淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1407200517251400
中文論文名稱 薄膜表面形態對微粒子/蛋白質 雙成份懸浮液掃流微過濾之影響
英文論文名稱 Effects of Membrane Surface Morphology on the Performance of Cross-Flow Microfiltration of Fine Particle/Protein Binary Suspension
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 邱鴻勝
研究生英文姓名 Hung-Sheng Chiu
學號 692360133
學位類別 碩士
語文別 中文
口試日期 2005-06-23
論文頁數 104頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-莊清榮
委員-童國倫
委員-鄭東文
中文關鍵字 掃流微過濾  蛋白質純化  薄膜結垢  生化分離 
英文關鍵字 cross-flow microfiltration  protein purification  fouling  bio-separation 
學科別分類
中文摘要 本研究探討薄膜形態與操作條件對薄膜結垢(fouling)的影響。實驗中以掃流微過濾來分離聚甲基丙烯酸甲酯/牛血清蛋白雙成份懸浮液,並以兩種表面形態不同之薄膜(Isopore與Durapore薄膜)進行實驗,探討掃流速度、過濾壓差、pH值及薄膜形態對濾速的影響;且針對粒子在濾材表面之附著機構加以研究。研究顯示,過濾阻力之來源主要為濾餅阻力所主導。此外,當pH值接近電位點(pI = 4.5)時,溶液中的粒子會凝聚成粒子團,進行過濾操作時會使濾速增加。為了方便探討粒子在薄膜孔道內形成阻塞,故將溶液環境維持在中性條件下。經由SEM圖可觀察到粒子阻塞及堆積在薄膜表面的情形,藉由理論的分析與實驗的結果,可模擬粒子在濾膜孔道中運動的軌跡,提供日後濾膜選擇與操作參數設定時的參考。
英文摘要 The effects of membrane morphology and operating conditions on the filtration rate and membrane fouling are studied. Two kinds of membrane, Isopore and Durapore are used to separate the PMMA/BSA binary suspension cross-flow microfiltration. The filtration rates and the membrane fouling under various conditions, such as cross-flow velocity, pressure drop, pH values and membrane morphology, are measured and discussed. The experimental results show that the cake resistance is dominant in the overall filtration resistance. The coagulation occurred at the isoelectric point of BSA (pH 4.5) causes the filtration rate to be higher than the other suspension pH conditions. The pH of suspension is then kept at 7.0 in order to discuss the fouling phenomena in the membrane pores. The blocking and fouling phenomena of particles are observed by SEM, …. Further, the particle trajectory in the membrane pores is simulated by the theoretical analysis based on experimental results. These results can be used to select the optimum operating condition and correct filter membrane.
論文目次 目 錄
頁次
中文摘要……………………………………………………………… I
英文摘要……………………………………………………………… II
目 錄………………………………………………………………….. III
圖表目錄……………………………………………………………… VI
第一章 緒論………………………………………………………….. 1
1-1濾餅過濾………………………..………………………….. 5
1-2掃流過濾………………………..………………………….. 6
1-3研究目標…………………………………………………… 7
第二章 文獻回顧…………………………………………………….. 9
2-1薄膜结垢對過濾的影響………………………..…………. 9
2-2蛋白質的過濾……………………………………………… 10
2-3薄膜表面形態的研究……………………………………… 12
2-4過濾阻塞模式………………………………………….….. 15
第三章 理論………………………………………………………. 25
3-1粒子在濾面上之附著機構…………………………….. 25
3-1-1粒子間之摩擦係數…………………………….. 25
3-1-2粒子附著之臨界摩擦角度……..………………….. 25
3-1-3粒子之附著機構………………..………………….. 35
3-2粒子之結垢模式…………………………………………… 36
3-3分子溶液之過濾分析……………………………………… 39
3-3-1 巨分子阻擋率的定義………………………….. 39
3-3-2 阻力串聯模式……………………………………... 40
第四章 實驗裝置與方法…………………………………………….. 42
4-1實驗物料……………………………………………….. 42
4-1-1 懸浮液..……………………………………………. 42
4-1-2 濾材..………………………………………………. 42
4-1-3 緩衝溶液..…………………………………………. 43
4-1-4 酸鹼調整液…….………………………………….. 43
4-2實驗裝置…………..…………………………………… 44
4-2-1 掃流過濾模組…………………………………….. 44
4-2-2 分析儀器………………………………………….. 46
4-3實驗步驟 …………………………………………………. 47
4-4 BSA濃度之量測方法 …………………………………… 49
第五章 結果與討論………………………………………………….. 50
5-1 操作條件與薄膜種類對於掃流過濾的影響…………….. 50
5-1-1. pH值之影響………………………………………. 50
5-1-2. 操作壓力之影響………………………………….. 54
5-1-3. 掃流速度之影響………………………………….. 63
5-1-4. 懸浮液對掃流微過濾的影響…………………….. 69
5-2 過濾阻力分析…………………………………………….. 71
5-3 粒子附著機率的分析……………………………….…… 76
5-4 阻塞機制的判定 ………………………………………… 78
5-5 SEM的觀察……………………………………………….. 80
第六章 結論………………………………………………………….. 84
符號說明……………………………………………………………… 86
參考文獻……………………………………………………………… 90
附錄…………………………………………………………………… 95
附錄A 實驗物料之種類及物性…………………………... 95
附錄B 濾材阻力Rm之求法……………………………….. 100
附錄C緩衝溶液的配製……………………………………. 104

圖 表 目 錄
頁次
圖目錄
第一章
Fig.1-1 Separation spectrum under different particle sizes(呂維明、呂文芳 編,
1994)……………………………………………………………………………………2
Fig.1-2 The filtration spectrum……………………………………………………………3
Fig.1-3 Schematics of filtration. (a)deadend filtration and (b)cross-flow
filtration…………………………………………………………………4
Fig.1-4 Typical methods to reduce concentration polarization and fouling in pressure driver membrane processes( Mulder , 1991)……………………………………. 8
第二章
Fig.2-1 Fouling schematics.(Belfort et al. 1993)…………………………………..…18
第三章
Fig.3-1 Forces exerted on a depositing particle in a cross-flow microfiltration…….27
Fig.3-2 Overview of various types of resistance towards mass transport across a membrane.(Marcel Mulder, 1991.P282)…………………………………....…40
第四章
Fig.4-1 A schematic diagram of cross-flow filtration system…………………………...45
Fig. 4-2 The absorbance vs. concentrations of BSA……………………………………..49
第五章
Fig.5-1 The zeta potential distributions of various particle with different pH values.51
Fig.5-2 The effect of pH value on the pseudo steady state filtration rates with different pressures………………………………………………………………………….….53
Fig.5-3 The effect of pH value on the pseudo steady state filtration rates with different pressures………………………………………………………………………………53

Fig.5-4 Time courses of filtration rates during cross-flow microfiltration under various filtration pressures .……………………………………………………….56
Fig.5-4.1 An enlarged plot in Fig.5-4……………………………………………………56
Fig.5-5 Time courses of filtration rates during cross-flow microfiltration under various filtration pressures .……………………………………………..………...57
Fig.5-5.1 An enlarged plot in Fig.5-5……………………………………………………..57
Fig.5-6 Comparison of the pseudo steady state filtration rates during cross-flow microfiltration under different pressures and membranes.…………………….58
Fig.5-7 Comparison of the total resistances at the pseudo steady state in cross-flow microfiltration under different pressures and membranes.…………………….58
Fig. 5-7-1 Comparison of the total resistances after 900 sec during cross-flow microfiltration under different pressures and membranes. …………………....59
Fig.5-8 Comparison of cake mass under different pressures and membranes……….59
Fig.5-9 Comparison of the porosity of cake under different pressures and membranes……….……………………………………………………….………….61
Fig.5-10 Comparison of the average porosity of cake under different membranes…61
Fig.5-11 Effect of filtration pressure on the pseudo-steady cake thickness.……..…...62
Fig.5-12 Effect of filtration pressure on the rejection of BSA………………………..…62
Fig.5-13 Time courses of filtration rates during cross-flow microfiltration under various cross-flow velocities…………………………………………….………64
Fig.5-14 Time courses of filtration rates during cross-flow microfiltration under various cross-flow velocities.…………………………………………………...64
Fig.5-15 Comparison of the pseudo steady state filtration rates during cross-flow microfiltration under different velocities and membranes……………….…65
Fig.5-16 Comparison of the total resistances at the pseudo-steady state in cross-flow microfiltration under different velocities and membranes…………….…65

Fig. 5-17 Comparison of the average specific filtration resistance under different velocities and membranes…………………………………………………….…67
Fig.5-18 Effect of cross-flow velocities on the pseudo-steady cake thickness….…….68
Fig.5-19 Effect of cross-flow velocities on the rejection of BSA…………………….…68
Fig.5-20 Time course of filtration rates during cross-flow microfiltration under various feeds .….………………………………………………………………….70
Fig.5-21 Time course of filtration rates during cross-flow microfiltration under various feeds .….………………………………………………………………….70
Fig.5-22 Filtration resistances in cross-flow filtration under different pressures……72
Fig.5-23 Filtration resistances in cross-flow filtration under different pressures……72
Fig.5-24 Filtration resistances in cross-flow filtration under different velocities……73
Fig.5-25 Filtration resistances in cross-flow filtration under different velocities……73
Fig.5-26 Comparison of the cake resistances at the pseudo-steady state in cross-flow microfiltration under different pressures.…………………………………… 74
Fig.5-27 Comparison of the cake resistances at the pseudo-steady state in cross-flow microfiltration under different velocities.…………………………………… 75
Fig.5-28 Effect of filtration rates and cross-flow velocities on critical angle of friction of particle A……………………………………………………………………….….77
Fig.5-29 Effect of filtration rates and cross-flow velocities on critical angle of friction of particle A. …………………………………………………………………….. 77
Fig.5-30 Analysis of fouling mechanism for dead-end microfiltration of PMMA/BSA binary suspension …………………………………………………………….……..78
Fig.5-31 Analysis of fouling mechanism for dead-end microfiltration of PMMA/BSA binary suspension……………………………………………...……….....78
Fig .5-32 The side view of Isopore membrane after filtration 4800 sec (△P=100 kPa, us = 0.1 m/s ). (50 KX)………………………………………………….………..81
Fig. 5-32-1 An enlarge plot in Fig. 5-32 ………………………………………………….82
Fig. 5-33 The side view of Durapore membrane after filtration 4800 sec (△P=100 kPa, us = 0.3 m/s ). ( 50 X ). ……………………………………………...82
Fig. 5-34 The top view of membrane surface after filtration 4800 sec (ΔP=100 kPa, us=0.3 m/s ). 50 KX. ……………………………………………………....82
附錄
Fig. A.1-1 The SEM picture of PMMA powder. ( ×100KX )…………………………....95
Fig. A.1-2 Particle size distributions of PMMA (MP-1451)…………………………...96
Fig. A-2 The BSA size under different pH values……………………….………97
Fig. A-3-1 The SEM picture of clean Isopore membrane. ( pore size 0.22 μm)
( ×30KX )……………………………………………………………………………...….98
Fig. A-3-2 The SEM picture of clean Durapore membrane. ( pore size 0.22 μm)
( ×30KX )…………………………………………………………………………………99
Fig. B-1 The effect of pressure drop on the membrane resistance…………………101




表目錄
第三章
Table 3-1 The coefficients of blocking models……………………………….……………39
第四章
Table 4-1 The materials used in this study………………………..…….…………………43
Table 4-2 The operating conditions used in this study……… ………………………… 45
第五章
Table 5-1 The fitting results of blocking models for two used membranes in microfiltration.……………………………………………………………………79
附錄
Table B-1 The value of Rm of two membranes under different operation pressures.101
Table C-1 Preparation of the buffer solutions……... ………………………………… 104


參考文獻 參考文獻
Belfort G.,J. M. Pimbley, A. Greiner and K. Y. Chung, “Diagnosis of Membrane Fouling Using Rotating Annular Filter. 1. Cell Culture Media”, J. Membrane Sci .,77,1-22 (1993).

Blanpain P. , J. Hermia, and M. Lenoel, “Mechanisms Governing Permeate Flux and Protein Rejection in the Microfiltration of Beer with a Cyclopore Membrane”, J. Membrane Sci.,23,37-51 (1993).

Bowen W. R. and Q. Gan, “Properties of Microfiltration Membranes Flux Loss during Constant Pressure Permeation of Bovine Serum Albumin”, Biotechnol. Bioeng.,38,688-696 (1991).

Bowen W. R. , T. A. Doneva, J. Austin and G. Stoton. “Protein Deposition during Cross-Flow Membrane Filtration : AFM Studies and Flux Loss”, Colloids and Surfaces B: Biointerfaces,27,103-113 (2001).

Burns D. B. and A. L. Zydney, “Buffer Effects on the Zeta Potential of Ultrafiltration Membranes”, J. Membrane Sci.,172,39-48 (2000).

Chandavarkar A.S., “Dynamics of Fouling of Microporous Membranes by Proteins”, Ph.D. Thesis,Massachusetts Institute of technology. (1990).

Chan R. and V. Chen, “The Effects of Electrolyte Concentration and pH on Protein Aggregation and Deposition”, J. Membrane Sci.,185, 177-192 (2001).

Causserand C., Y. Kara and P. Aimar, “Protein Fractionation Using Secondary Membrane Formed by Deposited Clay Layer”, world filtration conference (2000).

Elimelech M., X. Zhu , A.E. Childress and S. Hong ,”Role of Membrane Surface Morphology in Colloidal Fouling of Cellulose Osmosis Membranes”, J. Membrane Sci.,127,101-109 (1997).

Goren S.L., “The Hydrodynamic Force Resisting the Approach of a Sphere to a Plane Permeable Wall”, J. Colloid Interface Sci., 69, 78-85 (1979).

Happel J. and H. Brenner, “Low Reynolds Number Hydrodynamics”, Chip. 6-8, 2ed., Prentice-Hall (1965).

Hermans P.H. and H.L. Bredee, “Principles of the Mathematical Treatment of Constant-Pressure Filtration”, J. Soc. Chem.Ind.55T 1-11 (1936).

Hermia J., “Constant pressure blocking filtration laws-Application to Power-Law non-Newtonian Fluids”, Trans. Inst. Chem. Engrs.,60, 183-187 (1982).

Ho C.C. and A.L. Zydney, “Effect of Membrane Morphology on the Initial Rate of Protein Fouling during Microfiltration”, J. Mem- brane Sci.,155,261-275 (1999).

Ho C.C. and A.L. Zydney, “A Combined Pore Blockage and Cake
Filtration Model Forprotein Fouling during Microfiltration”, J. Colloid Interface Sci., 232, 389-399 (2000).

Ho C.C. and A.L. Zydney, “Protein Fouling of Asymmetric and
Composite Microfiltration Membranes”, Ind. Eng. Chem. Res., 40, 1412-1421 (2001).

Hwang K. J. and T. T. Lin, “Effect of Morphology of Polymeric Membrane on the Performance of cross-flow Microfiltration”, J. Membrane Sci.,199, 41-52 (2002).

Huisman I. H. , P. Pradanos and A. Hernandez, “The Effect of Protein-Protein and Protein-Membrane Interactionon Membrane Fouling in Ultrafiltration”, J. Membrane Sci.,179,79-90 (2000).

Hunter, R.J., “Foundations of Colloid Science”, Vol.I, Clarendon Press., Oxford, 1987.

Jiraratananon R., D. Uttapap and P. Sampranpiboon, “Crossflow Microfiltration of a Colloidal Suspension with the Presence of Macromolecules”, J. Membrane Sci.,140,57-66 (1998).

Kelly S. T. and A. L. Zydney, “Protein Fouling during Microfiltration : Comparative Behavior of Different Model Proteins”, Biotechnol. Bioeng., 55,91-100 (1997).

Kelly S.T.,W. S. Opong and A.L. Zydney, “The Influence of Protein Aggregates on the Fouling of Microfiltration Membranes during Stirred Cell Filtration”, J. Membrane Sci.,80,175-187 (1993).

Keskinler B., G. Akay, Y.K. Bayhan and E. Erhan. “Effect of Ionic Environment on the Crossflow Microfiltration Behaviour of Yeast Suspensions”, J. Membrane Sci.,206, 351-360 (2002).

Kim K.J., A.G. Fane., C.J.D. Fell and D.C. Joy, “Fouling Mechanism of Membranes during Protein Ultrafiltration”, J. Membrane Sci.,68, 79-91 (1992).

Kondo, A., S. Oku and K. Higashitani, “Structural Changes in Protein Molecules Adsorbed on Utrafine Silica Particles”, J. Colloid Interface Sci.,143,214-221 (1991).

LaMer V.K., and T.W. Healy, “Adsorption-Flocculation Reac-Tions of Macromolecules at the Solid-Liquid Interface”, Rev. Pure Applied Chem. 13,112-132 (1963).

Lu W. M. and K.J. Hwang, “Cake Formation in 2-D Crossflow Filtration”, A.I.Ch.E.J.,41,1443-1458 (1995).
Lu W. M. and K.J. Hwang, “Mechanism of Cake Formation in Constant Pressure Filtrations”, Sep.Sci.Technol.,3,122-133 (1993).

Lu W. M., K. L. Tung and K. J. Hwang, “Effect of Woven Structure on Transient Characteristics of Cake Filtration”, Chem. Eng. Sci.,52, 1743-1756 (1997).

Mores W. D.and R. H. Davis, “Direct Visual Observation of Yeast Deposition and Removal during Microfiltration”, J. Membrane Sci., 189, 217-230 (2001).

Mueller J. and R. H. Davis, ”Protein Fouling of Surface-Modified Polymeric Microfiltration Membranes”, J. Membrane Sci.,116,47-60 (1996).

Mulder M. , “Basic Principles of Membrane Technology”, Kluwer Academic Publishers,309-310 (1991).
O’Neill, M.E., “A Sphere in Contact wuth a Plane Wall in a Slow Linear Shear Flow”, Chem. Eng. Sci., 23, 1293-1297 (1968).

Palecek S. P. and A. L. Zydney, “Intermolecular Electrostatic Interactions and their Effect on Flux and Protein Deposition during Protein Filtration”, Biotechnol.Prog.,10,207-213 (1994).

Persson A., A. Jonsson and Zacchi G., “Transmission of BSA during Cross-Flow Microfilation : Influence of pH and Salt Concentration” J. Membrane Sci.,223,11-21 (2003).

Roorda J.H. , V.D. Graaf and H.J.M Jeep, “Modelling Fouling Phenomena in Dead-end Ultrafiltration of WWTP-effluent”, Proceedings 5th conference: Membranes in Drinking and Industrial Water Production. 269-275 (2002).

Sonntag, H. and K. Strenge “Coagulation Kinetics and Structure Formation”, Plenum Press, New York, (1987).

Wu Q. and B. Wu, “Study of Membrane Morphology by Image Analysis of Electron Micrographs”, J. Membrane Sci.,105,113-120 (1995)

Shiau J.S., C.H. Tang, T.Y. Lin and D.M. Wang, ”A Model for Resistance Growth during Protein Microfiltration.” Sep.Sci.Technol.,38, 917 - 932 (2003).

Stoppka J., S.G. Bugan, S. Schlosser and A. Larbot, “Microfiltration of Beer Yeast Suspension through Stamped Ceramic Membranes”, Sep. Puri.Technol.,25,535-543 (2001).

Su. T.J., J.R. Lu, Z.F. Cui and R.K. Thomas, “Fouling of Ceramic Membranes by Albumins under Dynamic Filtration Conditions”, J. Membrane Sci,173, 167-178 (2000)

Tung K.L. and C.J. Chuang, “Effect of Pore Morphology on Fluid Flow and Particle Deposition on a Track-Etched Polycarbonate Membrane”, Desalination ,146,129-134 (2002).

Zendy A.L. and C.C. Ho, “Effect of membrane Morphology on the Initial Rate of protein Fouling During Microfiltration”, J. Membrane Sci,261-275 (1999).

呂維明、呂文方 編著,〝過濾技術〞,高立圖書有限公司 (1994)。
呂維明 編著,〝固液過濾技術〞,高立圖書有限公司 (2004)。
王筱菁,”膜材结垢對蛋白質微過濾反覆操作程序影響之探討”,碩士論文,中原大學化工系(2002)。
林東宥," 微過濾程序中蛋白質結垢行為之探討 ",碩士論文,台灣大學化工系(2000)。

論文使用權限
  • 不同意紙本論文無償授權給館內讀者為學術之目的重製使用。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信