§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1407201410383800
DOI 10.6846/TKU.2014.00417
論文名稱(中文) 四氧化三鈷之合成與尿酸生化感測器之應用
論文名稱(英文) Synthesis and Electrocatalytic Behavior of Co3O4 toward Reduction of Hydrogen Peroxide and Its Application in Development of Uric Acid Biosensor
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 吳依靜
研究生(英文) Yi-Jing Wu
學號 601160392
學位類別 碩士
語言別 英文
第二語言別
口試日期 2014-06-03
論文頁數 100頁
口試委員 指導教授 - 林孟山
委員 - 何佳安
委員 - 蔡東湖
關鍵字(中) 尿酸
尿酸酶
四氧化三鈷
生化感測器
關鍵字(英) Uric acid
Uricase
Co3O4
Biosensor
第三語言關鍵字
學科別分類
中文摘要
本實驗利用四氧化三鈷(Co3O4)在鹼性下催化過氧化氫還原的特性研究,利用交聯法將對尿酸具有專一性辨識力的尿酸酶(Uricase, EC 1.7.3.3)固定於四氧化三鈷的修飾旋轉電極上,發展成尿酸電化學生化感測器。分別利用高解析度  X光繞射儀(HRXRD)與場發式掃描電子顯微鏡(FE-SEM),針對由水熱法所製備的鈷氧化物定性與表面分析的量測,結果顯示自製鈷氧化物為四氧化三鈷且為矩形奈米片堆積結構。而此尿酸生化感測器之最佳化製備條件為70% (w/w%) Co3O4修飾於RGDE電極表面,置於80℃烘箱1小時乾燥,隨後在電極上修飾5 μL 0.5%小牛血清蛋白,靜置4℃乾燥後再加入5 μL 0.1%戊二醛靜置4℃乾燥,最後再滴上0.5 units尿酸酶靜置4℃乾燥即完成電極的製備。而該生物傳感器最佳化偵測條件為0.05 M pH 9.5 Clark & Lubs 緩衝液,偵測電位為0.05V          (vs. Ag/AgCl),電極旋轉速度為400rpm環境下進行尿酸偵測。根據上述操作條件,此感測器分析特性如下:線性範圍可達2 μM - 102 μM(R=0.999),靈敏度為18.24 μA/mM,偵測極限為0.6μM,在精確度(precision)方面連續重複偵測25 μM尿酸20次操作下,所得到的標準偏差(RSD)為1.38%,反應時間(t90%/10%)為27.34秒。根據干擾物測量結果顯示,在此電位下常見的干擾物,例如acetaminophen、creatin以及dopamine不會有明顯干擾外,其他的干擾比率界於-556.56 % ~5.8% 之間。而針對抗壞血酸(Ascorbic acid)的干擾,若在偵測前1小時先加入抗壞血酸酶(Ascorbate oxidase)進行預處理,即可避免抗壞血酸之干擾。最後,此感測器在不使用時保存於4℃冰箱緩衝溶液中,其活性維持至少83 天不變,結果顯示該電極具有良好的穩定性,其83 天間的精確度為4.12 %。
英文摘要
In current study, a cobalt oxide based uric acid biosensor is fabricated through a drop coating of glutaraldehyde, and uricase onto a BSA coated Co3O4 based rotating disc graphite electrode (RGDE). Uric acid is measured via an uricase based Co3O4 modified biosensor cathodicly. The amperometric signal of this sensor is measured based on the uricase converts uric acid into hydrogen peroxide and reduces by Co3O4. The homemade cobalt oxide fabricated by hydrothermal synthesis is better than the commercial one. Qualitative analysis and morphology of cobalt oxide was characterized by High resolution X-ray diffractmeter (HRXRD) and scanning electron microscopic (SEM). The results show that homemade cobalt oxide is Co3O4 and exhibits rectangular sheets with pore and piled the nanosheets of each other. The uric acid biosensor was simply fabricated with mixing carbon ink and 70% Co3O4 then placed on RDGE and dried in the oven at 80℃ for an hour. Followed drop coated   5 μL  0.5 % BSA, 5 μL 0.1% glutaraldehyde, and 5 μL 0.5 units uricase onto electrode till dried in  4℃ refrigerator. The biosensor showed optimum conditions for the analysis of uric acid are in 0.05 M pH 9.5 Clark & Lubs buffer, when applied at 0.05 V (vs. Ag/AgCl) with rotating rate of 400rpm. The linear range of this scheme covers from 2 μM to 102 μM (R=0.999), with sensitivity is 18.24 μA/mM and a detection limit of 0.6 μM. The relative standard deviation (RSD) for 20 times successive measurement of 25 μM UA is 1.38%, and the response time (t90%/10%) is 27.34 s. These metabolites have interference except acetaminophen, creatine, and dopamine. Others ratio of interference were between -556.56 % and 5.8%. Among these metabolites, ascorbic acid has -556.56 % interference. Therefore, the removal of AA interference could be eliminated by pretreatment of 10 units ascorbate oxidase with sample for one hour in advance. This sensor has good stability during 83 days study with 4.12% of RSD.
第三語言摘要
論文目次
Contents
Chapter 1 Introduction	1
1-1 Definition and Composition of Biosensor	1
1-2 Development of Biosensors	2
1-3 Modified Electrode	3
1-3-1 Scheme of Modification	4
1-3-2 Functionality of Modified Electrode	9
1-4 Medical Researches of Uric Acid	11
1-4-1 Purine Metabolism and Formation of Uric Acid	11
1-4-2 Clinical Significance of Uric Acid	12
1-5 Uric Acid Sensors	17
1-5-1 Spectrophotometry	18
1-5-2 Chemiluminescence	21
1-5-3 Chromatography	24
1-5-4 Electrophoresis ‒ Capillary Electrophoresis	26
1-5-5 Electrochemical Schemes	27
1-6 Brief Introduction of Cobalt (II, III) Oxide (Co3O4)	36
1-6-1 Methods of Preparation Co3O4	37
1-7 Research Goals	41
Chapter 2 Experimental Section	42
2-1 Instrumentations and Measurements	42
2-2 Reagents	42
2-3 Synthesis of Co3O4 Nanosheet	43
2-4 Electrodes Preparation of Co3O4 Based Electrode for Hydrogen Peroxide	44
2-4-1 Pretreatment of Electrodes	44 
2-4-2 Co3O4 Based Modified Electrode	44
2-4-3 Immobilization of Uricase onto Co3O4 Based Electrode	45
2-5 Experimental Design	45
2-5-1 Primary Investigation of Cobalt Oxide	46
2-5-2 Calcined Temperature Study	46
2-5-3 Mechanism of Co3O4 Based Uric Acid Biosensor	46
2-5-4 Consideration of Hydrogen Peroxide Detect	46
2-5-5 Optimized Operating Parameters of Uric Acid Biosensor	47
2-6 Analytical Performance of Uric Acid Biosensor	50
Chapter 3 Results and Discussion	51
3-1 Primary Investigation of Cobalt Oxide	51
3-2 Mechanism of Co3O4 Based Uric Acid Biosensor	56
3-3 Optimized Operating Parameter of Uric Acid Biosensor	59
3-3-1 Consideration of Hydrogen Peroxide Detect	59
3-3-2 Composition Study ‒ Co3O4 and Ink Ratio	62
3-3-3 Optimization of the Immobilization Scheme	64
3-3-4 Relationship between Apply Voltage and Sensitivity	66
3-3-5 Effect of pH on the Response	67
3-3-6 Influence of Electrolyte solution	68
3-3-7 Influence of Buffer Ionic Strength	69
3-3-8 Effect of Temperature	70
3-3-9 Effect of Revolution Rate	72
3-4 Evaluation Analysis Features of Uric Acid Biosensor	73
3-4-1 Analytical Performance of Uric Acid Biosensor	73
3-4-2 Interference Study	77
3-4-3 Storage Stability of Storage Stability of Co3O4 Based Uric Acid Biosensor	79 
Chapter 4 Conclusion	81
Reference	83
Figure and Table Caption
Fig. 1 Purine metabolism	12
Fig. 2 HRXRD patterns of cobalt oxide	52
Fig. 3 FE-SEM micrographs of Co3O4	53
Fig. 4 Calcined temperature study	54
Fig. 5 Typical reductive current response	55
Fig. 6 Sensing mechanism of Co3O4 based uric acid biosensor	57
Fig. 7 Dependence of Co3O4 toward hydrogen peroxide	58
Fig. 8 Sensitivity of hydrogen peroxide and ambient oxygen	61
Fig. 9 Composition study	63
Fig. 10 Composition study	63
Fig. 11 Composition study of BSA, glutaraldehyde, and uricase	65
Fig. 12 Potential effect study	67 
Fig. 13 Effect of pH on the response	68
Fig. 14 Influence of electrolyte solution	70
Fig. 15 Influence of buffer concentration.	71
Fig. 16 Effect of temperature	72
Fig. 17 Effect of rotation speed	73
Fig. 18 Typical steady-state amperometric calibration plot 	76
Fig. 19 Investigate the reproducibility of uric acid biosensor	76
Fig. 20 Lineweaver-Burk like reciprocal plot	77
Fig. 21 Lifetime of the uric acid sensor.	80
 

Table 1 Comparison of the Co3O4 nanoparticles shape and size with different surfactant and fabricate methods	40
Table 2 Optimization of conditions to detect uric acid	74
Table 3 Analytical performances of the biosensor	77
Table 4 Effect of interferents on the amperometric response of uric acid biosensor 	79
Table 5 Comparison analytical performance of the literature proposed methods with other electrochemical methods for the determination of uric acid	82
參考文獻
1.	K. Odashima, M. Kotato, M. Sugawara, Y. Umezawa, Voltammetric study on a condensed monolayer of a long alkyl cyclodextrin derivative as a channel mimetic sensing membrane, Anal. Chem. 65 (1993) 927-930.
2.	J. Wang, X. Cai, G. Rivas, H. Shiraishi, P. A. M. Farias, N. Dontha, DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus, Anal. Chem. 68 (1996) 2629-2634.
3.	J. Wang, M. S. Lin, Mixed plant tissue-carbon paste bioelectrode, Anal. Chem. 60 (1988)1545-1548.
4.	M. S. Lin, S. Y. Tham, G. A. Rechnitz, Pineapple-tissue based bioelectrode for the determination of hydrogen peroxide, Electroanalysis 2 (1990) 511-515.
5.	S. Leth, S. Maltoni, R. Simkus, B. Mattiasson, P. Corbisier, Ingo Klimant, O. S. Wolfbeis, E. Csoregi, Engineered bacteria based biosensors for monitoring bioavailable heavy metals, Electroanalysis 14 (2002)35-42. 
6.	V. T.-Duret, G. Reach, M. N. Gangnerau, F. Lemonnier, J. C. Klein, Y. Zhang, Y. Hu, G. S. Wilson, Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood, Anal. Chem. 68 (1996) 3822-3826.
7.	X. Chu, X. Zhu, Y. Dong, T. Chen, M. Ye, W. Sun, An Amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods, J. Electroanal. Chem. 676 (2012) 20-26.
8.	E. Akyilmaz, M. K. Sezginturk, E. Dinckaya, A biosensor based on urate oxidase-peroxidase coupled enzyme system for uric acid determination in urine, Talanta 61 (2003) 73-79.
9.	T. Hoshi, H. Saiki, J. Anzai , Amperometric uric acid sensors based on polyelectrolyte multilayer films, Talanta 61 (2003) 363-368
10.	M. A. Arnold, Enzyme-based fiber optic sensor, Anal. Chem. 57 (1985) 565-566.
11.	G. Chee, Y. Nomura, K. Ikebukuro, I. Karube, Optical fiber biosensor for the determination of low biochemical oxygen demand, Biosens. Bioelectron. 15 (2000) 371-376
12.	G. Urban, H. Kamper, A. Jachimowicz, F. Kohl, H. Kuttner, F. Olcaytug, P. Goiser, The construction of microcalorimetric biosensors by use of high resolution thin-film thermistors, Biosens. Bioelectron. 6 (1991) 275-280.
13.	M. Shimohigoshi, K. Yokoyama, I. Karube, Development of a bio-thermochip and its application for the detection of glucose in urine, Anal. Chim. Acta 303 (1995) 295-299.
14.	A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, Enzyme monolayer-functionalized field-effect transistors for biosensor applications, Sens. Actuators, B 70 (2000) 222-231.
15.	B. L. Allen, P. D. Kichambare, A. Star, Carbon nanotube field-effect-transistor-based biosensors, Adv. Mater. 19(2007) 1439-1451.
16.	L. C. Clark, Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29-45.
17.	M. Espinosa, P. Atanasov, E. Wilkins, Development of a disposable organophosphate biosensor, Electroanalysis 11 (1999) 1055-1062.
18.	D. Carelli, D. Centonze, C. Palermo, M. Quinto, T. Rotunno, An interference free amperometric biosensor for the detection of biogenic amines in food products, Biosens. Bioelectron. 23 (2007) 640-647.
19.	J. Masud, M. T. Alam, M. R. Miah, T. Okajima, T. Ohsaka, Enhanced electrooxidation of formic acid at Ta2O5-modified Pt electrode, Electrochem. Commun. 13 (2011) 86-89.
20.	S. S. Mahapatra, A. Dutta, J. Datta, Temperature dependence on methanol oxidation and product formation on Pt and Pd modified Pt electrodes in alkaline medium, Int. J. Hydrogen Energy 36 (2011) 14873-14883.
21.	R. Rawal, S. Chawla, Devender, C. S. Pundir, An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract, Enzyme Microb. Technol. 51 (2012) 179-185.
22.	F. Matsumoto, S. Uesugi, N. Koura, T. Ohsaka, Enhancement of electrochemical reduction of hydrogen peroxide and observation of current oscillatory phenomena during its reduction on a mercury adatom-modified Au electrode, J. Electroanal. Chem. 549 (2003)  71-80.
23.	Y. Zhang, J. Zhang , H. Wu , S. Guo, J. Zhang, Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds, J. Electroanal. Chem. 81 (2012) 49-55.
24.	T. J. Li, C. Y. Lin, A. Balamurugan, C. W. Kung, J. Y. Wang, C. W. Hu, C. C. Wang, P. Y. Chen, R. Vittal, K. C. Ho, Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate, Anal. Chim. Acta 737 (2012) 55-63.
25.	R. W. Murray, A. G. Ewing, R. A. Durst, Chemically modified electrodes molecular design for electroanalysis, Anal. Chem. 59 (1987) 379A-390A.
26.	G. E. Stoner, S. Srinivasan, Adsorption of blood proteins on metals using capacitance techniques, J. Phys. Chem. 74 (1970) 1088-1094.
27.	G. Decher, B. Lehr, K. Lowack, Y. Lvov, J. Schmitt, New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA, Biosens. Bioelectron. 9 (1994) 677-684.
28.	E. M. I. Mala Ekanayake, D. M. G. Preethichandra, K. Kaneto, Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors, Biosens. Bioelectron. 23 (2007) 107-113.
29.	H. Li , S. H. Park , J. H. Reif , T. H. LaBean , H. Yan, DNA-templated self-assembly of protein and nanoparticle linear arrays, J. Am. Chem. Soc. 126 (2004) 418-419.
30.	R. F. Lane, A. T. Hubbard, Electrochemistry of chemisorbed molecules. II. Influence of charged chemisorbed molecules on the electrode reactions of platinum complexes, J. Phys. Chem. 77 (1973) 1411-1421.
31.	E. Mazzotta, R. A. Picca, C. Malitesta, S. A. Piletsky, E. V. Piletska, Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine, Biosens. Bioelectron. 23 (2008) 1152-1156.
32.	A. Amine, J. M. Kauffmann, Preparation and characterization of a fragile enzyme immobilized carbon paste electrode, Bioelectrochem. Bioenerg. 28 (1992) 117-125.
33.	S. Yabuki, F. Mizutani, Modifications to a carbon paste glucose-sensing enzyme electrode and a reduction in the electrochemical interference from L-ascorbate, Biosens. Bioelectron. 10 (1995) 353-358.
34.	B. D. MacCraith, C. M. McDonagh, G. O'Keeffe, A. K. McEvoy, T. Butler, F. R. Sheridan, Sol-gel coatings for optical chemical sensors and biosensors, Sens. Actuators, B 29 (1995) 51-57.
35.	Z. Wang ,X. Hao, Z. Zhang , S. Liu , Z. Liang , G. Guan, One-step unipolar pulse electrodeposition of nickel hexacyanoferrate/chitosan/carbon nanotubes film and its application in hydrogen peroxide sensor, Sens. Actuators, B 162 (2012) 353-360.
36.	B. Fang, Y. Feng, G. Wang, C. Zhang, A. Gu, M. Liu, A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes, Microchimica Acta 173 (2011) 27-32.
37.	S. Uchiyama, H. Sakamoto, Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor, Talanta 44 (1997) 1435-1439.
38.	M. Yasuzawa, A. Kunugi, Properties of glucose sensors prepared by the electropolymerization of a positively charged pyrrole derivative, Electrochem. Commun. 1 (1999) 459-462.
39.	S. J. Updike, G. P. Hicks, The enzyme electrode, Nature 214 (1967) 986-988.
40.	J. Wang, M. S. Lin, Mixed plant tissue carbon paste bioelectrode, Anal. Chem. 60 (1988) 1545–1548.
41.	M. S. Lin, W. C. Shih, Chromium hexacyanoferrate based glucose biosensor, Anal. Chim. Acta 381 (1999) 183-189.
42.	R. Yang, C. Ruan, W. Dai, J. Deng, J. Kong, Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine), Electrochim. Acta, 44 (1999) 1585-1596.
43.	L. Wu, M. McIntosh, X. Zhang, H. Ju, Amperometric sensor for ethanol based on one-step electropolymerization of thionine–carbon nanofiber nanocomposite containing alcohol oxidase, Talanta 74 (2007) 387-392.
44.	L. H. H. Olde Damink, P. J. Dijkstra, M. J. A. Van Luyn, P. B. Van Wachem, P. Nieuwenhuis, J. Feijen, Glutaraldehyde as a crosslinking agent for collagen-based biomaterials, J. Mater. Sci. Mater. Med. 6 (1995) 460-4720.
45.	S. Kuwabata, T. Nakaminami, S. Ito, H. Yoneyama, Preparation and properties of amperometric uric acid sensors, Sens. Actuators, B 52 (1998) 72-77.
46.	T. Ahuja , V. K. Tanwar , S. K. Mishra , D. Kumar, A. M. Biradar, Rajesh, Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor, J. Nanosci. Nanotechnol. 11 (2011) 4692-701. 
47.	T. Q. Huy, N. T. H. Hanh, N. T. Thuy, P. V. Chung, P. T. Nga, M. A. Tuan, A novel biosensor based on serum antibody immobilization for rapid detection of viral antigens, Talanta 86 (2011) 271-277.
48.	Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles, Biosens. Bioelectron. 43 (2013) 155-159.
49.	S. Felix, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, A. N. Grace, Electrocatalytic activity of Cu2O nanocubes-based electrode for glucose oxidation, J. Chem. Sci. 126 (2014) 25-32.
50.	B. Ballarin, C. J. Brumlik, D. R. Lawson, W. Liang, L. S. V. Dyke, C. R. Martin, Chemical sensors based on ultrathin-film composite membranes-a new concept in sensor design, Anal. Chem. 64 (1992) 2647-2651.
51.	G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, Chem. Rev. 102 (2002) 1-28.
52.	N. Lavignac, C. J. Allender, K. R. Brain, Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays, Anal. Chim. Acta 510 (2004) 139-145.
53.	K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensor, Chem. Rev. 100 (2000) 2495-2504.
54.	R. Shoji, T. Takeuchi, I. Kubo, Atrazine sensor based on molecularly imprinted polymer-modified gold electrode, Anal. Chem. 75 (2003) 4882-4886.
55.	X. Shen, Y. Cui, Y. Pang, H. Qian, Pre-concentration and in situ electrochemical sensing of 1-hydroxypyrene on an electrodeposited poly (3-methylthiophene) film modified electrode, J. Electroanal. Chem. 667 (2012) 1-6.
56.	R. Groning, I. Danco, R. S. Muller, Development of sensor elements to control drug release from capsular drug delivery systems, Int. J. Pharm. 340 (2007) 61-64.
57.	H. K. Choi, D. B. Mount, A. M. Reginato, Pathogenesis of Gout, Annals of Internal Medicine, 143 (2005)499-516.
58.	G. Nuki, Human purine metabolism: some recent advances and relationships with immunodeficiency, Ann. Rheum. Dis. 42 (1983) 8-11.
59.	D, Lakshmi, M. J. Whitcombe, F. Davis, P. S. Sharma, B. B. Prasad, Electrochemical detection of uric acid in mixed and clinical samples: a review, Electroanalysis 23 (2011) 305-320.
60.	P. Singh, S. Khan, R. K. Mittal, Prevalence of hyperuricemia at nepalgunj medical college, banke, nepal, World J. Med. Sci. 8 (2013) 52-55. 
61.	K. Chizyński, M. Rozycka, Hyperuricemia, Pol. Merkur. Lekarski. 19 (2005) 693-696.
62.	M. Chonchol, M. G. Shlipak, R. Katz, M. J. Sarnak , A. B. Newman , D. S. Siscovick , B. Kestenbaum , J. K. Carney , L. F. Fried, Relationship of uric acid with progression of kidney disease, Am. J. Kidney Dis. 50 (2007) 239-247.
63.	M. Madero, M. J. Sarnak, X. Wang, T. Greene, G. J. Beck, J. W. Kusek, A. J. Collins, A. S. Levey, V. Menon ,Uric acid and long-term outcomes in CKD, Am. J. Kidney Dis. 53 (2009) 796-803.
64.	T. R. Merriman, N. Dalbeth, The genetic basis of hyperuricaemia and gout, Joint Bone Spine 78 (2011) 35-40.
65.	E.W. Campion, R. J. Glynn, L. O. DeLabry, Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study, Am. J. Med. 82 (1987) 421-426.
66.	 A. T. Eggebeen, Gout: An Update, Am. Fam. Physician. 76 (2007) 801-808.
67.	N. Schlesinger, Diagnosing and treating gout: a review to aid primary care physicians, Postgrad Med. 122 (2010)157-161.
68.	J. D. Wright, A. B. Pinto, Clinical manifestations and treatment of gout, Prim. Care Update Ob Gyns 10 (2003)19-23.
69.	H. A. Jinnah, D. J. Schretlen, Reply: Attenuated variants of Lesch–Nyhan disease: the case of King James VI/I, Brain 133(2010) e154.
70.	M. Lesch, W. L. Nyhan, A familial disorder of uric acid metabolism and central nervous system function, The American Journal of Medicine 36 (1964) 561-570.
71.	W. L. Nyhan, LESCH-Nyhan disease, Journal of the History of the Neurosciences: Basic and Clinical Perspectives 14 (2005) 1-10.
72.	W. L. Nyhan, Lesch-Nyhan disease and related disorders of purine metabolism, TZU Chi Med. J. 19 (2007) 105-108.
73.	W. L. Nyhan, Behavior in the Lesch-Nyhan syndrome, Journal of autism and childhood schizophrenia 6 (1976) 235-252.
74.	F. A. Mahomed, On chronic Bright's disease, and its essential symptoms. The Lancet 113 (1879) 399-401.
75.	T. Isik, E. Ayhan, M. Ergelen, H. Uyarel, Uric acid: A novel prognostic marker for cardiovascular disease, Int. J. Cardiol. 156 (2012) 328-329.
76.	G. Silbernagel, M. M. Hoffmann, T. B. Grammer , B. O. Boehm,
W. Marz, Uric acid is predictive of cardiovascular mortality and sudden cardiac death in subjects referred for coronary angiography, Nutr. Metab. Cardiovasc. Dis, 23 (2013) 46-52.
77.	T. Nakagawa, H. Hu, S. Zharikov, K. R. Tuttle, R. A. Short, O. Glushakova, X. Ouyang, D. I. Feig, E. R. Block, J. H. Acosta, J. M. Patel, R. J. Johnson, A causal role for uric acid in fructose-induced metabolic syndrome, Am. J. Physiol. Renal. Physiol. 290 (2005) F625-F631.
78.	C. Y. Pak, Medical stone management: 35 years of advances, J. Urol. 180 (2008) 813-819. 
79.	G. S. Marchini, C. Sarkissian, D. Tian, S. Gebreselassie, M. Monga, Gout, stone composition and urinary stone risk: A matched case comparative study, J. Urol. 189 (2013) 1334-1339.
80.	S. H. Heo, S. H. Lee, High levels of serum uric acid are associated with silent brain infarction, J. Neurol. Sci. 297 (2010) 6-10.
81.	F. Grases, A. Costa-Bauza, M. Ramis, V. Montesinos, A. Conte, Simple classification of renal calculi closely related to their micromorphology and etiology, Clin Chim Acta. 322 (2002) 29-36.
82.	G. Bugdayci, Y. Balaban, O. Sahin, Causes of hypouricemia among outpatients, Lab Medicine 39 (2008) 550-552.
83.	K. Ogino, I. Hisatome, M. Saitoh, J. Miyamoto, R. Ishiko, J. Hasegawa, H. Kotake, H. Mashiba, Clinical significance of hypouricemia in hospitalized patients, J. Med. 22 (1991)76-82.
84.	G. Toncev, B. Milicic, S. Toncev, G. Samardzic, Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood–brain barrier dysfunction, Eur. J. Neurol. 9 (2002) 221-226.
85.	M. Pan , H. Gao , L. Long , Y. Xu , M. Liu , J. Zou , A. Wu , X. Wei. X. Chen, B. Tang, Q. Wang, Serum uric acid in patients with Parkinson's disease and vascular parkinsonism: a cross-sectional study, Neuroimmunomodulation. 20 (2013) 19-28.
86.	T. S. Kim, C. U. Pae, S. J. Yoon, W. Y. Jang, N. J. Lee, J. J. Kim, S. J. Lee, C. Lee, I. H. Paik, C. U. Lee, Decreased plasma antioxidants in patients with Alzheimer's disease, Int. J. Geriatr. Psychiatry 21 (2006) 344-348.
87.	M. C. Polidori, P. Mattioli, S. Aldred, R. Cecchetti, W. Stahl, H. Griffiths, U. Senin, H. Sies, P. Mecocci, Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: Relevance to Alzheimer disease and vascular dementia, Dement. Geriatr. Cogn. Disord. 18 (2004) 265-270.
88.	B. N. Ames, R. Cathcart, E. Schwiers, P. Hochstein, Uric acid provides an antioxidant defense in humans against, Proc. Natl. Acad. Sci. USA 78 (1981) 6858-6862.
89.	M. Boban, D. Modun, Uric acid and antioxidant effects of wine, Croat. Med. J. 51 (2010) 16-22.
90.	T. R. Offer, Centr. Physiol. 8 (1894) 801.
91.	M. Nanjo, G. G. Guilbault, Enzyme electrode sensing oxygen for uric acid in serum and urine, Anal. Chem. 46 (1974) 1769-1772.
92.	J. Galban, Y. Andreu, M. J. Almenara, S. de Marcos, J. R. Castillo, Direct determination of uric acid in serum by a fluorometric - enzymatic method based on uricase, Talanta 54 (2001) 847-854.
93.	C. S. Higgens, I. K. Moss, J. T. Scott, Comparison of plasma and urinary concentrations of uric acid measured by the colorimetric phosphotungstate and enzymatic uricase methods, Ann. Rheum. Dis. 42 (1983) 84-85.
94.	M. B. Blauch, F. C. Koch, A new method for the determination of uric acid in blood, with uricase, J. Biol. Chem. 130 (1939) 443-454.  
95.	D. L. Rocha, F. R. P. Rocha, A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine, Microchem. J. 94 (2010) 53-59.
96.	M. R. Moghadam, S. Dadfarnia, A. M. Shabani, P. Shahbazikhah, Chemometric-assisted kinetic–spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine, Anal. Biochem. 410 (2011) 289-295.
97.	K. Lorentz, W. Berndt, Enzymic determination of uric acid by a colorimetric method, Anal. Biochem. 18 (1967) 58-63.
98.	D. Martinez-Perez, M. L. Ferrer, C. R. Mateo, A reagent less fluorescent sol-gel biosensor for uric acid detection in biological fluids, Anal. Biochem. 322 (2003) 238-242.
99.	R. C. Trivedi, L. Rebar, K. Desai, L. J. Stong, New ultraviolet (340 nm) method for assay of uric acid in serum or plasma, Clin. Chem. 24 (1978) 562-566.
100.	T. M. Freeman, W. R. Seitz, Chemiluminescence fiber optic probe for hydrogen peroxide based on the luminol reaction, Anal. Chem. 50 (1978) 1242-1246.
101.	Z. Li, M. Feng, J. Lu, KMnO4–octylphenyl polygylcol, ether chemiluminescence system for flow injection analysis of uric acid in urine, Microchem. J. 59 (1998) 278-283.
102.	H. C. Hong, H. J. Huang, Flow injection analysis of uric acid with a uricase- and horseradish peroxidase-coupled Sepharose column based luminol chemiluminescence system, Anal. Chim. Acta 499 (2003) 41-46.
103.	S. Zhao, J. Wang, F. Ye, Y. M. Liu, Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection, Anal. Biochem. 378 (2008) 127-131.
104.	H. Kubo, A. Toriba, Chemiluminescence flow injection analysis of reducing agents based on the luminol reaction, Anal. Chim. Acta 353 (1997) 345-349.
105.	J. Yu, S. Wang, L. Ge, S. Ge, A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination, Biosens. Bioelectron. 26 (2011) 3284-3289.
106.	O. C. Ingebretsen, J. Borgen, M. Farstad, Uric acid determinations: Reversed-phase liquid chromatography with ultraviolet detection compared with kinetic and equilibrium adaptations of the uricase method, Clin. Chem. 28 (1982) 496-498.
107.	N. Cooper, R. Khosravan, C. Erdmanna, J. Fiene, J. W. Lee, Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies, J. Chromatogr. B 837 (2006) 1-10.
108.	R. Kanďar, P. Drabkova, R. Hampl, The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection, J. Chromatogr. B 879 (2011) 2834-2839.
109.	J. Perello, P. Sanchis, Felix Grases, Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry, J. Chromatogr. B 824 (2005) 175-180.
110.	R. Ferin, M. L. Pavao, J. Baptista, Rapid, sensitive and simultaneous determination of ascorbic and uric acids in human plasma by ion-exclusion HPLC-UV, Clin. Biochem. 46 (2013) 665-669.
111.	G. Barja de Quiroga , M. Lopez-Torres , R. Perez-Campo , C. Rojas, Simultaneous determination of two antioxidants, uric and ascorbic acid, in animal tissue by high-performance liquid chromatography, Anal. Biochem. 199 (1991) 81-85.
112.	T. Seki, K.Yamaji, Y. Orita, S. Moriguchi, A. Shinoda, Simultaneous determination of uric acid and creatinine in biological fluids by column-switching liquid chromatography with ultraviolet detection, J. Chromatogr. A 730 (1996) 139-145.
113.	X. B. Chen, A. G. Calder, P. Prasitkusol, D. J. Kyle , M. C. N. Jayasuriya, Determination of 15N isotopic enrichment and concentrations of allantoin and uric acid in urine by gas chromatography/mass spectrometry, J. Mass Spectrom. 33 (1998) 130-137.
114.	T. Grune, G. A. Ross, H. Schmidt, W. Siems, D. Perrett, Optimized separation of purine bases and nucleosides in human cord plasma by capillary zone electrophoresis, J. Chromatogr. 636 (1993) 105-111.
115.	M. L. Cheng, T. Z. Liu, F. J. Lu, D. T. Chiu, Simultaneous detection of vitamin C and uric acid by capillary electrophoresis in plasma of diabetes and in aqueous humor in acute anterior uveitis, Clin. Biochem.32 (1999) 473-476.
116.	S. P. Wang, C. S. Liao, Comparison of ion-pair chromatography and capillary zone electrophoresis for the assay of organic acids as markers of abnormal metabolism, J. Chromatogr. A 1051 (2004) 213-219.
117.	C. Masson, J. H. T. Luong, A. L. Nguyen, Analyses of uric acid in urine and reconstituted serum by capillary electrophoresis, Anal. Lett. 24 (1991) 377-389.
118.	M. Pizzichini, L. Arezzini, C. Billarelli, F. Carlucci, L. Terzuoli, Determination and separation of allantoin, uric acid, hypoxanthine, and xanthine by capillary zone electrophoresis, Adv. Exp. Med. Biol. 431 (1998) 797-800.
119.	Y. Guan, T. Wu, J. Ye, Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection potential application in fast diagnosis of renal disease, J. Chromatogr. B 821 (2005) 229-234.
120.	Y. Guan, Q. Chu, J. Ye, Determination of uric acid in human saliva by capillary electrophoresis with electrochemical detection: Potential application in fast diagnosis of gout, Anal. Bioanal. Chem. 380 (2004) 913-917.
121.	X. Yao, Y. Wang, G. Chen, Simultaneous determination of aminothiols, ascorbic acid and uric acid in biological samples by capillary electrophoresis with electrochemical detection, Biomed. Chromatogr. 21 (2007) 520-526.
122.	J. L. Boughton, B. W. Robinson, T. G. Strein, Determination of uric acid in human serum by capillary electrophoresis with polarity reversal and electrochemical detection, Electrophoresis. 23 (2002) 3705-3710.
123.	J. C. Fanguy, C. S. Henry, The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection, Electrophoresis. 23 (2002) 767-773.
124.	H. L. Lee, S. C. Chen, Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum, Talanta 64 (2004) 750-757.
125.	W. Ren, H. Qun Luo, N. B. Li, Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid, Biosens. Bioelectron. 21 (2006) 1086-1092.
126.	R. M. A. Tehrani, S. Ab Ghani, Voltammetric analysis of uric acid by zinc-nickel nanoalloy coated composite graphite, Sens. Actuators, B 145 (2010) 20-24.
127.	A. A. Ensafi, M. Taei, T. Khayamian , Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(p-xylenolsulfonephthalein) modified glassy carbon electrode, Colloids Surf B Biointerfaces. 79 (2010) 480-487.
128.	F. Zhang, Z. Wang, Y. Zhang, Z. Zheng, C. Wang, Y. Du, W. Ye, Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(L-arginine)/graphene composite film modified electrode, Talanta 93 (2012) 320-325.
129.	J. Wang, W. D. Zhang, Sputtering deposition of gold nanoparticles onto vertically aligned carbon nanotubes for electroanalysis of uric acid, J. Electroanal. Chem. 654 (2011) 79-84.
130.	X. Tian, C. Cheng, H. Yuan, J. Du, D. Xiao, S. Xie, M. M. Choi, Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles–β-cyclodextrin–graphene-modified electrode by square wave voltammetry, Talanta 93 (2012) 79-85.
131.	H. Ernst, M. Knoll, Electrochemical characterisation of uric acid and ascorbic acid at a platinum electrode, Anal. Chim. Acta 449 (2001) 129-134.
132.	M. A. F. Elmosallamy, R. A. Mohamed, A new potentiometric membrane sensor responsive to uric acid, Anal. Lett. 30(1997) 2175-2187.
133.	X. Cai, K. Kalcher, C. Neuhold, B. Ogorevc, An improved voltammetric method for the determination of trace amounts of uric acid with electrochemically pretreated carbon paste electrodes, Talanta 41(1994) 407-413.
134.	J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, F. S. Sheu, Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode, Electroanalysis. 15 (2003) 1693-1698.
135.	A. Liu, I. Honma, H. Zhou, Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode, Biosens. Bioelectron. 23 (2007) 74-80.
136.	J. M. Zen, J. S. Tang, Square-wave voltammetric determination of uric acid by catalytic oxidation at a perfluorosulfonated ionomer ruthenium oxide pyrochlore chemically modified electrode, Anal. Chem. 67 (1995) 1892-1895.
137.	J. C. Chen, H. H. Chung, C.T. Hsu, D. M. Tsai, A. S. Kumar, J. M. Zen, A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood, Sens. Actuators, B 110 (2005) 364-369.
138.	M. A. T. Gilmartin, J. P. Hart, Voltammetric and amperometric behaviour of uric acid at bare and surface-modified screen-printed electrodes: Studies towards a disposable uric acid sensor, Analyst 117 (1992) 1299-1303.
139.	F. d. A. d. S. Silva, C. B. Lopes, L. T. Kubota, P. R. Lima, M. O. F. Goulart, Poly-xanthurenic acid modified electrodes: An amperometric sensor for the simultaneous determination of ascorbic and uric acids, Sens. Actuators, B 168 (2012) 289-296.
140.	S. M. Usman Ali, N. H. Alvia, Z. Ibupoto, O. Nur, M. Willander, B. Danielsson, Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires, Sens. Actuators, B 152 (2011) 241-247.
141.	Y. Wanga, Y. Hasebe, Uricase-adsorbed carbon-felt reactor coupled with a peroxidase-modified carbon-felt-based H2O2 detector for highly sensitive amperometric flow determination of uric acid, J. Pharm. Biomed. Anal. 57 (2012) 125-132.
142.	Y. C. Luo, J. S. Do, C. C. Liu, An amperometric uric acid biosensor based on modified Ir–C electrode, Biosens. Bioelectron. 22 (2006) 482-488.
143.	Y. Q. Zhang, W. D. Shen, R. A. Gu, J. Z., R. Y. Xue, Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane, Anal. Chim. Acta 369 (1998) 123-128.
144.	Y. Zhang, G. Wen, Y. Zhou, S. Shuang, C. Dong, M. M. F. Choi , Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane, Biosens. Bioelectron. 22 (2007) 1791-1797.
145.	X. Wang, T. Hagiwara, S. Uchiyama, Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor, Anal. Chim. Acta 587 (2007) 41-46.
146.	M. A. T. Gilmartin, J. P. Hart, B. J. Birch, Development of amperometric sensors for uric acid based on chemically modified graphite-epoxy resin and screen-printed electrodes containing cobalt phthalocyanine, Analyst 119 (1994)243-252.
147.	M. A. T. Gilmartin , J. P. Hart, Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase, Analyst 119 (1994) 833-840.
148.	P. Kanyong, R. M. Pemberton, S. K. Jackson, J. P. Hart, Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis, Anal. Biochem. 428 (2012) 39-43.
149.	N. Chauhan, C. S. Pundir, An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite, Anal. Biochem. 413 (2011) 97-103.
150.	R. Rawal, S. Chawla, N. Chauhan, T. Dahiya, C. S. Pundir, Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite, Int. J. Biol. Macromol. 50 (2012) 112-118.
151.	E. Miland , A. J. M. Ordieres, P. T. Blanco , M. R. Smyth , C. O Fagain, Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid, Talanta 43 (1996) 785-796.
152.	M. Shimohigoshi, I. Karube, Development of uric acid and oxalic acid sensors using a bio-thermochip, Sens. Actuators, B 30 (1996) 17-21.
153.	F. Zhang, X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu, Y. Xian, L. Jin, K. Yamamoto, Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Anal. Chim. Acta 519 (2004) 155-160.
154.	M. Devaraj, R. K. Deivasigamani, S. Jeyadevan, Enhancement of the electrochemical behavior of CuO nanoleaves on MWCNTs/GC composite film modified electrode for determination of norfloxacin, Colloids Surf B Biointerfaces 102 (2013) 554-561.
155.	S. Qu, J. Wang, J. Kong, P. Yang, G. Chen, Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing, Talanta 71 (2007) 1096-1102.
156.	A. Salimia, R. Hallaj, S. Soltanian, H. Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles, Anal. Chim. Acta 594 (2007) 24-31.
157.	D. Buso, M. Post, C. Cantalini, P. Mulvaney, Al. Martucci, Gold nanoparticle-doped TiO2 semiconductor thin films: Gas sensing properties, Adv. Funct. Mater. 18 (2008) 3843-3849.
158.	S. Roy, S. Basu, Improved zinc oxide film for gas sensor applications, Bull. Mater. Sci. 25, (2002) 513-515.
159.	D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of Zn-graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys. 132 (2012) 673-681.
160.	D. Pietrogiacomi, S. Tuti, M. C. Campa, V. Indovina, Cobalt supported on ZrO2: catalysts characterization and their activity for the reduction of NO with C3H6 in the presence of excess O2, Applied Catalysis B: Environmental 28 (2000) 43-54.
161.	Y. W. D. Chen, R. N. Noufi, Electrodeposition of nickel and cobalt oxides onto platinum and graphite electrodes for alkaline water electrolysis, J. Electrochem. Soc. 131 (1984) 731-735.
162.	T. Ndlovua, O. A. Arotibaa, S. Sampath, R.W. Krausea, B. B. Mamba, Electroanalysis of copper as a heavy metal pollutant in water using cobalt oxide modified exfoliated graphite electrode, Phys. Chem. Earth 50-52 (2012) 127-131.
163.	E. Hosono, S. Fujihara, I. Honma, M. Ichihara, H. Zhou, Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property, J. Power Sources 158 (2006) 779-783.
164.	H. Unuma, Y. Saito, K. Watanabe, M. Sugawara, Preparation of Co3O4 thin films by a modified chemical-bath method, Thin Solid Films 468 (2004) 4-7.
165.	H. Heli, H. Yadegari, Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization, Electrochim. Acta 55 (2010) 2139-2148.
166.	Z. Zhu, X. Li, Y. Zeng, W. Sun, W. Zhu, X. Huang, Application of cobalt oxide nanoflower for direct electrochemistry and electrocatalysis of hemoglobin with Ionic liquid as enhancer, J. Phys. Chem. C 115(2011)12547-12553.
167.	C. H. Chen, Y. C. Chen, M. S. Lin, Amperometric determination of NADH with Co3O4 nanosheet modified electrode, Biosens. Bioelectron. 42 (2013) 379-384.
168.	K. D. Bhatte, B. M. Bhanage, Synthesis of cobalt oxide nanowires using a glycerol thermal route, Mater. Lett. 96 (2013) 60-62.
169.	E. Lester , G. Aksomaityte, J. Li, S. Gomez, J. G. Gonzalez, M. Poliakoff, Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles, Prog. Cryst. Growth Charact. Mater. 58 (2012) 3-13.
170.	Y. Teng, S. Yamamoto, Y. Kusano, M. Azuma, Y. Shimakawa, One-pot hydrothermal synthesis of uniformly cubic Co3O4 nanocrystals, Mater. Lett. 64 (2010) 239-242.
171.	J. Park, X. Shen, G. Wang, Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres, Sens. Actuators, B 136 (2009) 494-498.
172.	Y. Z. Wang, Y. X. Zhao, C. G. Gao, D. S. Liu, Origin of the high activity and stability of Co3O4 in low-temperature CO oxidation, Catal. Lett. 125 (2008) 134-138.
173.	J. Jansson, Low-temperature CO Oxidation over Co3O4/Al2O3, J. Catal. 194 (2000) 55-60.
174.	H. J. Liu, S. H. Bo, W. J. Cui, F. Li, C. X. Wang, Y. Y. Xia, Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries, Electrochim. Acta 53 (2008) 6497-6503.
175.	B. Liu, X. Zhang, H. Shioyama, T. Mukai, T. Sakai, Q. Xu, Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery, J. Power Sources 195 (2010) 857-861.
176.	J. Dong, L. Song, J. J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay, Appl. Mater. Interfaces 6 (2014) 1959-1970.
177.	W. Jia, M. Guo, Z. Zheng, T. Yu, E. G. Rodriguez, Y. Wang, Y. Lei, Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: Toward H2O2 detection, J. Electroanal. Chem. 625 (2009) 27-32.
178.	J. Xie, Y. Huang, Co3O4 nanoparticles-enhanced luminol chemiluminescence and its application in H2O2 and glucose detection, Anal. Methods 3 (2011) 1149-1155. 
179.	G. Spinolo, S. Ardizzone, S. Trasatti, Surface characterization of Co3O4 electrodes prepared by the sol-gel method, J. Electroanal. Chem. 423 (1997) 49-57.
180.	P. S. Patil, L. D. Kadam, C. D. Lokhande, Preparation and characterization of spray pyrolysed cobalt oxide thin Films, Thin Solid Films 272 (1996) 29-32.
181.	T. Maruyama, S. Arai, Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, J. Electrochem. Soc. 143 (1996) 1383-1386.
182.	H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, Y. S. Yoon, Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors, J. Power Sources 102 (2001) 167-171.
183.	K. Nakaoka, M. Nakayama, K. Ogura, J. Electrochem. Soc. 149 (2002) C159 -C163.
184.	Q. Liu, W. M. Zhang, Z. M. Cui, B. Zhang, L. J. Wan, W. G. Song, Aqueous route for mesoporous metal oxides using inorganic metal source and their applications, Microporous Mesoporous Mater. 100 (2007) 233-240.
185.	C. Sun, S. Rajasekhara, Y. Chen, J. B. Goodenough, Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties, Chem. Commun. 47 (2011) 12852-12854.
186.	T. Chen, X. Li, C. Qiu, W. Zhu, H. Ma, S. Chen, O. Meng, Electrochemical sensing of glucose by carbon cloth-supported Co3O4-PbO2 core-shell nanorod arrays, Biosens. Bioelectron. 53 (2014) 200-206.
187.	F. Švegl, B. Orel , Structural and electrochromic properties of Co-Oxide and Co/Al/Si-Oxide films prepared by the sol-gel dip coating technique, J. Sol-Gel Sci. Technol. 8 (1997) 765-769. 
188.	G. L. Messing, S. C. Zhang, G. V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, J. Am. Ceram. Soc.76 (1993) 2707-2726.  
189.	S. Yan, H. Maeda, K. Kusakabe, S. Morook ,Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation, Ind. Eng. Chem. Res. 33 (1994) 616-622.  
190.	A. Kafizas, C. J. Carmalt, I. P. Parkin, CVD and precursor chemistry of transition metal nitrides, Coord. Chem. Rev. 257 (2013) 2073-2119.
191.	J. B. Wu, Y. Lin, X. H. Xia, J. Y. Xu, Q. Y. Shi, Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film, Electrochim. Acta 56 (2011) 7163-7170.
192.	A. S. Bhatt, D. K. Bhat, C. W. Tai, M. S. Santosh, Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles, Mater. Chem. Phys. 125 (2011) 347-350.
193.	S. Vijayakumar, A. K. Ponnalagi, S. Nagamuthu, G. Muralidharan, Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors, Electrochim. Acta 106 (2013) 500-505.
194.	Y. Ding, L. Xu, C. Chen, X. Shen, S. L. Suib, Syntheses of nanostructures of cobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method, J. Phys. Chem. C 112 (2008) 8177-8183.
195.	G. W. Morey, Hydrothermal synthesis, J. Am. Ceram. Soc. 36 (1953) 279-285.
196.	H. Wang, L. Zhang, X. Tan, C. M. B. Holt, B. Zahiri, B. C. Olsen, D. Mitlin, Supercapacitive properties of hydrothermally synthesized Co3O4 Nanostructures, J. Phys. Chem. C 115 (2011) 17599-17605.
197.	Y. Y. Lyu, S. H. Yi, J. K. Shon, S. Chang, L. S. Pu, S. Y. Lee, J. E. Yie, K. Char, G.D. Stucky, Highly stable mesoporous metal oxides using nano-propping hybrid gemini surfactants, J. M. Kim, J. Am. Chem. Soc. 126 (2004) 2310-2311.
198.	G. Bai, H. Dai, J. Deng, Y. Liu, F. Wang, Z. Zhao, W. Qiu, C. T. Au, Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene, Appl. Catal. A: Gen 450 (2013) 42-49.
199.	Z. Jing, S. Wu, Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach, Mater. Lett. 58 (2004) 3637-3640.
200.	H. Kavas, A. Baykal, M. S. Toprak, Y. Koseoğlua, M. Sertkol, B. Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route, J. Alloys Compd. 479 (2009) 49-55.
201.	C. Suna, X. Su, F. Xiao, C. Niu, J. Wang, Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties, Sens. Actuators, B 157 (2011) 681-685.
202.	X. Rui, H. Tan, D. Sim, W. Liu, C. Xu, H. H. Hng, R. Yazami, T. M. Lim, Q. Yan ,Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties, J. Power Sources 222 (2013) 97-102.
203.	H. T. Zhu, J. Luo, J. K. Liang, G. H. Rao, J. B. Li, J. Y. Zhang, Z. M. Dub, Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles, Physica B 403 (2008) 3141-3145.
204.	J. Ballesta-Claver, I. F. Diaz Ortega, M. C. Valencia-Miron, L. F. Capitan-Vallvey, Disposable luminol copolymer-based biosensor for uric acid in urine, Anal. Chim. Acta 702 (2011) 254-261.
205.	F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond. A 147 (1934)332-351.
206.	 X. Liu, M. Wen, J. Li , F. Zhai, J. Ruan,L. Zhang, S. Li, High-yield expression, purification, characterization, and structure determination of tag-free Candida utilis uricase, Appl. Microbiol. Biotechnol. 92 (2011) 529-537.
207.	R. A. Kamin, G. S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal. Chem., 52(1980) 1198-1205.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信