§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1407200914292500
DOI 10.6846/TKU.2009.00446
論文名稱(中文) 切換式直流至直流模糊控制電源轉換器之設計與實現
論文名稱(英文) Design and Implementation of Fuzzy Controlled Switching DC-DC Converters
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 宋嘉榮
研究生(英文) Chia-Jung Sung
學號 696460020
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-06-22
論文頁數 99頁
口試委員 指導教授 - 周永山(yung@ee.tku.edu.tw)
委員 - 翁慶昌(wong@ee.tku.edu.tw)
委員 - 胡國英(eaglehwu@ntut.edu.tw)
委員 - 練光祐(kylian@ntut.edu.tw)
關鍵字(中) 綠色能源
直流至直流電源轉換器
模糊控制
KY電源轉換器
關鍵字(英) Green energy
DC-DC converter
Fuzzy control
KY converter
第三語言關鍵字
學科別分類
中文摘要
本篇論文主要針對兩種不同架構及用途的直流至直流電源轉換器來設計其模糊控制器。面臨地球化石能源的日益枯竭以及環保意識的抬頭,綠色能源是目前重要的部分替代方案之一。然而綠色能源係不穩定且輸出功率較小的能源,因此需透過電源轉換系統來穩定其輸出,以供使用。所以本文分別針對大功率的降壓型與升壓型電源轉換器兩種架構,提出其模糊控制器之設計並實現,達到穩定的輸出電壓與效率之提升。其中,在降壓型電源轉換器部分,採取多相並聯技術來使轉換器輸出較大的功率,運用多相模糊控制來調控各相之輸出電壓和電流,以達到穩定輸出電壓及各相一致的輸出電流,防止各相系統元件因電流過大而受損。另一方面,在升壓型電源轉換器中,採用二階KY電源轉換器架構改善傳統升壓型電路的缺點,設計模糊控制器,使其可達到穩定輸出並符合原先訂定的規格。整體上,本論文藉由模糊理論來設計控制器,並以模擬及實作來驗證此設計的可行性。
英文摘要
The main purpose of this thesis is concerned with the design of fuzzy controllers for two different kinds of DC-DC converters. Facing that the fossil fuels are exhausting on the earth and the rising agreement on environmental protection, the green energy source is considered as a part of substitution because it is environmentally-friendly and has less ecological impact than many conventional energy sources. However, the green energy is unstable and low power energy, a DC-DC converter is required to stabilize its output for further use. Therefore, this thesis deals with the design and implementation of fuzzy controllers for buck converters in parallel and boost converters. Concerning the former, a multi-phase interleaved technology is adopted so as to provide higher power output. A fuzzy controller is designed to adjust the output voltage and output current of each phase in order to obtain a stable output voltage and output currents of equal amount, which in turn prevents the circuit elements from damaging by large electric current. On the other hand, we propose a fuzzy controller design for a novel boost converter name as 2nd-order KY converter. The output voltage is stabilized and the prescribed performance specifications are satisfied. In general, the effectiveness of the proposed fuzzy controllers is verified by means of numerical simulation and experiments.
第三語言摘要
論文目次
目錄
中文摘要............................................................................................................I
英文摘要..........................................................................................................II
目錄.................................................................................................................III
圖目錄.............................................................................................................VI
表目錄.............................................................................................................XI
第一章 緒論................................................................................................-1-
	1.1  研究動機與目的.............................................................................-1-
	1.2  論文架構.........................................................................................-3-
第二章  電源轉換器之介紹........................................................................-4-
	2.1  降壓型電源轉換器介紹.................................................................-4-
2.1.1  傳統型降壓電源轉換器........................................................-4-
2.1.2  大功率降壓電源轉換器........................................................-9-
	2.2  升壓型電源轉換器介紹...............................................................-15-
2.2.1  傳統型升壓電源轉換器......................................................-15-
2.2.2  KY電源轉換器推導............................................................-18-
2.2.3  二階KY電源轉換器推導...................................................-22-
第三章 模糊邏輯控制之介紹..................................................................-30-
	3.1  模糊系統基本架構.......................................................................-30-
	3.2  模糊系統晶片之設計...................................................................-34-
第四章 大功率降壓電源轉換器之設計..................................................-40-
	4.1  前言...............................................................................................-40-
	4.2  系統規格.......................................................................................-40-
	4.3  系統架構.......................................................................................-41-
	4.4  模糊控制器之設計.......................................................................-44-
4.4.1  穩壓模糊控制......................................................................-44-
4.4.2  穩壓和均流兼具的模糊控制..............................................-45-
4.4.3  提昇效率的模糊控制..........................................................-48-
	4.5  電路模擬結果...............................................................................-51-
	4.6  硬體實作結果...............................................................................-67-
4.6.1  使用均流控制之穩態波形量測..........................................-67-
4.6.2  使用均流控制之暫態波形量測..........................................-71-
第五章 二階KY電源轉換器之設計........................................................-74-
	5.1  前言...............................................................................................-74-
	5.2  系統規格.......................................................................................-74-
	5.3  系統架構.......................................................................................-75-
	5.4  模糊控制器之設計.......................................................................-77-
	5.5  電路模擬結果...............................................................................-80-
	5.6  硬體實作結果...............................................................................-84-
5.6.1  1-plus-2D電源轉換器硬體實測.........................................-84-
5.6.2  2-plus-D電源轉換器硬體實測...........................................-89-
第六章 結論與未來研究方向..................................................................-93-
	6.1  結論...............................................................................................-93-
	6.2  未來研究方向...............................................................................-94-
參考文獻......................................................................................................-95-
圖目錄
圖2.1 降壓型電壓轉換器在連續導通模式下操作.....................................-6-
圖2.2 多模組並聯.......................................................................................-10-
圖2.3 多相交錯並聯...................................................................................-11-
圖2.4 均流技術分類...................................................................................-12-
圖2.5 平均電流法均流匯流排示意圖.......................................................-13-
圖2.6 自動主僕法均流匯流排示意圖.......................................................-14-
圖2.7 升壓型電壓轉換器在連續導通模式下操作...................................-16-
圖2.8  KY電源轉換器................................................................................-19-
圖2.9  KY電壓轉換器在連續導通模式下操作........................................-20-
圖2.10 二階KY電源轉換器.....................................................................-23-
圖2.11 1-plus-2D電源轉換器.....................................................................-24-
圖2.12 2-plus-D電源轉換器.......................................................................-27-
圖3.1 模糊系統基本架構...........................................................................-30-
圖3.2 七個模糊集合之歸屬函數...............................................................-35-
圖3.3 模糊系統晶片內部架構圖...............................................................-36-
圖3.4 FSC接腳圖........................................................................................-37-
圖3.5 FSC波形模擬圖................................................................................-39-
圖3.6 MATLAB中FUZZY TOOLBOX之數值運算................................-39-
圖4.1 模糊控制型四相並聯電源系統架構圖...........................................-43-
圖4.2 穩壓和均流兼具的模糊控制器(第k相模糊控制器) ....................-45-
圖4.3 Ve之歸屬函數....................................................................................-46-
圖4.4 ike之歸屬函數 ...............................................................-46-
圖4.5 Fk之模糊單點值 ...........................................................-46-
圖4.6 提昇效率之Fk模糊單點值 ..........................................-49-
圖4.7 模糊控制器的架構圖.......................................................................-49-
圖4.8 模糊控制型四相並聯電源系統之架構圖.......................................-50-
圖4.9 理想均流...........................................................................................-53-
圖4.10 理想均流暫態.................................................................................-54-
圖4.11 理想均流穩態.................................................................................-54-
圖4.12 無均流控制(電流誤差5%)............................................................-55-
圖4.13 無均流控制暫態(電流誤差5%)....................................................-56-
圖4.14 無均流控制穩態(電流誤差5%)....................................................-56-
圖4.15 無均流控制(穩定電壓5V誤差0.2%)...........................................-57-
圖4.16 受均流控制(電流誤差0.026%).....................................................-58-
圖4.17 受均流控制暫態(電流誤差0.026%).............................................-58-
圖4.18 受均流控制穩態(電流誤差0.026%).............................................-59-
圖4.19 受均流控制(穩定電壓5V誤差0.2%)..........................................-59-
圖4.20 無均流控制(電流誤差27%)..........................................................-60-
圖4.21 無均流控制穩態(電流誤差27%)..................................................-61-
圖4.22 受均流控制(電流誤差1.35%).......................................................-61-
圖4.23 受均流控制穩態(電流誤差1.35%)...............................................-62-
圖4.24 負載變動無均流(電流誤差18%)..................................................-63-
圖4.25 負載變動均流(電流誤差0.73%)...................................................-63-
圖4.26 負載變動穩壓(穩定電壓5V誤差0.2%)......................................-64-
圖4.27 均流前提下,效率為81.22%........................................................-65-
圖4.28 近似均流前提下(電流誤差4%),效率為81.25%.......................-65-
圖4.29 近似均流前提下(電流誤差8%),效率為81.31%.......................-66-
圖4.30 近似均流前提下(電流誤差10%),效率為81.46%.....................-66-
圖4.31 半載平均電流輸出波形(3.75A /相) .............................................-68-
圖4.32 重載平均電流輸出波形(7.5A /相) ...............................................-68-
圖4.33 系統輸出電壓.................................................................................-69-
圖4.34 系統輸出電壓之漣波.....................................................................-69-
圖4.35 系統於滿載之啟動輸出電壓.........................................................-71-
圖4.36 系統於滿載之啟動四相電流.........................................................-72-
圖4.37 負載變動半載(15A)至滿載(30A) .............................................-73-
圖4.38 負載變動滿載(30A)至半載(15A) .............................................-73-
圖5.1 二階KY電源轉換器完整架構圖...................................................-76-
圖5.2 模糊控制器架構...............................................................................-77-
圖5.3 前件部E之歸屬函數.......................................................................-78-
圖5.4 前件部DE之歸屬函數....................................................................-78-
圖5.5 後件部U之歸屬函數......................................................................-78-
圖5.6 二階KY電源轉換器之Simulink架構圖(1-plus-2D) ...................-81-
圖5.7 1-plus-2D電源轉換器於0.002s負載由100% => 0%....................-82-
圖5.8 1-plus-2D電源轉換器於0.003s負載由0% => 100%....................-83-
圖5.9 2-plus-D電源轉換器於0.002s負載由100% => 0%......................-83-
圖5.10 2-plus-D電源轉換器於0.003s負載由0% => 100%....................-84-
圖5.11 1-plus-2D系統於無載之穩態輸出電壓.........................................-85-
圖5.12 1-plus-2D系統於半載之穩態輸出電壓.........................................-86-
圖5.13 1-plus-2D系統於滿載之穩態輸出電壓.........................................-86-
圖5.14 1-plus-2D系統輸出電壓23V..........................................................-87-
圖5.15 1-plus-2D系統於負載變動響應無載(0A)切換至滿載(2A) .........-88-
圖5.16 1-plus-2D系統於負載變動響應滿載(2A)切換至無載(0A) .........-88-
圖5.17 2-plus-D系統於無載之穩態輸出電壓...........................................-89-
圖 5.18 2-plus-D系統於半載之穩態輸出電壓...........................................-90-
圖 5.19 2-plus-D系統於滿載之穩態輸出電壓...........................................-90-
圖 5.20 2-plus-D系統輸出電壓28V...........................................................-91-
圖 5.21 2-plus-D系統於負載變動響應無載(0A)切換至滿載(2A) ..........-92-
圖 5.22 2-plus-D系統於負載變動響應滿載(2A)切換至無載(0A) ..........-92-
表目錄
表2.1 均流匯流排型式優缺點比較...........................................................-15-
表3.1 FSC接腳功能描述............................................................................-38-
表4.1 系統規格...........................................................................................-41-
表4.2 穩壓控制模糊規則庫.......................................................................-44-
表4.3 穩壓兼均流系統規則庫...................................................................-48-
表4.4 系統於不同負載下各相輸出電流之均流誤差率...........................-70-
表5.1 系統規格...........................................................................................-74-
表5.2 二階KY電源轉換器之模糊規則庫...............................................-80-
參考文獻
[1] Desai, M.I., Mason, G.M., Gold, R.E., Krimigis, S.M., Cohen, C.M.S., Mewaldt, R.A., Mazur, J.E. and Dwyer, J.R., “Heavy-ion elemental abundances in large solar energetic particle events and their implications for the seed population,” Astrophysical Journal, vol. 649, 2006, pp. 470-489.

[2] Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H. and Wilkinson, D.P., “A review of anode catalysis in the direct methanol fuel cell,” Journal of Power Sources, vol. 155, 2006, pp. 95-110.

[3] Xu, L. and Cartwright, P., “Direct active and reactive power control of DFIG for wind energy generation,” IEEE Transactions on Energy Conversion, vol. 21, 2006, pp. 750-758.

[4] Moussaoui, Z., Batarseh, I., Lee, Henry and Kennedy, Chester, “Overview of the control scheme for distributed power systems,” Southcon Conference Record, 1996, pp. 584-591.

[5] Mammano, B. and Jordan, M., “Load Sharing with Paralleled Power Supplies,” Unitrod Application Notes, 2001.

[6] Qahouq, J.A.A. and Huang, L., “Power Converter with Gradient Power Architecture and Non-Uniform Current Sharing,” INTELEC, 2006, pp. 1-8.

[7] Zheng, L., Zhao, S. and He, L., “Research on current-Sharing control technique for paralleled converters,” WCICA, 2008, pp. 6425-6428.

[8] Tomescu, B. and VanLandingham, H.F., “Adaptive, stable fuzzy logic control for paralleled DC-DC converters current sharing,” IEEE PESC’01, vol. 4, 2001, pp. 1270-1276.
[9] Hwu, K.I. and Yau, Y.T., “A novel voltage-boosting converter: KY converter,” IEEE APEC’07, vol. 1, 2007, pp. 368-372.

[10] Hwu, K.I. and Yau, Y.T., “KY Converter and Its Derivatives,” IEEE Transactions on Power Electronics, vol. 24, no. 1, 2009, pp. 128-137.

[11] Wen, J., Jin, T. and Smedley, K., “A new interleaved isolated boost converter for high power applications,” IEEE APEC’06, 2006, pp. 79-84.

[12] Wen, W. and Lee, Y.-S., “A two-channel interleaved boost converter with reduced core loss and copper loss,” IEEE PESC’04, 2004, pp. 1003-1009.



[13] Xu, P., Ren, Y.-C., Ye, M. and Lee, F.C., “A family of novel interleaved DC/DC converters for low-voltage high-current voltage regulator module applications,” IEEE PESC’01, 2001, pp. 1507-1511.

[14] Abu Qahouq, J.A. and Huang, L., “Highly efficient VRM for wide load range with dynamic non-uniform current sharing,” IEEE APEC’07, 2007, pp. 543-549.

[15] Mao, H., Yao, L., Liu, J. and Batarseh, I., “Comparison study of inductors current sharing in non-isolated and isolated DC-DC converters with interleaved structures,” IEEE IECON’05, 2005, pp. 1128-1134.

[16] Lin, C.-S. and Chen, C.-L., “Single-wire current-share paralleling of current-mode-controlled DC power supplies,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, 2000, pp. 780-786.

[17] Luo, Shiguo, Ye, Zhihong, Lin, Ray-Lee and Lee, Fred C., “Classification and evaluation of paralleling methods for power supply modules,” IEEE PESC’99, 1999, pp. 901-908.

[18] Balogh, L., “Paralleling Power-Chiising and Applying the Best Technique for Load Sharing,” Unitrode-seminar, 2003.


[19] Mao, H., Yao, L., Liu, J. and Batarseh, I., “Comparison study of inductors current sharing in non-isolated and isolated DC-DC converters with interleaved structures,” IEEE IECON’05, 2005, pp. 1128-1134.

[20] Mao, H., Yao, L., Deng, S., Abdel-Rahman, O., Liu, J. and Batarseh, I., “Inductor current sharing of current doubler rectifier in isolated DC-DC converters,” IEEE APEC’06, 2006, pp. 770-775.

[21] Huang, W., Schuellein, G. and Clavette, D., “A scalable multiphase buck converter with average current share bus,” IEEE APEC’03, 2003, pp. 438-443.

[22] Wenxun, X., Bo, Z. and Dongyuan, Q., “Analysis and design of an automatic-current-sharing control based on average-current mode for parallel boost converters,” IEEE IPEMC’06, 2007, pp. 1293-1297.

[23] Sun, W.W., Guo, Y.J., Xing, Y. and Sun, X.D., “A current sharing approach for parallel PFC converter modules,” IEEE IPEMC’04, 2004, pp. 1069-1073.

[24] Guo Guoyong and Shi Bingxue, “Design of multi-phase DC-DC converter with averaged current sharing control,” ASIC’03, 2003, pp. 522-525.

[25] Meng, L., Fang, Y. and Xing, Y., “Current sharing control for boost PFC converters in parallel operation,” IEEE ICIT’05, 2005, pp. 502-507.

[26] 王文俊,認識Fuzzy,全華科技圖書股份有限公司,民91年。

[27] 梁適安,交換式電源供給器之理論與實務設計,全華科技圖書股份有限公司,民83年。

[28] 洪聖倫,雙電源模組並聯之研製,臺北科技大學電機工程學系碩士論文,民96年。

[29] 李宗翰,模糊控制型降壓電源轉換器之設計與實現,淡江大學電機工程學系碩士論文,民96年。
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信