淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1407200811135000
中文論文名稱 管式膜過濾之薄膜表面受力與薄膜阻力之分析模擬
英文論文名稱 Simulation of force on membrane surface and resistance of membrane in a tubular membrane filtration system
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 林佑儒
研究生英文姓名 Yu-Ju Lin
學號 695401009
學位類別 碩士
語文別 中文
口試日期 2008-06-26
論文頁數 95頁
口試委員 指導教授-吳容銘
委員-李篤中
委員-黃國楨
委員-鄭東文
委員-蔡榮進
委員-吳容銘
中文關鍵字 管式膜過濾  側流  反洗  模擬  結垢 
英文關鍵字 tubular-membrane filtration  side-stream  backwash  simulation  fouling 
學科別分類
中文摘要 管式膜過濾已廣泛的被使用在固液分離程序上,管式膜過濾模組之改良將有助於提高分離效率,並且節省操作成本。實驗方面,採用平均孔徑為3.5 um的複合陶瓷膜,過濾平均粒徑為15 um的聚甲基丙烯酸甲酯(PMMA)粉體,探討懸浮液濃度、過濾壓力、掃流速度等操作變數對濾速之影響。同時,配合流體力學軟體加以模擬,分析膜面上之剪應力的變化情形,進而找出提升濾速之方法。亦即,外加側流之管式膜過濾模組。並探討反洗操作對濾速之影響。側流膜過濾,可使膜面上之剪應力增加,清除薄膜表面之結垢;反洗操作,則可使薄膜表面的濾餅脫落,亦可清洗膜孔內部所沈積的粒子。
英文摘要 Tubular filtration is commonly used in solid-liquid separation processes. The improvement of tubular filtration models helps raise separation efficiency and saves operation cost. This experiment uses a filter membrane, made of Zirconia, with a mean pore size of 3.5 um is used to filter 15 um PMMA particles. We study the effects of changes in suspension concentration, transmembrane pressure, cross-flow velocity, etc. on filtration rate. Also, we use Computational Fluid Dynamics, CFD, Software Fluent 6.2 to simulate changes in shear-stress on the surface of the membrane to discover tubular-membrane filtration with side-stream, which raises filtration rate and shear-stress on the membrane, also removing fouling on the membrane surface. We then explored the effects of backwash on filtration rate, discovering that backwashing causes the cake to peel off on the membrane surface and cleans the accumulated particles inside the membrane pores.
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖表目錄 VI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 8
第二章 文獻回顧 9
2.1 掃流過濾之研究 9
2.2 濾速與阻力之探討 12
2.3 過濾阻塞機制之研究 13
2.3.1 濃度極化現象 17
2.3.2 結垢現象 19
2.4 減緩結構阻塞之策略 19
第三章 理論基礎 23
3.1 掃流微過濾系統之受力 23
3.2 阻力串聯模式 27
3.3 計算模式 30
3.3.1 基本假設 30
3.3.2 數值模擬程序步驟 30
3.3.3 統御方程式與邊界條件 35
第四章 實驗與數值分析方法 39
4.1 實驗物料與濾膜 39
4.2 實驗裝置 40
4.2.1 管式膜過濾基本構造 40
4.2.2 外加側流之管式膜過濾構造 43
4.2.3 間歇性反洗操作之管式膜過濾(Case-1)基本構造 46
4.2.4 間歇性反洗操作之管式膜過濾(Case-2)基本構造 46
4.3 實驗分析儀器 49
4.4 實驗步驟 49
4.5 實驗操作條件 50
4.6 薄膜之清洗 52
4.7 注意事項 52
第五章 結果與討論 53
5.1 操作條件對濾速之影響 53
5.1.1 懸浮液濃度對濾速之影響 53
5.1.2 過濾壓差對濾速之影響 56
5.1.3 掃流速度對濾速之影響 58
5.2 膜面上之受力對濾速之影響 60
5.2.1 管式膜過濾膜面受力分析 60
5.2.2 外加側流之管式膜過濾膜面受力分析 62
5.3 外加側流之管式膜過濾實驗數據分析 67
5.4 反洗操作對濾速之影響 71
5.4.1 多相流模式之反洗模擬分析 71
5.4.2 間歇性反洗操作之管式膜過濾實驗數據分析 78
5.5 改變過濾策略之效率評估 80
第六章 結論 82
符號說明 85
參考文獻 91

圖目錄
第一章
圖1.1 薄膜過濾程序分類 4
圖1.2 垂直過濾示意圖 5
圖1.3 掃流過濾示意圖 6
第二章
圖2.1 阻塞模式機制示意圖 16
圖2.2 濃度極化分布圖 18
圖2.3 典型減緩濃度極化與結垢現象之方法 21
圖2.4 反洗操作圖 22
第三章
圖3.1 控制體積薄膜表面上z方向之受力 26
圖3.2 薄膜過濾阻力示意圖 29
圖3.3 數值模擬程序步驟 31
圖3.4 管式膜過濾裝置中流場空間的比例圖 32
圖3.5 外加側流之管式膜過濾裝置中流場空間的比例圖 33
圖3.6 管式膜過濾裝置中流場空間之網格圖 34
圖3.7 系統中在計算上的統御方程式與邊界條件示意圖 38
第四章
圖4.1 PMMA粉體之SEM圖 39
圖4.2 管式膜過濾基本系統之示意 41
圖4.3 管式膜過濾基本系統拍攝圖 42
圖4.4 外加側流之進流方式示意圖 43
圖4.5 外加側流之管式膜過濾基本系統拍攝 44
圖4.6 外加側流之管式膜過濾基本系統之示意圖 45
圖4.7 間歇性反洗操作(Case-1)之管式膜過濾基本系統之示意圖47
圖4.8 間歇性反洗操作(Case-2)之管式膜過濾基本系統之示意圖48
第五章
圖5.1 定過濾壓差與定掃流速度下懸浮液濃度對濾速之影響 55
圖5.2 不同懸浮液濃度下過濾總阻力隨時間之變化情形 55
圖5.3 定懸浮液濃度與定掃流速度下過濾壓差對濾速之影響 57
圖5.4 不同過濾壓差下過濾總阻力隨時間之變化情形 57
圖5.5 定過濾壓差與定懸浮液濃度下掃流速度對濾速之影響 59
圖5.6 不同掃流速度下過濾總阻力隨時間之變化情形 59
圖5.7 濾室內之掃流速度分佈圖 61
圖5.8 不同掃流速度下膜面剪應力值之比較 62
圖5.9 有無外加側流膜面上之速度分佈圖 64
圖5.10 有無外加側流膜面剪應力值之比較 65
圖5.11 定過濾壓差與定懸浮液濃度下有無外加側流對濾速之影響68
圖5.12 有無外加側流之過濾總阻力隨時間之變化情形 68
圖5.13 定過濾壓差與定懸浮液濃度下不同側流比例對濾速之影響70
圖5.14 不同側流比例下過濾總阻力隨時間之變化情形 70
圖5.15 反洗模組(Case-1)之結構圖 72
圖5.16 反洗程序1-30s之膜面上粒子體積分率變化情形(Case-1)73
圖5.17反洗模組(Case-2)之結構圖 75
圖5.18 反洗程序1-30s之膜面上粒子體積分率變化情形(Case-2)76
圖5.19 下半部膜管反洗30s之比較 77
圖5.20 不同結構之間歇性反洗操作對濾速之影響 79
圖5.21 不同結構之間歇性反洗操作下過濾總阻力隨時間之變化情形79
圖5.22 改變過濾策略之比較 81

表目錄
第一章
表1.1 各式模組單位體積之比表面積與適用程序 7
第二章
表2.1 常用薄膜清洗溶劑與用途 22
第四章
表4.1 複合陶瓷膜之性質 40
第五章
表5.1 改變過濾策略之效率評估 81






參考文獻 Adham, S. S., Snoeyink, V. L., Clark, M. M., and C. Anselme, “Predicting and Verifying TOC Removal by PAC in Pilot-Scale UF System,” Journal of American Water Works Association, 85, 58-68 (1993).

Ahn, K. H., Cha, H. Y., Yeom, I. T., and K. G. Song, “Application of Nanofiltration for Recycling of Paper Regeneration Wastewater and Characterization of Filtration Resistance,” Desalination, 119, 169-176 (1998).

Aimar, P., Howell, J. A., Clifton, M. J., and V. Sanchez, “Concentration Polarization Build-up in Hollow Fiber: A Measurement and Its Modeling in Ultrafiltration,” Journal of Membrane Science, 59, 81-99 (1991).

Bader, M. S. H., “Nanofiltration for Oil-fields Water Injection Operations: Analysis of Concentration Polarization,” Desalination, 201, 106-113 (2006).

Baker, R. J., Fane, A. G., Fell, C. J. D., and B. H. Yoo, “ Factors Affecting Flux in Crossflow Filtration,” Desalination, 53, 81-96 (1985).

Bird, R. B., Stewart, E. W., and N. E. Lightfoot, ”Transport Phenomena,” JOHN WILEY and SONS Inc. US, 74-91,189-194 (1960).

Blatt, W. F., Dravid, A., Michael, A. S., and L. Nelson, “Solute Polarization and Cake Formation in Membrane Ultrafiltration: Cause, Consequences, and Control Techniques,” Membrane Science and Technology, 47, J. E. Flinn, (Ed.), Plenum Press, New York (1970).

Bowen, W. R., Calvo, J. I., and A. Hernandez, “Steps of Membrane Blocking in Flux Decline During Protein Microfiltration,” Journal of Membrane Science, 101, 153-165 (1995).

Davis, R. H., and S. A. Birdsell, “Hydrodynamic Model and Experiments for Crossflow Microfiltration,” Chemical Engineering Communication, 49, 217-229 (1987).

Field, R. W., Wu, D., Howell, J. A., and B. B. Gupat, “Critical Flux Concept foe Microfiltration Fouling,” Journal of Membrane Science, 100, 259-272 (1995).

Fischer, E., and J. Raasch, “Cross-Flow Filtration,” German Chemical Engineering, 8, 211-230 (1985).

Franken, T., “Membrane Selection – More than Material Properties Alone,” Membrane Technology, 97, 7-10 (1997).

Fritzsche, A. K., Arevalo, A. R., Moore, M. D., Elings, V. B., Kjoller, K., and C. M. Wu, “The Surface Structure and Morphology of Polyvinylidene Fluoride Microfiltration Membranes by Atomic Force Microscopyc,” Journal of Membrane Science, 68, 65 (1992).

Gupta, B. B., Howell, J. A., Wu, D., and, R. W. Field, “A Helical Baffle for Cross-flow Microfiltration,” Journal of Membrane Science, 99, 31-42 (1995).

Ho, W. S., and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York (1992).

Huotari, H. M., Tragardh, G., and I. H. Huisman, “Crossflow Membrane Filtration Enhanced by An External DC Electric Field : A Review,” Transactions of the Institution of Chemical Engineers, Vol. 77, part A, July, p.461-468 (1999).

Hwang, K. J., Yu, M. C., and W. M. Lu, “ Migration and Deposition of Submicron Particles in Crossflow Microfiltration,” Separation Science and Technology, 32, 2723-2747 (1997).

Iritani, E., Mukai, Y., Tanaka, Y., and T. Murase, “Flux decline behavior in dead-end microfiltration of protein solution,” Journal of Membrane Science, 103, 181 (1995).

Kang, S. K., and K. H. Choo, “Use of MF and UF Membrane for Reclamation of Glass Industry Wastewater Containing Colloidal Clay and Glass Particles,” Journal of Membrane Science, 223, 89-103 (2003).

Kim, K. J., Chen, V., and A. G. Fane, “Some Factors Determining Protein Aggregation during Ultration,” Biotechnology and Bioengineering, 42, 260 (1993).

Kim, M., and A. L. Zydeny, “Theoretical Analysis of Particle Trajectories and Sieving in a Two-Dimensional Cross-flow Filtration System,” Journal of Membrane Science, 281, 666-675 (2006).

Kuberkar, V. T. and R. H. Davis, “Microfiltration of Protein-cell Mixtures with Crossflushing or Backflushing,” Journal of Membrane Science, 183, 1-14 (2001).

Lu, W. M., and S. C. Ju, “Selctive Particle Deposition in Cross-Flow Filtration,” Separation Science and Technology, 24, 517-540 (1989).

Ma, H., Bowman, C. N., and R. H., Davis, “Membrane Fouling Reduction by Backpulsing and Surface Modification,” Journal of Membrane Science, 173, 191-200 (2000).

Mericer, M., Lagane, C., C. Fonade, “Influence of A Gas/Liqiid Two-Phase Flow on the Ultrafiltration and Microfiltration Performances:Case of A Ceramic Flat Sheet Membrane,” Journal of Membrane Science, 180, 93-102 (2000).

Metcalf & Eddy, Inc., “Wastewater Engineering: Treatment and Reuse,” 4th ed., McGraw Hill, Boston (2003).

Millward, H. R., Bellhouse, B. J., Sobey, I. J. and R. W. H. Lewis, “Enhancement of Plasma Filtration Using the Concept of the Vortex Wave,” Journal of Membrane Science, 100, 121-129 (1995).

Mulder, M., “Basic Principles of Membrane Technology,” Kluwer Academic Publishers, Norwell, MA, 5-24, 198-311 (1991).

Murkes, J., “Parafiltration – A New Advanced Filtration Technology,”
Filtration and Separation, 20, 21 (1983).

Pihlajamaki, A., Vaisanen, P., and M. Nystrom, “Characterization of Clean and Fouled Polymeric Ultration Membranes by Fourier Transform IR Spectroscopy-attenuated Total Reflection,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 138, 323 (1998).

Pirbazari, M., Badriyha, B. N., and V. Ravindran, “MF-PAC for Treating Water Contanibated with Natural and Synthetic Organics,” Journal / American Water Works Association, 83, 61-68 (1992).

Rautenbach, R., and R. Albrecht, “Membrane Process,” John Wiley & Sons Ltd., New York, 10-44, 272-334 (1989).

Rodgers, V. G. J., and R. E. Sparks, “Reduction of Membrane Fouling in Portein Ultrafiltration,” AICHE Journal, 37, 1517-1528 (1991).

Ruchton, A., and G. S. Zhang, , “Rotary Microporous Filtration,” Desalination, 70, 379-394 (1988).

Schulz, G., and S. Ripperger, “Concentration Polarization in Croflow Mircofiltration,” Journal of Membrane Science, 40, 173-184 (1989)

Schwingea, J., Wiley, D. E., Fane, A. G., and R. Guenther, “ Characterization of a Zigzag Spacer for Ultrafiltration,” Journal of Membrane Science, 172, 19-31 (2000).

Su, T. J., Lu, J. R., Cui, Z. F., Bellhouse, B. J., Thomas, R. K., and R. K. Heenan, “Idenification of the Location of Protein Fouling on Ceramic Membrane under Dynamic Filtration Condition,” Journal of Membrane Science, 163, 265 (1999).

Sutherland, K., “Profile of the International Membrane Industry,” 2nd ed., Elsevier, Amsterdam (2000).

Tiller, F. M., “Theory and Practice of Solid-liquid Separation,” Univ. of Houston, Houston, TX, U.S.A. (1975).
Vigneswaran, S., and Y. K. Wong, “Detailed Investigation of Effects of Operating Parameters of Ultrafiltration Using Laboratiry-scale ultrafiltration unit,” Desalination, 70, 299-316 (1988).

Wakeman, R. J., and E. S. Tarleton, “Understanding Flux Delcline in Crossflow Microfiltration: Part I-Effect of Particle and Pore Size,” Transactions of the Institution of Chemical Engineers, 71, Part A, p.399-410 (1993).

Wakeman, R. J., and E. S. Tarleton, “Understanding Flux Delcline in Crossflow Microfiltration: Part II-Effect of Process and Parameter,” Transactions of the Institution of Chemical Engineers, 72, Part A, p.431-440 (1994).

Weigert, T., Altmann, J., and, S. Ripperger, “Crossflow Electrofiltration in Pilot Scale,” Journal of Membrane Science, 159, 253-262 (1999).

Xu, N., Zhong, Y., and J. Shi, “Crossflow Microfiltration of Micro-Sized Mineral Suspension Using Ceramic Membranes,” Chemical Engineering Research and Desing, 80, 215-221 (2002).

Zeman, L. J., and A. L. Zydney, “Microfiltration and Ultrafiltration,” Marcel, Dekker, New York (1996).

Zydney, A. L., and C. K. Colton, “A Concentration Polarization Model for the Filtrate Flux in Crossflow Microfiltration of Particulate Suspensions,” Chemical Engineering Communication, 47, 1-21 (1986).

呂維明,“固液過濾技術”,高立書局有限公司,(2004)

蕭瑞昌,“利用水溶性幾丁聚醣以薄膜過濾法去除微量之金屬離子”,碩士論文,元智大學化學工程學系,中壢,(1997)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信