淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1407200515344400
中文論文名稱 土釘加勁邊坡靜動態行為分析
英文論文名稱 Dynamic and Static Behavior of Nailed Soil Slopes
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 范峻崇
研究生英文姓名 Jien-Chung Fan
學號 692311243
學位類別 碩士
語文別 中文
口試日期 2005-06-14
論文頁數 165頁
口試委員 指導教授-洪勇善
委員-陳榮河
委員-吳朝賢
委員-林三賢
委員-洪勇善
中文關鍵字 土釘  邊坡  設計圖表  數值模擬  動態分析 
英文關鍵字 soil nailing  slopes  dynamic analysis  numerical modeling 
學科別分類 學科別應用科學土木工程及建築
中文摘要 土釘應用於邊坡加勁主要利用土釘抗張之特性對邊坡產生約束作用,以提高整體邊坡的穩定性。近年來已逐漸作為永久支撐結構,因此完善的設計除靜態分析外,動態特性也必須加以考量。然而,現今動態穩定分析仍沿用傳統邊坡之擬靜態分析法,對於土釘邊坡受震之行為與耐震能力至今鮮少相關文獻。故土釘邊坡的耐震特性與土釘-土壤間的互制機制,為當前土釘應用於邊坡整治所需探討的重點。
本研究主要以數值分析方式模擬現地土釘邊坡受靜、動態外力作用下之力學行為,並進行各項影響參數之研究。在靜態分析方面,首先針對坡度30°~80°之邊坡探討上部載重作用時土釘受力的行為,以瞭解土釘加勁機制及破壞型態。此外,為增加土釘實務性的應用,亦探討土釘傾角及長度對邊坡的影響,並經由極限力平衡分析建議完整的設計參考圖表。
在動態分析方面,則先以洪勇善等人(2002)之振動台試驗結果為佐證,建立與模型相近之平面應變數值模式,經分析比對確立動態數值模式之正確性與適用範圍。接著,由數值模型建立坡高6m之真實邊坡,進行土釘加勁後的動態行為參數研究。研究發現如下:(1)8倍坡高的後邊界及1.5倍坡高之前邊界為不影響動態數值分析結果之適當邊界範圍;(2)土釘耐震之最佳傾角隨著坡度減緩而增大,於坡度30°~80°邊坡,最佳傾角介於30° ~ 13°;(3) 土釘最有效釘長在動態外力小時,約為坡高的0.67倍,動態外力較大時,則隨著外力增加而最有效釘長呈線性增加;(4)對土釘邊坡而言,垂直地震較水平地震之影響小許多,若忽略垂直地震之作用,邊坡的反應行為並無明顯不同;(5)加勁區內的土壤因受震時土釘有效發揮抗張能力,經由摩擦阻抗機制提供土壤圍束應力以降低加勁區內土壤之破壞勢能;(6)地震加速度的大小與方向對邊坡穩定性有極大的影響,變形的產生皆由入坡面方向加速度所造成,而出坡面加速度則影響不大,入坡面方向加速度導致坡體慣性力向坡外作用,此對邊坡之穩定性最為不利。
英文摘要 Soil nailing has been used successfully in temporary and permanent applications of the new and remedial construction, and in rural and urban settings. The soil nailing concept involves obtaining a stable composite material by reinforcing the soil with nails. The reinforcing mechanism is accomplished by transferring tensile force from the nails into the soil mass through friction mobilized at the soil-nail interface. In recent years, soil-nailing techniques have been used widely in soil excavation and slope stabilization. However, most of the researches focus on the nailed soil structure under static condition. The aim of this study is to investigate the response of nailed slopes under seismic loading as well as their failure mechanism and nail behavior. The mechanical behavior of nailed slopes under static and dynamic loading respectively is obtained by numerical modeling. Parameters study also to discuss the effect on the nailed slopes behavior. In the static analysis, the nail mechanical behavior and failure mechanism are to realize through a uniform surcharge was gradually applied to the slope ground surface for slope angle between 30° to 80°. To increase applied practicability, design charts of nailed slopes are also accomplished based on limit equilibrium approach.
In dynamic aspect, the experimental results of shaking table model test conducted in the previous research (Hong et al., 2002) revealed that soil nailing is effective in increasing stability of steep slopes under seismic load. However, a comprehensive understanding of slope response regarding the force variation of nails along their length, distribution of earth pressure in soil mass, and development of failure mechanism are difficult to obtain from model test. The numerical method can overcome the deficiency of the model tests and is employed in this study. Build-up the numerical model of an experimental nailed slope with the finite difference program, and compare the results with the measured data to conform the adequate of numerical model. A series of parameters study to discuss the effects on the 6-meter nailed slopes behavior during seismic shaking. Research result shows that: (1) The facing displacement maintains constant value when the back and front horizontal boundary up to the 8 and 1.5 times slope height respectively. (2) The nail optimum inclination increases with the decreasing slope angle. When slope angle is between 30° and 80° then the nail optimum inclination is between 30° and 13°. (3) From economical viewpoint, the most effective nail length is about 0.67 times slope height under lower seismic acceleration. When peak acceleration is greater the most effective nail length linear increase with the increasing peak acceleration. (4) The effects of vertical component smaller than horizontal earthquake can be neglected when analyzing nailed slope structures. (5) The nailed soil mass decreases the failure potential due to the nails mobilized tensile force through the friction at nail-soil interface. (6) When the acceleration direction is toward the interior reinforced zone caused slope unsafely during shaking.
論文目次 目錄
第一章 導論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究方法 3
1.5 研究內容 3
第二章 文獻回顧 7
2.1 一般性概述 7
2.2 土釘加勁機制 14
2.3 土釘邊坡破壞型態 16
2.4 現地土釘試驗牆 18
2.5 模型動態試驗 22
2.6 加勁擋土牆數值分析 26
2.7 土釘結構數值分析各單元評析 31
2.7.1 土壤元素 31
2.7.2 土釘元素 32
2.7.3 面版元素 32
2.7.4 介面元素 32
2.7.5 邊界條件 33
第三章 分析程式運算原理 35
3.1 數值分析程式FLAC之運算原理 35
3.1.1 運動平衡方程式 35
3.1.2 節點速度與應變關係 37
3.1.3 不平衡力與應變增量的關係 38
3.1.4 不平衡力達到穩定所需的時間步階 39
3.2 動態分析原理 40
3.2.1 動態時域下不平衡力達到穩定所需的時間步階 41
3.2.2 雷利阻尼與自然振動頻率的關係 41
3.2.3 FLAC 程式動態模擬之步驟 42
3.3 TALREN97 程式簡介 43
3.3.1 分析原理 44
3.3.2 Bishop切片分析法之應用 45
第四章 土釘邊坡靜態穩定分析 47
4.1 加勁機制之探討 47
4.2 設計分析方法 56
4.3 現地土釘邊坡土釘傾角為20°之設計方法 61
4.4 現地土釘邊坡最佳傾角下之設計考量 73
4.4.1 土釘傾角的影響 78
4.4.2土釘長度的影響 81
4.5 土釘加勁邊坡破壞型式 85
第五章 振動台模型試驗動態數值模擬 89
5.1振動台數值模式 93
5.2 模擬結果與討論 100
第六章 土釘邊坡動態行為與參數研究 105
6.1 數值模型之建立 105
6.1.1 土壤參數 105
6.1.2 土釘及介面元素參數 106
6.1.3噴凝土參數 108
6.2 地震加速度之模擬 109
6.3 最適邊界範圍與網格數之探討 110
6.3.1 邊界束制條件 111
6.3.2 數值模擬之邊界範圍 112
6.3.3 網格數目的影響 115
6.3.4加勁結構之自然頻率 116
6.4 不同坡度下土釘傾角之影響 117
6.5 土釘長度之影響 122
6.6 垂直地震之影響 127
6.7 真實地震作用下之土壤元素應力狀況 132
6.7.1 土壤元素之應力路徑 132
6.7.2 土壤元素之應力安全因數 138
6.8 真實地震作用下之土釘軸力分佈 142
6.9 真實地震作用下之土壓力狀況 142
第七章 結論 147
參考文獻 151
附錄 159
附錄A 振動台模型試驗動態數值模型 159
附錄B 現地土釘邊坡動態數值模型 163
圖目錄
圖 1.2研究流程圖 5
圖2.1 Versailles-Chantiers車站之土釘牆斷面圖(Bruce and Jewell,1987) 7
圖2.2 土釘邊坡示意圖 8
圖2.3 微型樁邊坡示意圖 8
圖2.4 土榫邊坡示意圖 9
圖2.5 隧洞的穩定 9
圖2.6 巴黎Boulevard Victor車站開挖斷面圖(Bruce 與 Jewell,1987) 11
圖2.7 砌石重力擋土牆的修復(Bruce 與 Jewell,1986) 11
圖2.8 永久性與暫時性土釘的侵蝕保護(重繪自Bruce 與 Jewell,1987) 13
圖2.9 土釘受力機制 15
圖2.10 土釘加勁破壞模式示意圖(重繪自FHWA,1998) 16
圖2.11 加勁擋土牆破壞型態(Nagel,1985) 17
圖2.12 土釘擋土牆破壞型態(洪勇善等人,2002) 18
圖2.13 土釘擋土牆牆面變形量(Wong等人,1997) 19
圖2.14 牆頂變形量與時間關係圖(Wong,1997) 20
圖2.15 土釘加勁邊坡示意圖(Yim與Yuen,1998) 20
圖2.16 土釘軸力分佈圖(Yim與Yuen,1998) 21
圖2.17 土釘擋土牆軸力與牆面變形圖 (Sang與Scheele,1999) 21
圖2.18 地震加速度歷時曲線(Matsuo等人,1998) 22
圖2.19 位移與地震加速度關係(Matsuo等人,1998) 23
圖2.20 土釘邊坡原型尺寸(Gassler,1987) 23
圖2.21 離心機模擬土釘邊坡尺寸(Kouji等人,1998) 24
圖2.22 土釘牆之破壞型態(Kouji等人,1998) 24
圖2.23 離心機動態試驗之配置圖 (Tufenkjian與Vucetic,2000) 25
圖2.24 土釘牆之破壞型態(Tufenkjian與Vucetic,2000) 26
圖2.25 三維土釘擋土牆數值模型 (Smith與Su,1997) 27
圖2.26 加勁擋土牆數值模擬(Bathurst與Hatami,1998) 28
圖2.27 坡頂後方邊界範圍對坡面變形量之影響(Bathurst與Hatami,1998) 29
圖2.28 邊界束制條件對坡面變形量之影響(Bathurst與Hatami,1998) 29
圖2.29 網格示意圖(Hatami與Bathurst,2000) 30
圖2.30 坡趾後方邊界長度與基礎自然振動頻率關係(Hatami與Bathrust,2000) 31
圖3.1 FLAC運算之程式 36
圖3.2 運動方程式示意圖(ITASCA,2000) 36
圖4.1 坡度50°自然邊坡使用TALREN程式分析之破壞面 50
圖4.2 坡度50°自然邊坡使用STABL程式分析之破壞面 50
圖4.3 邊坡經土釘加勁後以TALREN程式分析之破壞面 51
圖4.4 邊坡經土釘加勁後以STABL程式分析之破壞面 51
圖4.5 分析網格與邊界條件 52
圖4.6 樑元素與二力桿件元素在均佈載重100 kPa時軸力分佈 55
圖4.7 樑元素與二力桿件元素在均佈載重100 kPa時坡面位移 56
圖4.8 土壤塑性區的發展趨勢 57
圖4.9 內部拉出破壞模式之土釘傾角與安全係數之關係(陳榮河等人,2001) 62
圖4.10 外部拉出破壞模式之土釘傾角與安全係數之關係(陳榮河等人,2001) 62
圖4.11 坡頂水平時不同坡度邊坡、土釘傾角與安全係數之關係(羅俊宏,2004) 63
圖4.12 不同的地質條件下釘長與坡高比(L/H)之關係 64
圖4.13 釘長與坡高比值隨著參數
圖4.14 坡度30°、土釘傾角20°之設計圖表 67
圖4.15 坡度40°、土釘傾角20°之設計圖表 68
圖4.16 坡度50°、土釘傾角20°之設計圖表 69
圖4.17 坡度60°、土釘傾角20°之設計圖表 70
圖4.18 坡度70°、土釘傾角20°之設計圖表 71
圖4.19 坡度80°、土釘傾角20°之設計圖表 72
圖4.20 不同坡度考慮不同狀況下之最佳傾角(整理自陳榮河等人,2001) 73
圖4.21 以二力桿件元素模擬土釘之分析網格與邊界條件 74
圖4.22 土釘與土壤間介面元素鍵結加勁力學的行為(ITASCA,2000) 74
圖4.23 Sbond與Kbond 發揮的行為(ITASCA,2000) 75
圖4.24 土釘極限拉出阻抗20 kPa、坡頂承受均佈載重與土釘傾角之關係 79
圖4.25 土釘極限拉出阻抗30 kPa、坡頂承受均佈載重與土釘傾角之關係 79
圖4.26 土釘極限拉出阻抗125 kPa、坡頂承受均佈載重與土釘傾角之關係 80
圖4.27 坡度50° ~ 70°、坡頂加載下土釘之最佳傾角 80
圖4.28 坡度50°之最佳傾角下之設計圖表 82
圖4.29 坡度60°之最佳傾角下之設計圖表 83
圖4.30 坡度70°之最佳傾角下之設計圖表 84
圖4.31 土釘-土壤介面摩擦力為20 kPa時於臨界破壞之土釘軸力分析 86
圖4.32 土釘-土壤介面摩擦力為125 kPa時於臨界破壞之土釘軸力分析 87
圖5.1 集集大地震TCU074測站東西向加速度歷時及富氏頻譜 89
圖5.2 集集大地震TCU084測站東西向加速度歷時及富氏頻譜 90
圖5.3集集大地震TCU084測站南北向加速度歷時及富氏頻譜 90
圖5.4 加州大地震水平東西向加速度歷時及富氏頻譜 91
圖5.5加州大地震水平南北向加速度歷時及富氏頻譜 92
圖5.6 阪神地震水平東西向加速度歷時及富氏頻譜 92
圖5.7 阪神地震水平南北向加速度歷時及富氏頻譜 93
圖5.8 模擬試驗1之配置(陳建仁,2002) 94
圖5.9 模型試驗1之監測配置圖(陳建仁,2002) 95
圖5.10 振動台數值模擬網格示意圖 97
圖5.11 第1組模型之加速度歷時曲線(陳建仁,2002) 99
圖5.12 第1組模型第1階段之地震加速度歷時曲線(陳建仁,2002) 99
圖5.13 模型1數值模擬與試驗結果於坡面變形之比較 101
圖5.14 模型2數值模擬與試驗結果於坡面變形之比較 101
圖5.15 模型3數值模擬與試驗結果於坡面變形之比較 102
圖5.16 模型4數值模擬與試驗結果於坡面變形之比較 102
圖5.17 模型5數值模擬與試驗結果於坡面變形之比較 103
圖5.18 模型6數值模擬與試驗結果於坡面變形之比較 103
圖5.19 模型1坡面相對變形與尖峰加速的關係(洪勇善等人,2002) 104
圖6.1 歷時六秒之正弦波 (Bathurst and hatami,1998) 109
圖6.2 現地加勁邊坡初始分析模型 110
圖6.3 歷時6秒卓越頻率為1 Hz之加速度歷時 111
圖6.4 集集地震TCU074東西向90秒加速度歷時 111
圖6.5 動態分析時模擬遠場的行為(Itasca,2000) 112
圖6.6 外力為加速度時的下方邊界行為(Itasca,2000) 112
圖6.7 後邊界與坡面位移之關係(6秒加速度正弦波) 113
圖6.8 後邊界與坡面位移之關係(921地震加速度歷時) 114
圖6.9 前邊界與坡面位移之關係(6秒加速度正弦波) 114
圖6.10 前邊界與坡面位移之關係(921地震加速度歷時) 115
圖6.11 模型網格總切割數量及坡面位移量關係 116
圖6.12 整體數值模型元素分割圖 116
圖6.13加勁邊坡系統自然振動頻率(以坡度70°為例) 117
圖6.14 坡度30°土釘邊坡受震後不同土釘傾角與坡面位移的關係 119
圖6.15 坡度40°土釘邊坡受震後不同土釘傾角與坡面位移的關係 119
圖6.16 坡度50°土釘邊坡受震後不同土釘傾角與坡面位移的關係 120
圖6.17 坡度60°土釘邊坡受震後不同土釘傾角與坡面位移的關係 120
圖6.18 坡度70°土釘邊坡受震後不同土釘傾角與坡面位移的關係 121
圖6.19 坡度80°土釘邊坡受震後不同土釘傾角與坡面位移的關係 121
圖6.20 不同坡度下所對應土釘最佳傾角 122
圖6.21 尖峰加速度為100 gal 釘長與坡面變形 124
圖6.22 尖峰加速度為200 gal 釘長與坡面變形 124
圖6.23 尖峰加速度為300 gal 釘長與坡面變形 125
圖6.24 尖峰加速度為400 gal 釘長與坡面變形 125
圖6.25尖峰加速度為500 gal 釘長與坡面變形 126
圖6.26 尖峰加速度為600 gal 釘長與坡面變形 126
圖6.27 尖峰加速度為最有效釘長關係 127
圖6.28 921地震之垂直及水平加速度歷時圖 128
圖6.29 垂直地震與平均及最大坡面位移關係 129
圖6.30 坡高中點、坡面後方3m之元素位置 129
圖6.31 加勁區內元素受振時最大主應力狀況 130
圖6.32 加勁區內元素受振時最小主應力狀況 131
圖6.33 選取模型內元素的位置 132
圖6.34 元素1應力軌跡 133
圖6.35 元素2應力軌跡 134
圖6.36 元素3應力軌跡 135
圖6.37 元素4應力軌跡 136
圖6.38 元素5應力軌跡 137
圖6.39 坡度70°各土壤元素之應力安全因數 140
圖6.40 坡度40°各土壤元素之應力安全因數 141
圖6.41 土釘受震軸力分佈 143
圖6.42 靠坡面處之土壓力分佈圖 145
圖6.43 坡頂後方3 m之土壓力分佈圖 145
圖6.44 坡頂後方6 m之土壓力分佈圖 146
圖6.45 坡頂後方10 m之土壓力分佈圖 146
表目錄
表4.1 台灣全區常見之土壤參數組合(陳榮河等人,1999) 47
表4.2 土釘與坡面噴凝參數整理 48
表4.3 土釘極限拉出阻抗(Lazarte等人,2003) 49
表4.4 各階土釘最大張力、剪力與彎矩(均佈載重為100 kPa) 54
表4.5 未加勁邊坡安全係數 66
表4.6 不同坡度與不同極限拉出阻抗時之土釘最佳傾角 81
表5.1 振動台模型試驗內容(陳建仁,2002) 94
表6.1 邊坡安全係數與邊坡破壞潛能Bowles(1984) 106
表6.2 安全係數為1.1之自立性不佳邊坡的土壤強度參數 106
表6.3典型之土壤動態剪力模數值(整理自Bowles,1968) 107
表6.4 土壤阻尼比之典型值 (Richart 與Whitman,1968) 107
表6.5 土釘與坡面噴土凝參數 108
表6.6 初步設計參數(Bruce 與 Jewell,1987) 108
表6.7 採用土釘工法後(土釘長度4 m、傾角0°)邊坡之安全係數 118
表6.8 不同坡度下所對應之最佳土釘傾角 122
表6.9 不同地震力大小作用下所對應土釘最有效長度(H為坡高) 127

參考文獻 參考文獻
1. 何嘉浚(1996),「土釘擋土牆結構設計方法之探討」,碩士論文,國立台灣大學土木工程研究所,臺北。
2. 羅俊宏(2004),「土釘擋土結構最佳化設計研究」,碩士論文,國立高雄第一科技大學營建工程所,高雄。
3. 洪勇善、陳榮河(1997),「土釘擋土牆數值模擬與影響參數研究」,第七屆大地工程學術研究討論會論文集,第471-478,臺北。
4. 洪勇善(1999),「土釘擋土結構的力學行為」,博士論文,國立台灣大學土木工程學研究所,臺北。
5. 洪勇善、陳榮河、陳建仁(2002),「土釘邊坡動態破壞機制之探討與分析」,地震衍生之邊坡破壞行為之研究及應用-九十一年學年度期中研究成果研討會論文集,台中,第87-103頁。
6. 陳榮河、林美聆、林國峰(1999),「山坡地土壤力學性質在水土保持工程上之一般應用研究(七)」,八十七年度台灣東部及蘭陽地區防山防洪計畫,民國八十八年一月,臺北。
7. 陳榮河、洪勇善、蘇玉峰、葉國傑(2001),「土釘加勁邊坡力學行為分析」,地震衍生之邊坡破壞行為及防治對策研究(II)研討會論文集,臺北,第111-136頁。
8. 陳建仁(2002),「土釘加勁邊坡之耐震研究」,碩士論文,國立台灣大學土木工程研究所,臺北
9. Bathurst, R. J. and Hatami, K.(1998), “Seismic Response Analysis of a Geosynthetic-Reinforced Soil Retaining Wall,” Geosynthetics International, Vol. 5, Nos. 1-2, pp. 127-164.
10. Beech, J., Delaure, E. and Juran, I. (1984) “Experimental Study of the Behavior of Nailed Soil Retaining Structures,” Cambridge, UK, pp. 559-573.
11. Bowles, J. E. (1968), Foundation Analysis and Design, McGraw Hill, Book Co., New York.
12. Bowles, J. E. (1984), Physical and Geotechnical Properties of Soil, 2nd Edition, McGraw Hill, New York..
13. Bruce, D. A. and Jewell, R. A.(1986), “Soil Nailing : Application and Practice – Part 1,” Ground Engineering, November, pp. 10-15.
14. Bruce, D. A. and Jewell, R. A.(1987), “Soil Nailing : Application and Practice – Part 2,” Ground Engineering, January, pp. 21-38.
15. Cundall, P. A. (1976), “Explicit Finite Difference Methods in Geomechanics,” in Numerical Methods in Engineering (Proceedings of the EF Conference on Numerical Methods in Geomechanics, Blacksburg, Virginia, June, 1979), Vol. 1, pp. 132-150, U.S.A.
16. Elias, V. and Juran, I. (1991), “Soil Nailing for Stabilization of Highway Slopes and Excavations,” FHWA-RD-89-198, Federal Highway Administration.
17. FHWA (1998), Manual for Design and Construction Monitoring of Soil Nail Walls, FHWA-SA-96-069R, Federal Highway Administration, U.S.A.
18. Fujii, T., Fukuda, N. and Tajiri, N. (1996), Dynamic Response Analysis of Geogrid Reinforced Steep Embankment Subjected to an Earthquake,” Proceedings of the International Symposium on Earth Reinforcement, pp.197-202, Japan.
19. Gassler, G. (1987), “Vernagelte Gelandesprunge-Tragverhaten und Standsichrheit,” Ph.D. thesis, Univ. of Karlsruhe.
20. Hatami, K. and Bathurst, R. J. (2000), “Effect of Structural Design on Fundamental Frequency of Reinforced-Soil Retaining Walls,” Soil Dynamics and Earthquake Engineering, April, pp.137-157.
21. Hong, Y. S., Wu, C. S. and Chen, R. H. (2003),”Mechanical Behavior of Vertical Excavated Nailed Walls,” Geotechnical Engineering, Vol. 34,No. 2, pp.87-99.
22. ITASCA Consulting Group, Inc.(2000), FLAC:Fast Lagrangian Analysis of Continua, Version 4.0, Minnesota.
23. Jewell, R. A. and Pedley, M. J. (1992), Analysis for soil Reinforcement with Bending Stiffness,” Journal of Geotechnical Engineering, ASCE, Vol.118, No.10, pp.1505-1528.
24. Juran, I., Baudrand, G., Farrag, K. and Elias, V. (1990), “Kinematical Limit Analysis for Design of Soil-Nailed Structures,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 1, pp. 54-72.
25. Juran, I., Shafiee, S., and Schlosser, F. (1985), “Numerical Study of Nailed Soil Retaining Structures,” Proceeding of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp. 1713-1716.
26. Kirhner, F., and Rosenhouse, G. (2002), “Numerical Analysis of Tunnel Dynamic Response to Earth Motions”, Journal of Tunnelling and Underground Space Technology, Vol. 15, No. 3,pp. 249-258.
27. Kouji T. ,Taylor ,R. N. and Milligan ,G. W. E.(1998), “Centrifuge Model Tests of Nailed Soil Slope”, Soils and Foundations Vol. 38, No. 2, pp.165-177.
28. Ladd, C. C., Foote, R., Ishihara, K., Schlosser, F. and Poulos, H. G.(1977) “Stress-Deformation and Strength Characteristics,” State-of-the-Art Report, Proceeding of the 9th International Conference on Soil Mechanic and Foundation Engineering, Tokyo, Vol. 2, pp. 421-494.
29. Lade, P. V. and Lee, K. L. (1976) “Engineers Properties of Soils,” Report, UCLA-ENG-7652, 145 pp.
30. Lazarte, C. A., Elias, V., Espinoza, R. D. and Sabatini, P. J. (2003), “Geotechnical Engineering Circle No.7,” FHWA-IF-03-017, Federal Highway Administration.
31. Matsuo, O., Tsutsumi, T., Yokoyama, K. and Saito, Y. (1998), “Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Walls,” Geosynthetics International, Vol.5, No.1-2, pp. 97-126.
32. Nagel, R. B.(1985), “Seismic Behavior of the Reinforced Earth Walls,” Research Report 85-4, Department of Civil Engineering, University of Canterbury, New Zealand.
33. Ottrt, J. R. H., Cassel, A. C. and Hobbs, R. E. (1967), “Dynamic Relaxation,” Proceedings Institution of Civil Engineerings, Vol.35, pp. 633-656
34. Pedly, M. J.(1990), “The Performance of Soil Reinforcement in Bending and Shear,” Ph.D Thesis, Wolfson College, University of Oxford.
35. Plumelle, C., Schlosser, F,. Delage, Delage, F. and Knochenmus, G..(1990), “French National Research Project on Soil Nailing: CLOUTERRE,” Geotechnical Special Publication, No. 25, ASCE, New York, pp. 660-675.
36. Raju, G. V. R. (1996), “Behavior of Nailed Soil Retaining Structures,” Ph.D. Thesis, Nanyang Technological University, Singapore.
37. Raju, G. V. R., Wong, I. H. and Low, B. K. (1997), “Experimental Nailed Soil Walls,” Geotechnical Testing Journal, ASTM, Vol. 20, No.1, pp. 90-102.
38. Richart, F. E. and Whitman, R. V. (1967) ‘Comparison of Footing Vibration Test with Theory”, Journal Soil Mechanic and Foundation Div., Proceedings ASCE, Vol. 93, No. SM6, pp. 143-168, Nov.
39. Richardson, G. N., and Lee, K. L. (1975), “Seismic Design of Reinforced Earth Walls,” Journal of the Geotechnical Engineering Division, Vol. 101, No. GT-2, ASCE, pp. 167-188.
40. Richardson, G. N. (1978), “Earthquake Resistant Reinforced Earth Walls,” Proceeding of Symposium on Earth Reinforcement, ASCE, Pittsburgh, pp. 664-683.
41. Sakaguchi, M., Yamada, K. and Tanaka, M. (1994), “Prediction of Deformation of Geotexile Reinforced Walls Subjected Earthquakes,” The 5th International Conforence on Geotexiles, Geomembrances and Related Products, pp.521-524, Singapore.
42. Sang, L. J. and Scheele, F. (1999) “Experimental and Numerical Investigation of Soil-Nailed Structures”, Proceedings of 12th African Regional Conference (ISSMGE), Durban, S.A., pp. 177-182.
43. Schlosser, F. (1982), “Behaviour and Design of Soil Nailing”, proceedings of the International Symposium on Recent Developments in Ground Improvement Techniques, Bangkok, 399-413.
44. Schlosser, F. and Buhan, P. (1990), “Theory and Design Related to the Performance of Reinforced Soil Structures,” Performance of Reinforced Soil Conference, British Geotechnical Society, September 10-12, pp. 1-14.
45. Schlosser, F. Unterreiner, P. and Plumelle, C. (1992), “French Research Program CLOUTERRE on soil Nailing,” Geotechnical Special Publication, No. 30, ASCE, New York, pp. 739-750.
46. Scott, R. F.(1973), “Earthquake-Induced Pressures on Retaining Walls,” Proceedings of the 5th World Conference on Earthquake Engineering, Rome, Italy, Vol. I, pp. 1611-1620.
47. Shen, C., K., Herrmann, L. R., Romstad, K. M., Bang, S., Kim, Y. S. and Denatale, J. S. (1981), “InSitu Earth Reinforcement Lateral Support System,” Report No.81-03, Department of Civil Engineering, University of California, at Davis.
48. Shewbridge, S. E. and Sitar, N. (1990), “Deformation-Based Model for Reinforced Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 7, pp.1153-1170.
49. Smith, I. M., and Su. N. (1997) “Three-Dimensional FE Analysis of A Nailed Soil Wall Curved In Plan,” international Journal For Numerical Methods in Geomechanics, Vol. 21, pp. 583-597.
50. St. John, C. M., and D. E. Van Dillen. (1983) “Rockbolts: A New Numerical Representation and Its Application in Tunnel Design,” in Rock Mechanics-Theory Experiment Practice Proceedings of the 24th U.S. Symposium on Rock Mechanics, Texas A&M University, June, pp.13-26.
51. Stocker, M. F., Korber, G. W., Gassler, G. and Gudehus, G. (1979), “Soil Nailing,” International Conference on Soil Reinforcement, Paris, pp. 469-474.
52. Stocker, M. F. and Riedinger, G. (1990), “The Bearing Behaviour of Nailed Retaining Structures,” Geotechnical Special Publication, No. 25,ASCE, New York, pp. 612-628.
53. TERRASOL Geotechnical Consultants(1997), “TALREN 97-program for the Stability Analysis of Geotechnical Structures (Slopes Earth Dams, Reinforced Soil structures, etc.),” France.
54. Tufenkjian, M. R. and Vucetic, M. (2002), “Dynamic Failure Mechanism of Soil-Nailed Excavation Models in Centrifuge”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 3, pp.227-235.
55. Wong, I. H., Low, B. K., Pang P. ,Y. and Raju, G. V. R. (1997), “Field Performance of Nailed Soil Wall in Residual Soil”, Journal of Performance of Constructed Facilities, Vol. 11, No. 3, pp. 105-112.
56. Wood J. H. (1973), “Earthquake-Induced Earth Pressures on Structures,” Report No. EERL 73-105, California Institute of Technology, Pasadena, California.
57. Wu, G.. (1994), “Dynamic soil-structure interaction: pile foundations and retaining structures,” Ph. D. thesis, Department of Civil Engineering, University of British Columbia, Vancouver, Canada.
58. Wu, G., and Liam Finn, W. D. (1996), “Seismic Pressures against Rigid Walls,” Proceedings of the ASCE Specialty Conference on Analysis and Design of Retaining Structures against Earthquakes. Geotechnical Special Publication No. 60, pp.1-18.
59. Wu, G., and Liam Finn, W. D. (1999), “Seismic Lateral Pressures for Design of Rigid Walls. Canadian Geotechnical Journal,36:509-522.
60. Yim, K. P. and Yuen, K.S. (1998), “Design, construction and monitoring of a soil nailed slope in decomposed volcanics”, Slope Engineering in Hong Kong.
61. Yogendarkumar, M., Bathurst, R. J. and Liam Finn, W. D. (1991), “Response of Reinforced Soil Slopes to Earthquake Loadings,” the 6th Canadian Conf. Earthquake Engineering, pp. 445-452, Toronto.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信