淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1407200815013900
中文論文名稱 以影像為基礎之量測方法及其在平面定位之研究
英文論文名稱 Image-Based measuring system and it applications in 2-dimensional localization
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 黃俊瑋
研究生英文姓名 Chun-Wei Huang
學號 695460401
學位類別 碩士
語文別 中文
口試日期 2008-07-08
論文頁數 73頁
口試委員 指導教授-許陳鑑
委員-許陳鑑
委員-盧明智
委員-王偉彥
委員-陳琣{
中文關鍵字 距離量測  影像式量測  CCD攝影機  定位  量測系統 
英文關鍵字 Distance measurement  image-based measurement  CCD camera  localization  measuring systems 
學科別分類 學科別應用科學電機及電子
中文摘要 定位(Localization)是目前機器人研究相關重要議題,若能準確得知機器人目前所在位置,才能使機器人得以實現路徑規劃,移動至所想要的位置,現有的定位方法通常利用多種感測器資料去計算位置,需要繁雜的計算時間。
本文首先提出一種距離量測方法,只使用乙台數位攝影機(相機)配兩道平行的雷射光束,就能量測得到待測物到量測系統之間的距離、傾斜面上任意兩點的距離、以及傾斜面與地平線之間的角度。而本文也將所提出之影像式距離量測之方法應用於二維平面之定位研究,利用所提出之距離量測方法來縮短計算物體在二維平面位置之時間。同時,本研究也設計了一組參數量測系統,將使任何廠牌的數位攝影機(相機),都能引用本文所提的方法,亦提升量測結果的精確性。
最後,本文亦以實際的量測實驗及紀錄,證實這套量測系統的準確性及實用性,也證明此量測系統可應用在平面定位。
英文摘要 Localization is an important topic in Robotics. It is essential to have accurate position information of the robot so that the robot can be moved to any desired location. Although various Many localization methods have been proposed, those methods, however, usually use sensor fusion techniques to calculate the location of the robot. As a result, excessively calculation time might be required.
In this thesis, we present a distance measurement method by using a single CCD camera and two parallel laser projectors beside the camera to measure the distance between the CCD camera and a target object. The proposed measuring system can measure the distance between arbitrarily points on an oblique surface and the angle between the oblique surface and the horizon. We also apply the proposed image-based measurement system to determine the position of the robot in 2-dimensional plane.
Furthermore, this thesis also establishes a parameter identification system to make the proposed measuring system suitable for all kinds of CCD cameras. Thus, measurement accuracy of the proposed system can be significantly improved.
Finally, practical experiments are conducted in the thesis to validate the effectiveness and viability of the proposed method. Simulation results also demonstrate the measurement system has a satisfactory accuracy in 2-dimensional localization.
論文目次 目錄
中文摘要.........................................................................................................I
英文摘要.......................................................................................................III
致謝.................................................................................................................V
目錄................................................................................................................VI
圖目錄...........................................................................................................IX
表目錄...........................................................................................................XI
第一章 緒論..................................................................................................1
1.1 研究背景及動機.......................................................................................1
1.2 研究的目的與方法....................................................................................3
1.3 論文架構....................................................................................................4
第二章 距離量測方法(IBDMS)..............................................................6
2.1 IBDMS距離量測原理................................................................................6
2.1.1 攝影距離量測.................................................................................9
2.1.2 水平寬度與垂直高度之量測.......................................................10
2.2 雷射擴散問題之解決方法......................................................................12
第三章 影像式傾斜量測.........................................................................16
3.1 傾斜角度的量測......................................................................................18
3.2 傾斜面攝影距離的量測..........................................................................22
3.3 傾斜面任意兩點距離的量測..................................................................23
第四章 二維平面定位..............................................................................26
4.1 二維平面之水平寬度量測......................................................................28
4.2 二維平面之垂直長度量測......................................................................30
4.2 二維平面定位流程..................................................................................37
第五章 量測結果.......................................................................................43
5.1 量測參數的建立......................................................................................44
5.2 傾斜面量測實驗......................................................................................48
5.2.1 量測條件說明...............................................................................48
5.2.2 實驗結果.......................................................................................49
5.3 二維平面定位實驗..................................................................................55
5.3.1 量測條件說明...............................................................................55
5.2.2 實驗結果.......................................................................................56
第六章 結論與未來研究方向................................................................63
6.1 結論..........................................................................................................62
6.2 未來研究方向..........................................................................................64
參考文獻.......................................................................................................66
研究著作.......................................................................................................73
圖目錄
圖2.1 量測系統相關位置說明圖……………………………………………7
圖2.2 IBDMS距離量測說明…………………………………………………9
圖2.3 水平寬度與垂直高度量測之說明…………..……..………………..11
圖2.4 雷射亮點擴散與移位的現象……………………..…………………13
圖2.5 雷射移位所判斷得結果……………………………………………..14
圖2.6 雷射亮點位置最後判斷結果………………………………………..15
圖3.1 傾斜量測示意圖……………………….…………………………….17
圖3.2 傾斜角度與距離量測說明…………………………………………..18
圖3.3 原理說明…………………………………..…………………………20
圖3.4 Laser A與Laser B和相機中心在影像之距離說明圖……...………...21
圖3.5 傾斜面任意兩點距離量測說明圖…………………….…………….24
圖4.1 水平視角與垂直視角關係圖………………………….…………….26
圖4.2 從水平角度觀察雷射參考點的影像說明圖……………..…………29
圖4.3 從垂直角度觀察雷射參考點的影像說明圖……….……………….30
圖4.4 從垂直角度說明其位置關係圖……………………………………..31
圖4.5 相機水平方向所拍攝之照片…………………………..……………32
圖4.6 相機垂直方向所拍攝之照片…………………………..……………33
圖4.7 定位座標圖說明……………………….…………………………….37
圖4.8 坐標方位說明圖……………………………………………………..40
圖4.9 定位流程圖…………………………………………………………..42
圖5.1 參數量測系統說明圖………………………………….…………….44
圖5.2 不同距離時,水平方向所拍攝之參數量測照片……………………47
圖5.3 不同距離時,垂直方向所拍攝之參數量測照片……………………48
圖5.4 相同攝影距離時,不同傾斜角度之實際照片………………..……..49
圖5.5 相同攝影距離時,不同傾斜角度之實際照片………………..……..49
圖5.6 不同角度所投射之雷射投影點………………………..……………55
圖5.7 合成照片……………………………….…………………………….56
圖5.8 二維平面定位之待測點說明圖……………………………………..57
圖5.9 二維平面定位之待測點說明圖……………………………………..60





表目錄
表4.1 水平及垂直像素之關係表………………….…….…………………33
表5.1 傾斜角度量測………………….………….…………………………50
表5.2 攝影距離量測…………….……….…………………………………50
表5.3 攝影距離量測…………….……….…………………………………51
表5.4 傾斜面任意兩點距離量測………………….….……………………51
表5.5 傾斜面任意兩點距離量測………………….….……………………52
表5.6 時, 數值之相差度數與誤差關係表……...…………54
表5.7 時, 數值之相差度數與誤差關係表……...…………54
表5.8 時, 數值之相差度數與誤差關係表……...…………54
表5.9 點A-G至原點之位置………………...………………………………58
表5.10 平面上任意兩點量測結果………………..………………………59
表5.11 點A-G至原點之位置……………...………………………………61
表5.12 平面上任意兩點量測結果………………..………………………62
參考文獻 參考文獻

[1] Alessio Carullo, Franco Ferraris, and Salvatore Graziani, “Ultrasonic Distance Sensor Improvement Using a Two-Level Neural Network”, IEEE Transactions on Instrumentation and Measurement, Vol. 45, No. 2, April 1996, pp. 677-682.
[2] Francis Gueuning, Mihai Varlan, Chris'tian Eugene, Pascal Dupuis, “Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods”, IEEE Transactions on Instrumentation and Measurement, Vol. 46, No. 6, Dec. 1997, pp. 1236-1240.
[3] A.Caarullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sensors Journal, Vol. 1, No. 2, Aug. 2001, pp. 143-147.
[4] Kenji Nakahira, Tetsuji Kodama, Shin Morita, and Shigeru Okuma, “Distance measurement by an ultrasonic system based on a digital polarity correlator”, IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 6, Dec. 2001, pp. 1478-1752.
[5] Francis Gueuning, Mihai Varlan, Chris'tian Eugene, Pascal Dupuis, “Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods”, IEEE Instrumentation and Measurement Technology Conference, Brussels, Belgium, June 4-6 1996, pp. 399-404.
[6] Hosoe Kazuya, Matsumoto Seiichi, Yokota Hideo, Asaeda Tsuyoshi, Fukushima Tadahide, Shingu Tamotsu, Hashimoto Shigeru, Iwashita Tomonori, “Range finder system,” US patent of invention, No. 4123650, 1978.
[7] K. Osugi, K. Miyauchi, N. Furui, and H. Miyakoshi, “Development of the scanning laser radar for ACC system,” JSAE review, Vol. 20, No. 4, Oct. 1999, pp. 549-554.
[8] H.-T. shin, “Vehicles Crashproof Laser Radar,” M.S. thesis, Opt. Sci. Center, National Central Univ., Chung Li City, Taiwan, R.O.C., 2000.
[9] Kanade, T., Kano, H., Kimuram S., “Development of a Video-Rate Stereo Machine,” IEEE International Conference on Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative Robots', Proceedings, Pittsburgh, PA, Aug. 5-9, 1995, pp. 95-100.
[10] Tanaka, Y, gofuku, A., Nagai, I., Mohamed, A.: Development of a Compact Video-rate Range finder and its application, Proc. 3rd Int. Conf. on Advanced Mechatronics, Okayama, Japan, Aug. 1998, pp. 97-102.
[11] Rita Cucchiara, Massimo Piccardi and Paola Mello, “Image analysis and rule-based reasoning for a traffic monitoring system,” IEEE International Conference on Intelligent Transportation Systems, Tokyo, Oct. 5-8, 1999, pp. 758-763.
[12] Hong Yan, “Image analysis for digital media applications,” IEEE Computer Graphics and Applications, Vol. 21, No. 1, Jan. 2001, pp. 18-26.
[13] B.G. Mertzios and IS. Tsirikolias, “Applications of coordinate logic filters in image analysis and pattern recognition,” Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, Pula, June 19-21, 2001, pp. 125-130.
[14] Ching-Chih Tsai and Chia-Ju Wu, “Localization of an Autonomous Mobile Robot Based on Ultrasonic Sensory Information,” Journal of Intelligent and Robotic Systems, Korea, Vol. 30, No.3, Mar. 2001, pp. 267-277.
[15] Hung-Hsing Lin, Ching-Chih Tsai, Jui-Cheng Hsu and Chih-Fu Chang, “Ultrasonic self-localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering,” IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 1, Sept. 14-19, 2003, pp. 1283-1290.
[16] Peter Krammer and Herbert Schweinzer, “Localization of object edges in arbitrary spatial positions based on ultrasonic data,” IEEE Sensors Journal, Vol. 6, No. 1, Feb. 2006, pp.203-210.
[17] Ching-Chih Tsai, “A Localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements,” IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 5, Oct. 1998, pp. 1399-1404.
[18] J. Canou, C. Novales, G. Poisson, and P. Marche, “Quick primitives extraction using inertia matrix on measures issue from an ultrasonic network,” IEEE International Conference on Robotics and Automation, Seoul, Korea, Vol. 4, May 21-26, 2001, pp. 3999-4004.
[19] Margrit Betke and Leonid Gurvits, “Mobile robot localization using landmarks,” IEEE Transactions on Robotics and Automation, Vol. 13, No. 2, Apr. 1997, pp.251-263.
[20] Cyril Cauchois, Eric Brassart, Bruno Marhic and Cyril Drocourt, “An absolute localization method using a synthetic panoramic image base,” IEEE Proceedings of the Third Workshop on Omni-directional Vision, June 2, 2002, pp. 128-135.
[21] Dana Cobzas, Hong Zhang and Martin Jagersand, “Image-based localization with depth-enhanced image map,” IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Sept. 14-19, 2003, Vol. 2, pp. 1570-1575.
[22] Li-Chun Lai, Tsong-Li Lee, Hsien-Huang P. Wu and Chia-Ju Wui, “Self-Localization of Mobile Robots Based on Visual Information,” IEEE Conference on Industrial Electronics and Applications, Singapore, May 2006, pp. 1-6.
[23] George C. Karras, Dimitra J. Panagou and Kostas J. Kyriakopoulos, “Target-referenced Localization of an Underwater Vehicle using a Laser-based Vision System,” OCEANS, Boston, 2006, pp. 1-6.
[24] Fang-Jung Shiou, Ruey-Tsung Lee, “Opto-electronic detector for distance and slanting direction measurement of a surface,” ROC patent of invention, No. 246585, 2004.
[25] Schultz Stephen, Giuffrida Frank, Mondello Charles, GRAY Robert, “Oblique geolocation and measurement system,” US patent of invention, No. 044692, 2004.
[26] Umesh R. Dhond and J. K. Aggarwal, “Structure from stereo-a review,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 19, No. 6, Nov. 1989, pp. 1489-1510.
[27] Fua, Pascal V., “A parallel stereo algorithm that produces dense depth maps and preserves image features,” Machine Vision and Applications, Vol. 6, No. 1, Dec. 1993, pp. 35-49
[28] M. A. Sid-Ahmed and M. T. Boraie, “Dual camera calibration for 3-D machine vision metrology,” IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 3, June 1990, pp. 512-516.
[29] C. Liguori, A. Pietrosanto, and A. Paolillo, “An on-line stereo vision system for dimensional measurements on rubber extrusions,” Measurement: Journal of the International Measurement Confederation, Vol. 35, No. 3, Apr. 2004, pp. 221-231.
[30] Ti-Ho Wang, Ming-Chih Lu, Chen-Chien Hsu, Yin Yu Lu, and Ching-Pei Tsi, “Three Dimensional Measurement Based on Image Shift and Its Applications in Object Inspection,” WSEAS Transactions on Systems, Vol. 6, No. 5, May 2007, pp. 926-933.
[31] Ti-Ho Wang, Ming-Chih Lu, Chen-Chien Hsu, Yin-Yu Lu, Cheng-Pei Tsai, “Three dimensional distance measurement based on single digital camera,” Proceedings of the 2007 WSEAS Int. Conference on Circuits, Systems, Signal and Telecommunications (CISST’07), Gold Coast, Queensland, Australia, Jan. 17-19, 2007, pp. 153-157.
[32] Cheng-Chuan Chen, Chen-Chien Hsu, Ti-Ho Wang, Chun-Wei Huang, “Three-dimensional measurement of a remote object with a single CCD camera,” The 7th WSEAS International Conference on Signal Processing, Computational Geometry& Artificial Vision, Vouliagmeni Beach, Athens, Greece, Aug. 24-26, 2007, pp. 141-146.
[33] C. Liguori, A. Pietrosanto, and A. Paolillo, “Method for correcting geometric distortion in video cameras,” IEEE Proceedings of the National Aerospace and Electronics Conference, New York, USA, Apr. 1985, pp. 1382-1388.
[34] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 10, Oct. 1992, pp. 965-980.
[35] M. Rebiai, S. N Mansouri, F. Pinson, and B. B. Tichit, “Image distortion form zoom lenses: Modeling and digital correction,” Proc. Int. Broadcasting Convention, 1992, pp. 438-441.
[36] Ming-Chih Lu, Wei-Yen Wang, and Hung-Hsun Lian, “Image-Based height measuring system for liquid or particles in tanks,” IEEE International Conference on Networking, Sensing and Control, Vol. 1, Mar. 2004, pp. 24-29.
[37] Ming-Chih Lu, Wei-Yen Wang, and Chun-Yen Chu, “Optical-Based Distance Measuring System (ODMS),” The Eighth International Conference on Automation Technology, Taichung, 2005, pp. 282-285.
[38] Ming-Chih Lu, Wei-Yen Wang, and Chun-Yen Chu, “Image-Based Distance and Area Measuring System,” IEEE Sensors Journal, Vol. 6, No. 2, Apr. 2006, pp. 495-503.
[39] Ming-Chih Lu, “Image-based height measuring system for Liquid or particles in tanks,” ROC patent of invention, No. 201536, 2004.
[40] Ming-Chih Lu, Cheng-Chuan Chen, Chun-Yen Chu and Chin-Tun Chuang, “The apparatus and method of the distance measurement,” ROC patent of invention, No. 279526, 2007.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-18公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信