淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1407201118060500
中文論文名稱 運用整合性科技接受理論探討使用手機玩線上遊戲之研究
英文論文名稱 Factors Influence on the Adoption of Playing Online Game through Mobile Phones: An Application of UTAUT Model
校院名稱 淡江大學
系所名稱(中) 管理科學研究所企業經營碩士在職專班
系所名稱(英) Executive Master's Program of Business Administration in Management Sciences
學年度 99
學期 2
出版年 100
研究生中文姓名 管祺榮
研究生英文姓名 Chi-Jung Kuan
學號 798620455
學位類別 碩士
語文別 英文
口試日期 2011-05-28
論文頁數 55頁
口試委員 指導教授-陳水蓮
委員-康信鴻
委員-李旭華
中文關鍵字 UTAUT 模型  線上遊戲  行動電話  結構方程模式  過往經驗 
英文關鍵字 UTAUT  Online game  Mobile phone  Structural equation modeling  Prior Experience 
學科別分類 學科別社會科學管理學
中文摘要 線上遊戲隨著資訊科技的進步和電腦普及率提升,而在線上娛樂產業環境中持續的成長。本研究在運用整合型科技接受理論(UTAUT)來探討消費者對於使用手機玩線上遊戲接受度,同時對於消費者是否有線上遊戲經驗和是否有使用手機上網經驗者探討其干擾效果。經由網路市場調查公司所抽取的610位網路使用者作為樣本母體,並作為最後分析結果的數據。研究的結果顯示消費者對績效的期望、對付出的期望、社群影響、配合情況,會對於其接受使用手機玩線上遊戲的態度會有顯著的影響並進而會積極影響其實際使用之行為。本研究也顯示是否有線上遊戲經驗和使用手機上網經驗會對接受使用手機玩線上遊戲具有干擾的效果。最後、還提出了管理意涵和未來研究的方向。
英文摘要 Online game keeps growing for the virtual entertainment industry with improvement of IT application and PC popularization. This study is to explore consumer acceptance after implement online game through mobile phones based on “the Unified Theory of Acceptance and Use of Technology” (UTAUT) model while considering the moderating effects of online game experience and web browsing on mobile phones experience. 610 useful internet users were drawn by network market investigation firm to take part in the final analysis. The research results indicate performance expectancy, effort expectancy, social influence, and facilitating conditions are all significant determinants of attitude toward playing online game through mobiles and following attitude influences behavioral intention positively. This research also reveals experiences of online game and web browsing on mobile phones have moderating effects on the acceptance of playing online game through mobile phones. Finally, management implication and future research are also presented in this research.
論文目次 Table of Contents
Chapter 1 Introduction 1
Chapter 2 Literature review and hypotheses development 5
2.1 Mobile phone services and online game 5
2.2 Acceptance and use of technology 6
2.2.1 Theory of Reasoned Action (TRA) 7
2.2.2 Technology Acceptance Model (TAM) 7
2.2.3 Theory of Planned Behavior (TPB) 8
2.2.4 Model of PC Utilization (MPCU) 8
2.2.5 Innovation Diffusion Theory (IDT) 9
2.2.6 Motivational Model (MM) 9
2.2.7 TAM and TPB (C-TAM-TPB) 10
2.2.8 Social Cognitive Theory (SCT) 10
2.3 Unified theory of acceptance and use of technology (UTAUT) 10
2.3.1 Performance expectancy and attitude toward playing online games through mobile phones 11
2.3.2 Effort expectancy and attitude toward playing online game through mobile phones 12
2.3.3 Social Influence and attitude toward playing online game through mobile phones 13
2.3.4 Facilitating condition and attitude toward playing online game through mobile phones 14
2.3.5 Attitude toward playing online game through mobile phones and behavioral intention to play online game through mobile phones 15
2.4 User’s web browsing on mobile phone and prior experience of online game 16
2.4.1 Prior experience 16
2.4.2 Moderating effect of web browsing on mobile phone experience. 17
2.4.3 Moderating effect of online game experience 20
Chapter 3 Methodology 23
3.1 Construct Evaluation 23
3.2 Questionnaire design and Pre-testing 23
3.3 Sampling and Data Collection 24
3.4 Measurement 24
Chapter 4 Data Analysis and Result 26
4.1 Respondents profiles 26
4.2 Model Fit 27
4.3 Reliability and validity 27
4.4 Structural model and hypotheses testing 29
Chapter 5 Conclusion 37
5.1 Discussion 37
5.2 Theoretical implication 38
5.3 Managerial implication 40
5.4 Limitation and future research 41
Reference 43
Appendix 55

List of Figures
Figure 2.1 Unified theory of acceptance and use of technology(UTAUT) 22
Figure 4.1. Standardized path coefficients for all respondents 30
Figure 4.2. Unified theory of acceptance and use of technology(UTAUT)moderated by experience of web browsing on mobile phone. 32
Figure 4.3. Unified theory of acceptance and use of technology(UTAUT)moderated by experience of online game. 35

List of Tables
Table 4.1 Descriptive statistics of the participants’ profiles 26
Table 4.2 Measurement accuracy analysis statistics 28
Table 4.3 Correlation Matrix of Research 29
Table 4.4 Comparison of the groups based on experience of web browsing on mobile phone (unstandardized coefficients) 33
Table 4.5 Comparison of the groups based on experience of online game (unstandardized coefficients) 36

參考文獻 Reference
中文文獻
1.湯少華、林柏齊、 朱南勳 、鍾曉君 、曾瀚葦 、李建勳、 張奇 (2010)。台灣通訊產業發展回顧與前瞻,MIC 研究報告。
2.謝子樵 (2009)。 線上遊戲市場發展概況 ,MIC 研究報告。
英文文獻
1.Aj zen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social
behavior. Englewood Cliffs, NJ: Prentice-Hall.
2.Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
3.Ang, P. W., & Ma, B. (2008). Asia/Pacific (Excluding Japan) Online and device gaming overview. Retrieved July 22, 2010, from http://www.idc.com/getdoc.jsp?sessionId=&containerId=fr2009_01_19_193748
4.Bentler, P. M., & Speckart, G. (1979). Models of attitude-behavior relations. Psychological Review, 86(5), 452-464.
5.Bagozzi, R. P. (1981a). An examination of the validity of two models of attitude. Multivariate Behavioral Research, 16(3), 323-359.
6.Bandura, A. (1986). Social foundations of thought and action: a social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
7.Cummings, W. H., & Venkatesan, M. (1976). Cognitive Dissonance and Consumer Behavior: A Review of the Evidence. Journal of Marketing Research, 13(3), 303-308.
8.Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
9.Chin, W. (1998). The partial least squares approach to structural equation modeling. Marcoulides, G. A. (Ed.), Modern methods for business research (pp. 295–336). New Jersey, NJ: Lawrence Erlbaum Associates.
10.Coursaris, C., Hassanein, K., & Head, M. (2003). m-Commerce in Canada: An Interaction Framework for Wireless Privacy. Canadian Journal of Administrative Sciences, 20(1), 54-73.
11.Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results (Doctoral Dissertation, Sloan School of Management, Massachusetts Institute of Technology). Retrieved from http://en.scientificcommons.org/7894517
12.Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
13.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
14.Dhar, R., & Wertenbroch, K. (2000). Consumer choice between hedonic and utilitarian goods. Journal of Marketing Research, 37(1), 60–71.
15.DFC Intelligence (2008). Will a new Xbox experience translate into higher sales? Retrieved July 22, 2010, from http://www.dfcint.com/wp/?p=229
16.Festinger, L. 1957. A theory of cognitive dissonance. Evanston, IL: Row, Peterson.
17.Fishbein, M. and Ajzen, I. (1975), Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research, Reading, Mass. : Addison-Wesley.
18.Floyd, D. L., Prentic-Dunn, S., & Rogers, R.W. (2000). A meta- analysis of research on protection motivation theory. Journal of Applied Social Psychology, 30(2), 407-429.
19.Gerbing, D. W., & Anderson, J. C. (1992). Monte Carlo evaluations of goodness of fit indices for structural equation models. Sociological Methods and Research, 21(2), 132–160.
20.Gentry, L. & Cantalone, R. (2002). A comparison of three models to explain shop-bot use on the web. Psychology and Marketing, 19(11), 945-955.
21.Hartwick, J. & Barki, H. (1994). Explaining the Role of User Participation in Information System Use. Management Science, 40(4), 460-465.
22.Harrison, D. A., Mykytyn, P. P., & Riemenschneider, C. K. (1997). Executive decisions about adoption of information technology in small business: theory and empirical tests. Information Systems Research, 8(2), 171-195.
23.Hsu, C., & Lu, H. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 835–868.
24.Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276–286.
25.Igbaria, M. (1990). End-user computing effectiveness: a structural equation model. Omega International Journal of Management Science, 18(6), 637–652.
26.Igbaria, M. (1993). User Acceptance of Microcomputer Technology: An Empirical Test. OMEGA International Journal of Management Science. 21(1), 73-90.
27.Igbaria, M., Gambers, T., & Davis, G. B. (1995). Testing the Determinants of Micro Computer Usage via a Structural Equation Model. Journal of Management Information Systems, 11(4), 87-114.
28.Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega International Journal of Management Science, 23(6), 587–605.
29.Igbaria M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of microcomputer usage. Journal of Management Information Systems, 13(1), 127-143.
30.Im I., Hong s. & Kang M.S. (2011). An international comparison of technology adoption testing the UTAUT model. Information & Management, 48(1), 1-8.
31.Jenkins, J. E., & Zunguze, S. T. (1998). The relationship of family structure to adolescent drug use, peer affiliation, and perception of peer acceptance of drug use. Adolescence, 33(132), 811−822.
32.Jairak, K., Praneetpolgrang, P & Mekhabunchakij, K. (2009, December). An Acceptance of Mobile Learning for Higher Education Students in Thailand. The Sixth International Conference on eLearning for Knowledge-Based Society, 17-18, Thailand, 36.1-36.8.
33.Kettinger, W. J, Grover, V., Guha, S., & Teng, J.T.C. (1997). Business Process Change and Organizational Performance: Exploring an Antecedent Model, Journal of management Information System, 14 (1), 119-154.
34.Karahanna, E., Straub, D. W., and Chervany, N. L. (1999). Information Technology Adoption across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs. MIS Quarterly, 23(2), 183-213.
35.Kuo, Y. F., & Chen, P. C. (2006). Selection of Mobile Value-Added Services for System Operators Using Fuzzy Synthetic Evaluation. Expert Systems with Applications, 30(4), 612-620.
36.Kim, B., Choi, M., & Han, I. (2009). User behaviors toward mobile data services: The role of perceived fee and prior experience. Expert Systems with Applications, 36(4), 8528-8536.
37.Lee, Y., Kim, J., Lee, I., & Kim, H. (2002). A crosscultural study on the value structure of mobile internet usage: comparison between Korea and Japan. Journal of Electronic Commerce Research, 3(4), 227-239.
38.Luque-Martínez, T., Castañeda-García, J. A., Frías-Jamilena, D. M., Muñoz-Leiva, F., & Rodriguez-Molina, M. A. (2007) Determinants of the use of the Internet as a tourist information source. The Service Industries Journal 27(7), 881–891.
39.Liao, H. L., & Lu, H. P. (2008). The role of experience and innovation characteristics in the adoption and continued use of e-learning websites. Computers & Education, 51(4), 145-1416.
40.Liu, M., Huang, L., & Chen, A. (2008). Chinese consumer's adoption intention towards 3G mobile phone. International Journal of Mobile Communications, 6(6), 770 – 786.
41.Lin, C. T., Hong, W. C., Chen, Y. F., & Dong, Y. (2010). Application of salesman-like recommendation system in 3G mobile phone online shopping decision support. Expert Systems with Applications, 37(12), 8065–8078
42.Liou, J. J. H. (2011). Consumer attitudes toward in-flight shopping. Journal of Air Transport Management, 17(4), 221-223.
43.Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
44.Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
45.Mok, W. S. S. (2002). Wireless online games. The Electronic Library, 20 (2), 113–118.
46.Nunnally, J. C. (1978). Psychometric Theory (2ed). New York: McGraw-Hill.
47.Nelson, R., & Cheney, P. (1987). Training End Users: An Exploratory Study. MIS Quarterly, 11(4), 547-559.
48.Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Intentions to use mobile services: antecedents and crossservice comparisons. Journal of the Academy of Marketing Science, 33(3), 330-346.
49.Park, J., Yang, S., & Lehto, X. (2007). Adoption of mobile technologies for Chinese consumers. Journal of Electronic Commerce Research, 8(3), 196-206.
50.Rogers, E. (1995). Diffusion of innovations. New York, N. Y: Free Press.
51.Seyal, A., Rahman, M., & Rahim, M. (2002). Determinants of academic use of the internet: A structural equation model. Behaviour and Information Technology, 21(1), 71–86.
52.Suh, B., & Han, I. (2003). The impact of customer trust and perception of security control on the acceptance of electronic commerce. International Journal of Electronic Commerce, 73(3), 135-61.
53.Shih, C. W. (2003). A Study of the Consumer Behavior in Mobile Value-Added Service-A Case of College Student in Central Area. Master Thesis, Da-Yeh University
54.Singh, N., Fassott, G., Chao, M. C., & Hoffmann, J. A. (2006a). Understanding international web site usage: a cross-national study of German, Brazilian, and Taiwanese online consumers. International Marketing Review, 23(1), 83–97.
55.Triandis, H.C. (1977). Interpersonal behavior. Monterey, CA : Brooke/Cole.
56.Triandis, H. C. (1979). Values, Attitudes, and Interpersonal Behavior. In NebraskaSymposium on Motivation, Beliefs, Attitudes, and Values, Lincoln, NE: University of Nebraska Press.
57.Thompson, R.L., Higgins, C.A. & Howell, J.M. (1991). Personal computing:toward a conceptual model of utilization. MIS Quarterly, 15(1), 124-143.
58.Thompson, R. L., Higgins, C. A, & Howell, J. M. (1994). Influence of experience on personal computer utiliation: testing a conceptual model. Journal of Management Information Systems, 11 (1), 167–188.
59.Taylor, S. & Todd, P.A. (1995a). Assessing IT Usage: the role of prior experience. MIS Quarterly, 19(2), 561-570.
60.Taylor, S. & Todd, P.A. (1995b). Understanding information technology usage: a test of competing models. Information Systems Research, 6(4), 144-176.
61.TWNIC 2010 年台灣寬頻網路使用調查報告Retrieved July 22, 2010,from http://www.twnic.net.tw/NEWS4/91.pdf
62.Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46 (2), 186-204.
63.Varshney, U., & Vetter, R. (2002). Mobile Commerce: Framework, Application and Networking Support. Mobile Networks and Applications, 7(3), 185-198.
64.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003), User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-479.
65.Vijayasarathy, L. R. (2004). Predicting consumer intentions to use online shopping: the case for an augmented technology acceptance model. Information and Management, 41(6), 747-762.
66.Wang, Y. S., Wu, M. C., & Wang, H. Y. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British Journal of Educational Technology, 40(1), 92–118.
67.Wang Y.S. & Shih Y.W. (2009). Why do people use information kiosks? A validation of the Unified Theory of Acceptance and Use of Technology. Government Information Quarterly, 26(1), 158-165.
68.Yang, K. & Forneyn, J (2009). Determinants of Mobile Shopping Adoption: Applying Unified Theory of User Acceptance and Technology, International Textile and Apparel Association, Inc. ITAA Proceedings, #66 – www.itaaonline.org.
69.Zhou T., Lu Y., & Wang B (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-21公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信