淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1407200811141800
中文論文名稱 水旋風分離器之研究與薄膜水旋風分離器之發展
英文論文名稱 Study of Hydrocyclone and Developing of Membrane Hydrocyclone
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 許智淵
研究生英文姓名 Chih-Yuan Hsu
學號 695400084
學位類別 碩士
語文別 中文
口試日期 2008-06-26
論文頁數 77頁
口試委員 指導教授-吳容銘
委員-李篤中
委員-陳錫仁
委員-黃國楨
委員-蔡榮進
委員-吳容銘
中文關鍵字 水旋風分離器  計算流體力學  模擬 
英文關鍵字 Hydrocyclone  CFD  Simulation 
學科別分類
中文摘要 本實驗採用直徑30 mm之水旋風分離器,使用馬鈴薯澱粉當粉體,分別進行實驗和模擬的分析,實驗方面探討不同進口壓力下和溢流管深淺之影響,分析溢流和底流的粒徑分佈以及分離效率,模擬方面以多相流VOF模式模擬空氣核心並分析流場,以實驗與數值模擬為基礎,進而發展新樣式水旋風分離器-薄膜水旋風分離器。
實驗結果顯示,當進口壓力越大則整體分離效率越好。在不同溢流管深的實驗結果顯示,不管任何溢流管的深淺皆會因進口壓力增大而分離效率有所提升,以溢流管深為30 mm最理想。本研究的薄膜水旋風分離器在相同的操作條件下,薄膜水旋風分離器的分流比和新定義的澄清效率(Ec)皆會優於傳統型式,而整體的平均效率提升約16 %以上,大大提升水旋風分離器的整體分離效率,具有一定發展性。
英文摘要 This study uses potato starch as particles to realize its classification in a 30 mm diameter hydrocyclone. In the experiment, the effects of variations in feed pressure and vortex finder depth on particle size distribution and separation efficiency were analyzed. In the simulation, the air core was simulated successfully by VOF model. Based on experimental and simulation results, a new kind of hydrocyclone, membrane hydrocyclone was developed.
According to experiment results, the higher the feed pressure, the higher the separation efficiency. The hydrocyclone with 30 mm vortex finder inserted into the cylindrical part of the hydrocyclone has the best separation efficiency. The new developing membrane hydrocyclone is better than the traditional hydrocyclone in flow split and clarification efficiency (Ec) under the same operation conditions.
論文目次 中文摘要………………………………………………………………I
英文摘要………………………………………………………………II
目錄……………………………………………………………………III
圖表目錄………………………………………………………………VII
第一章 緒論……………………………………………………………1
1-1 前言…………………………………………………………………1
1-2 研究動機與目標……………………………………………………2
第二章 文獻回顧………………………………………………………3
2-1水旋風分離器之發展概要…………………………………………3
2-1-1水旋風分離器之簡介……………………………………………3
2-1-2 水旋風分離器之介紹與結構…………………………………4
2-1-3 水旋風分離器之規格…………………………………………6
2-1-4 水旋風分離器之優、缺點………………………………………7
2-1-5 水旋風分離器之應用…………………………………………8
2-2 水旋風分離器之特殊現象…………………………………………9
2-2-1魚鉤現象…………………………………………………………9
2-2-2空氣核心…………………………………………………………10
2-2-3 短路流現象……………………………………………………11
2-2-4 循環流…………………………………………………………11
2-3水旋風分離器在生化工程上的應用………………………………12
2-4數值計算在水旋風分離器的應用…………………………………15
第三章理論……………………………………………………………18
3-1 水旋風分離器之基本理論………………………………………18
3-1-1水旋風分離器的分離原理……………………………………18
3-1-2粒子在流體中的拖曳力………………………………………19
3-1-3兩相流動中的受力分析………………………………………19
3-1-4 平衡軌道理論…………………………………………………21
3-1-5無因次群組……………………………………………………22
3-2 水旋風分離器之性能和特性……………………………………24
3-2-1 幾何結構………………………………………………………24
3-2-2 物性參數………………………………………………………25
3-2-3 操作參數………………………………………………………26
3-3數值計算……………………………………………………………28
3-3-1模擬軟體與計算模式簡介……………………………………28
3-3-2 統御方程式……………………………………………………28
3-3-3 邊界條件………………………………………………………31
第四章 實驗裝置與模擬設定…………………………………………32
4-1 實驗物料…………………………………………………………32
4-2 實驗裝置…………………………………………………………33
4-3 實驗步驟…………………………………………………………36
4-4 模擬的基本假設…………………………………………………37
4-5 模擬的整體結構與網格…………………………………………38
4-6 數值方法與模擬模式設定………………………………………39
第五章 結果與討論……………………………………………………40
5-1 實驗結果…………………………………………………………40
5-1-1 壓降效應………………………………………………………42
5-1-2 溢流管深淺之影響……………………………………………45
5-2 模擬結果…………………………………………………………53
5-2-1 不同溢流管深淺的模擬結果…………………………………57
5-3 新樣式水旋風分離器-薄膜水旋風分離器(Membrane Hydrocyclone)……60
5-3-1 模擬測試………………………………………………………60
5-3-2 實驗裝置………………………………………………………61
5-3-3 實驗結果與比較………………………………………………62
第六章 結論……………………………………………………………68
符號說明………………………………………………………………71
參考文獻………………………………………………………………74

圖目錄:
第二章
圖2-1水旋風分離器之結構……………………………………………5
圖2-2兩個基本設計水旋風分離器之結構(a)小圓錐角;(b)大圓錐角……6
圖2-3水旋風分離器之魚鉤現象………………………………………9
第三章
圖3-1各截面軸速度分佈和零速包絡面(LZVV)………………………21
圖3-2水旋風分離器之基本幾何結構圖………………………………25
第四章
圖4-1馬鈴薯澱粉之粒徑分佈圖………………………………………32
圖4-2水旋風分離器之結構……………………………………………34
圖4-3實驗整體設備圖…………………………………………………35
圖4-4水旋風分離器之網格……………………………………………38
第五章
圖5-1不同進口壓力下,溢流、底流和進口的流量圖………………40
圖5-2進口壓力對進口速度和特性速度作圖…………………………41
圖5-3進口壓力對雷諾數作圖…………………………………………42
圖5-4在不同進口壓力下溢流之粒徑分佈(Lhco=30 mm)……………43
圖5-5在不同進口壓力下底流之粒徑分佈(Lhco=30 mm)……………43
圖5-6在不同進口壓力下之分級效率曲線(Lhco=30 mm)……………44
圖5-7在不同進口壓力下溢流之粒徑分佈(Lhco=0 mm)……………45
圖5-8在不同進口壓力下底流之粒徑分佈(Lhco=0 mm)……………46
圖5-9在不同進口壓力下溢流之粒徑分佈(Lhco=65 mm)……………47
圖5-10在不同進口壓力下底流之粒徑分佈(Lhco=65 mm)…………48
圖5-11在不同進口壓力下溢流之粒徑分佈(Lhco=90 mm)…………49
圖5-12在不同進口壓力下底流之粒徑分佈(Lhco=90 mm)…………50
圖5-13在不同溢流管深之分級效率曲線(Pi =0.9 bar)……………51
圖5-14進口壓力對分離效率在不同溢流管深作圖…………………52
圖5-15不同時間下的空氣體積分佈(vi=4.9 m/s, Lhco=30 mm, X=0)……54
圖5-16分佈圖 (a)壓力分佈 (b)軸速度 (c)徑向速度 (d)切線速度(vi=4.9 m/s, Lhco=30 mm, t=1.9 s, X=0)………………………56
圖5-17不同溢流管深的空氣體積分佈圖 (a) Lhco=0 mm (b) Lhco=30 mm(c) Lhco=65 mm (d) Lhco=90 mm (vi=4.9 m/s, t=1.9 s, X=0)……57
圖5-18不同溢流管深的壓力分佈圖(a) Lhco=0 mm (b) Lhco=30 mm
(c) Lhco=65 mm (d) Lhco=90 mm (vi=4.9 m/s, t=1.9 s, X=0)……58
圖5-19不同溢流管深的軸速度分佈圖 (a) Lhco=0 mm (b) Lhco=30 mm(c) Lhco=65 mm (d) Lhco=90 mm (vi=4.9 m/s, t=1.9 s, X=0)……59
圖5-20 (a)薄膜型式與(b)和(c)傳統型式之模擬結構……………60
圖5-21 (a)薄膜型式和(b)傳統型式之實驗的溢流管結構…………62
圖5-22薄膜型式和傳統型式的分流比之比較圖……………………63
圖5-23薄膜型式和傳統型式的溢流濃度比較圖……………………64
圖5-24薄膜型式和傳統型式的澄清效率比較圖……………………65
圖5-25薄膜型式與傳統型式的澄清效率曲線圖(Pi =0.3 bar)……66
圖5-26薄膜型式與傳統型式的澄清效率曲線圖(Pi =0.6 bar)……67
圖5-27薄膜型式與傳統型式的澄清效率曲線圖(Pi =0.9 bar)……67

表目錄:
第五章
表5-1進口、溢流和底流的實驗壓力數據……………………………41
表5-2 (a)薄膜型式與(b)和(c)傳統型式之模擬數據比較…………61
參考文獻 Bhaskar, K. U., Murthy, Y. R., Raju, M. R., Tiwari, S., Srivastava, J. K., and Ramakrishnan, N. (2007) “CFD Simulation and Experimental Validation Studies on hydrocyclone,” Minerals Engineering, 20, 60-71.

Boysan, F., Ayers, W. H., and Swithenbank, J. (1982) “Fundamental Mathematical Modeling Approach to Cyclone Design,” Transactions of the Institution of Chemical Engineers, 60, 222-230.

Cilliers, J. J., and Harrison, S. T. L. (1997) “The Application of Mini-Hydrocyclones in the Concentration of Yeast Suspensions,” Chemical Engineering Journal, 65, 21-26.

Da Matta, V. M., and Medronho, R. D. A. (2000) “A New Method for Yeast Recovery in Batch Ethanol Fermentations: Filter Aid Filtration Followed by Separation of Yeast from Filter Aid Using Hydrocyclones,” Bioseparation, 9, 43-53.

Delgadillo, J. A., and Rajamani, R. K. (2005) “Hydrocyclone Modeling: Large Eddy Simulation CFD Approach,” Minerals & Metallurgical Processing, 22, 225-232.

Duggins, R. K., and Frith, P. C. W. (1987) “Turbulence Anisotropy in Cyclones,” Filtration and Separation, 24, 394-397.

Dyakowski, T., and Williams, R. A. (1993) “Modelling Turbulent Flow Within a Small-Diameter Hydrocyclone,” Chemical Engineering Science, 48, 1143-1152.

Elsayed, E.A., Medronho, R.A., Wagner, R., and Deckwer, W. D. (2006) “Use of Hydrocyclones for Mammalian Cell Retention: Separation Efficiency and Cell Viability (Part 1),” Engineering in Life Sciences, 6, 347-354.

Fluent (2005) “Fluent 6.2 User's Guide,” FLUENT, Inc., Lebanon, New Hampshire, USA

Frachon, A. M., and Cilliers, J. J. (1999) “A General Model for Hydrocyclone Partition Curves,” Chemical Engineering Journal, 73, 53-59.

Harrison, S. T. L., and Cilliers, J. J. (1997) “The Use of Mini-Hydrocyclones for Differential Separations within Mineral Slurries Subjected to Bioleaching,” Minerals Engineering, 10, 529-535.

Heese, F., Robson, P., and Hall, L. (2005) “Magnetic Resonance Imaging Velocimetry of Fluid Flow in a Clinical Blood Filter,” AIChE Journal, 51, 2396-2401.

Hoekstra, A. J., Derksen, J. J., and Van Den Akker, H. E. A. (1999) “An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones,” Chemical Engineering Science, 54, 2055-2065.

Huang, S. (2005) “Numerical Simulation of Oil-Water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows,” The Canadian Journal of Chemical Engineering, 83, 829-834.

Hsieh, K. T., and Rajamani, R. K. (1991) “Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow,” AIChE Journal, 37, 735-746.

Kelsall, D. F. (1953) “A Further Study on the Hydraulic Cyclone,” Chemical Engineering Science, 2, 254-272.

Majumder, A. K., Yerriswamy, P., and Barnwal, J. P. (2003) “The ‘Fish-Hook’ Phenomenon in Centrifugal Separation of Fine Particles,” Minerals Engineering, 6, 1005-1007.

Matvienko, O. V., and Dueck, J. (2006) “Numerical Study of the Separation Characteristics of a Hydrocyclone under Various Conditions of Loading of the Solid Phase,” Theoretical Foundations of Chemical Engineering, 40, 203-208.

Nageswararao, K. (2000) “A Critical Analysis of the Fish Hook Effect in Hydrocyclone Classifiers,” Chemical Engineering Journal, 80, 251-256.

Parga, J. R., and Cocke, D. L. (2001) “Oxidation of Cyanide in a Hydrocyclone Reactor by Chlorine Dioxide,” Desalination, 140, 289-296.

Slack, M. D., Del Porte, S., and Engelman, M. S. (2004) “Designing Automated Computational Fluid Dynamics Modeling Tools for Hydrocyclone Design,” Minerals Engineering, 17, 705-711.

Svarovsky, L. (1984) “Hydrocyclone,” Holt, Rinehart and Winston Ltd, London.

Svarovsky, L. (1990) “Solid-Liquid Separation,” 3rd ed., Butterworths, London

Trawinski, H. F. (1977) “Solid/Liquid Separation Equipment Scale up,” Ed. D. B. Purchas, Uplands Press, England, 241-286.

Wang, B., Chu, K.W., and Yu, A. B. (2007) “Numerical Study of Particle-Fluid Flow in A Hydrocyclone,” Industrial and Engineering Chemistry Research, 46, 4695-4705

Yoshida, H., Taniguchi, S., Fukui, K., and Kobayashi, A. (2004) “Effect of Apex Cone on Particle Classification Performance of Cyclone Separator,” Journal of the Chinese Institute of Chemical Engineers, 35, 41-46

Yuan, H., Rickwood, D., Smyth, I. C., and Thew, M. T. (1996) “An Investigation into the Possible Use of Hydrocyclones for the Removal of Yeast From Beer,” Bioseparation, 6, 159-163.

任連城、梁政、梁利平和龍道玉 (2005) “過濾式水力旋流器方案設計”,西南石油學院學報,27(1),82-85

李建明 (1997) “水力旋流器固液兩相流動數值模擬及分離機理研究”,博士學位論文,成都四川聯合大學化學工程學院

呂信毅 (2006) “改進複合型水旋風分離器之分離效率”,碩士學位論文,淡江大學化學工程與材料工程學系

趙慶國和張明賢 (2003) “水力旋流器分離技術”,化學工業出版社

蔣明虎、趙立新和李楓 (2000) “旋流分離技術”,哈爾濱工業出版社
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信