F. Reynolds (Ed.), Martindale, The Extra Pharmacopoeia, Pharmaceutical Press, London, 28th edn., (1982) 417.
  T. R.I. Cataldi, F. Palmisano, P. G. Zambonin, Flow injection with anodic polarographic detection for the determination of allopurinol in pharmaceutical formulations, Analyst, 114 (1989) 1449-1452. 
  E. J. Eisenberg, P. Conzentino, G. G. Liversidge, K. C. Cundy, Simultaneous determination of allopurinol and oxypurinol by liquid chromatography using immobilized xanthine oxidase with electrochemical detection, J. Chromatogr. B 530 (1990) 65-73.
  L. G. Chatten, M. Boyce, R. E. Moskalyk, B. S. Pons, D. K. Madan, Determination of allopurinol in tablets by differential-pulse polarography, Analyst 106 (1981) 365-368.
  G. B. Martin, G. A. Rechnitz, Electrochemical determination of allopurinol based on its interaction with xanthine oxidase, Anal. Chim. Acta 237 (1990) 91-98.
  M. A. Raj, S. A. John, Electrochemical determination of xanthine oxidase inhibitor drug inurate lowering therapy using graphene nanosheets modified electrode, Electrochim. Acta 117 (2014) 360-366.
  J. -M. Zen, P. -Y. Chen, A. S. Kumar, Flow injection analysis of allopurinol by enzymeless approach at glassy carbon electrodes, Electroanalysis 14 (2002) 645-649.
  B. Rezaei, O. Rahmanian, Nanolayer treatment to realize suitable configuration for electrochemical allopurinol sensor based on molecular imprinting recognition sites on multiwall carbon nanotube surface, Sens. Actuators, B 160 (2011) 99-104.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信