§ 瀏覽學位論文書目資料
系統識別號 U0002-1407200511341800
DOI 10.6846/TKU.2005.00864
論文名稱(中文) 一滴溶劑微萃取法連結大氣壓基質輔助雷射脫附質譜 法於多巴胺與短桿菌抗生素之分析及利用電灑質譜研 究奈米鐵粒子表面所吸附之水分子團簇
論文名稱(英文) Combining single drop solvent microextraction with atmospheric pressure matrix assisted laser desorption/ionization mass spectrometry for analysis of dopamine and gramicidin A and physical adsorption of nanoscale cages of water clusters on the surfaces of iron nano-particles investigated by electrospray / ion trap tandem mass spectrometry
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 林其賢
研究生(英文) Chi-Hsien Lin
學號 692170607
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-13
論文頁數 108頁
口試委員 指導教授 - 吳彗芬
委員 - 林秋助
委員 - 曾惠芬
關鍵字(中) 一滴溶劑微萃取法
大氣壓基質輔助雷射脫附質譜法
電噴灑質譜法
關鍵字(英) Single-Drop Solvent Microextraction (SDSME)
Atmospheric Pressure Matrix Assisted Laser Desorption/Ionization (AP-MALDI)
ElectroSpray Ionization(ESI)
第三語言關鍵字
學科別分類
中文摘要
大氣壓下基質輔助雷射脫附質譜法與電噴灑質譜法是近年發展出來的軟性游離法,本論文利用此二種游離法來研究目前相當熱門的藥物分析、生化分子定序以及於奈米鐵粒子的研究。
本論文共分成兩部份,第一部分,一滴溶劑微萃取(SDME)是近年來發展起來的一種新型的樣品前處理技術,該技術集採樣、萃取和濃縮於一體,需要有機溶劑量非常少,是一種對人體及環境傷害極低的萃取技術。本實驗利用一滴溶劑微萃取法結合大氣壓基質輔助雷射脫附游離法(SDME/AP-MALDI)分析水中、尿液、血清中多巴胺與短桿菌抗生素,並探討萃取因子對萃取效率的影響。這些萃取因子包括了溶劑種類選擇、pH 值調控、磁石攪拌速度、萃取時間、鹽類添加濃度。一滴溶劑微萃取法結合大氣壓基質輔助雷射脫附游離法來分析多巴胺與短桿菌抗生素的偵測極限分別低於80ng/mL 與20ng/mL,本實驗目的在利用萃取溶劑對多巴胺及短桿菌抗生素的專一性以降低水及體液中的基質干擾,並且以最快速與簡單的實驗步驟達到分析各種體液中的多巴胺與短桿菌抗生素,進而利用串聯質譜分析其結構。第二部份,奈米粒子於電噴灑質譜法的研究,近年來,不論是實驗或是理論計算對於水分子團簇的研究多有著墨。本實驗為首次使用電噴灑游離法搭配高次串聯質譜來研究奈米鐵粒子於水中以及各種不同的有機溶劑中所產生的水分子團簇。
英文摘要
This thesis includes two projects. In the first project, a novel technique of direct combining single drop micro-extraction (SDME) with atmospheric pressure matrix assisted laser desorption/ionization(AP-MALDI) in an ion trap tandem mass spectrometer has been demonstrated for rapid analysis of dopamine and gramicidin A in aqueous solution, human urine and plasma. The effects of the solventselection, extraction time, sample agitation rate, sample pH values and matrix concentration on the extraction efficiency were examined. The limits of detection (LOD) of the SDME/AP-MALDI/MS experiment were in the range of 50 to 80 and 0.5 to 20 ng/mL for dopamine and gramicidin A,respectively. The SDME/AP-MALDI/MS/MS experiments were also performed to elucidate the structures of dopamine and mapping the sequence for gramicidin A. This method is not only simple,rapid and efficient but also can greatly reduce the interferences in human urine and plasma. In the second project, a very interesting phenomenon was observed from physical adsorption of nanoscale cages of water clusters of [(H2O)20O]+ (m/z 376) and [(H2O)21+H3] + (m/z 381) on the surface of iron nano-particles probed by electrospray / ion trap tandem mass spectrometry. The assignments and
structures of these water cluster ions were investigated by using MS/MS and MS3 experiments. This study has revealed that the iron nano-particles exhibit very strong physical adsorption capability for the nanoscale cages of water cluster ions on the surface of the iron nano-particles.
第三語言摘要
論文目次
目錄
目錄……………………………………………………………………壹
圖表目錄………………………………………………………………伍
其他研究成果…………………………………………………………捌
第一章一滴溶劑微萃取法連結大氣壓基質輔助雷射脫附質譜法於多
巴胺與短桿菌抗生素之分析
1.1、導論………………………………………………………………1
1.1.1、樣品前處理技術………………………………………………1
1.1.1.1、液-液萃取法…………………………………………………2
1.1.1.2、直接液相微萃取法….………………………………………2
1.1.1.3、液相微萃取-後萃取法………………………………………3
1.1.1.4、頂空液相微萃取法.…………………………………………4
1.1.1.5、一滴溶劑微萃取法原理……………………………………5
1.1.1.6、液相微萃取法與固相微萃取法之比較……………………6
1.1.2、質譜儀……………….…………………………………………7
1.1.2.1、大氣壓基質輔助雷射脫附質譜法…………………………8
1.1.2.2、樣品製備……………………………………………………8
1.1.2.3、離子的形成機制……………………………………………9
1.1.2.4、基質的特性與功能…………………………………………9
1.1.2.5、串聯質譜術…………………………………………………10
1.1.3、研究目的………………………………………………………11
1.2、實驗………………………………………………………………12
1.2.1、藥品(多巴胺)………………………………………………12
1.2.2、儀器及參數設定(多巴胺)…………………………………12
1.2.3、藥品( 短桿菌抗生素)……………………………………13
1.2.4、儀器及參數設定( 短桿菌抗生素)………………………14
1.2.5、一滴溶劑微萃取法萃取步驟…………………………………15
1.3、結果與討論………………………………………………………16
1.3.1、一滴溶劑微萃取法之條件最佳化(多巴胺)…………………16
1.3.1.1、溶劑種類選擇………………………………………………16
1.3.1.2、基質濃度……………………………………………………17
1.3.1.3、水相pH值的調控……………………………………………17
1.3.1.4、萃取時間……………………………………………………18
1.3.1.5、攪拌子轉速…………………………………………………18
1.3.2、尿液樣品之表現………………………………………………19
1.3.3、一滴溶劑微萃取法之條件最佳化(短桿菌抗生素)…………20
1.3.3.1、溶劑種類選擇………………………………………………20
1.3.3.2、基質濃度……………………………………………………21
1.3.3.3、萃取時間……………………………………………………21
1.3.3.4、攪拌子轉速…………………………………………………21
1.3.3.5、鹽類添加濃度效應…………………………………………22
1.3.4、不同基質樣品之表現…………………………………………22
1.4、結論………………………………………………………………23
1.5、參考資料…………………………………………………………52
第二章利用電灑質譜研究奈米鐵粒子表面所吸附之奈米水分子團
2.1、導論………………………………………………………………54
2.1.1、前言……………………………………………………………54
2.1.1.1、奈米材料簡介………………………………………………54
2.1.1.2、金屬奈米材料的製備………………………………………55
2.1.2、電噴灑游離質譜法(electrospray ionization mass spectrometry,ESI/MS)的發展史……………………………………56
2.1.2.1、電噴灑游離法中離子形成機制與原理……………………58
2.1.2.2、帶電液滴的形成……………………………………………58
2.1.2.3、帶電荷液滴所含溶劑的揮發與液滴的爆裂………………59
2.1.2.4、氣相多價電荷離子的生成…………………………………59
2.1.2.5、研究目的……………………………………………………61
2.2、實驗………………………………………………………………62
2.2.1、藥品……………………………………………………………62
2.2.2、儀器及參數設定………………………………………………62
2.2.3、化學還原法製備奈米鐵粒子步驟……………………………63
2.2.4、奈米鐵粒子於各種溶劑下之表現……………………………63
2.3、結果與討論………………………………………………………64
2.3.1、奈米鐵粒子於水中之質譜表現………………………………64
2.3.2、奈米鐵粒子於各種有機溶劑中之質譜表現…………………64
2.3.3、奈米鐵粒子於水與各種有機溶劑中之質譜表現差異………65
2.4、結論………………………………………………………………66
2.5、參考資料…………………………………………………………85
圖表目錄
Figure 1-1. Schematic of the single-drop microextraction system used by Jeannot and Cantwell in 1996…………………24
Figure 1-2. Schematic representation of another single-drop micro-extraction system, first introduced by Jeannot and Cantwell in 1997………………………………………………25
Figure 1-3. Schematic representation of LPME using hollow fibre membrane system , introduced by Limian Zhao and Hain Kee Lee in 2002………………………………………………………26
Figure 1-4. Principle of Liquid-Liquid-Liquid Microextraction,introduced by Stig Pedersen Bjergaard and Knut Einar Rasmussen in 1999……………………………………27
Figure 1-5. Schematic representation of Headspace-solvent micro-extraction , introduced by Aaron L. Theis, Adam J. Waldack, Susan M.Hansen, and Michael A. Jeannot in 2001.…………………………………………………………………………28
Figure 1-6. Schematic representation of (A)tandem MS in space.(B)tandem MS in time……………………………………29
Figure 1-7. Structure of dopamine and α-CHCA………………30
Figure 1-8. Structure of Gramicidin A ………………………31
Figure 1-9. Schematic of single-drop solvent micro-extraction……………………………………………………………32
Figure 1-10. Simplified schema tic diagram of AP/MALDI source installed at LCQ Deca……………………………………33
Figure 1-11. AP-MALDi mass spectra of dopamine obtained (A) with no SDME (B) with SDME by using octanol as extraction solvent…………………………………………………34
Figure 1-12. SDME/AP-MALDI/MS/MS mass spectra of dopamine at(A) m/z154 (B) m/z137 obtained by using octanol as extraction solvent…………………………………………………35
Figure 1-13. The mechanism of SDME/AP-MALDI/MS/MS mass
spectra of dopamine at (A) m/z154 (B) m/z137 obtained by using octanol as extraction solvent…………………………36
Figure 1-14. SDME/AP-MALDI mass spectra of dopamine obtained from water by using (A) Hexane (B) Isopropyl ether (C) Octanol (D)toluene……………………………………37
Figure 1-15. Effect of matrix concentration on the extraction efficiency (A)2000ppm (B) 5000ppm (C) 10000ppm by using α-CHCA as matrix for 50ppm of dopamine in aqueous solutio…………………………………………………………………38
Figure 1-16. Effect of sample PH on the extraction efficiency (A) pH=3 (B) pH=7 (C) pH=8 (D) pH=10……………39
Figure 1-17. Effect of extraction time on the extraction efficiency (A)1min (B) 5min (C) 10 min (D) 15 min ………40
Figure 1-18. Effect of sample agitation rate on the extraction efficiency (A) no stirring (B) 120 (C)240 (D)360rpm…………………………………………………………………41
Figure 1-19. SDME/AP-MALDI/MS mass spectra of 50ppm of
dopamine obtained from human urine (A) with no SDME (B) with SDME by using octanol as extraction solvent…………42
Figure 1-20. AP-MALDi mass spectra of Gramicidin A obtained (A) with no SDME (B) with SDME by using octanol as extraction solvent………………………………………………43
Figure 1-21. SDME/AP-MALDI/MS/MS mass spectra of Gramicidin A at (A) m/z 1883 and MS3 (B) m/z 638 obtained by using octanol as extraction solvent………………………44
Figure 1-22. SDME/AP-MALDI mass spectra of Gramicidin A obtained from water by using (A) hexanes (B) isoocatane (C) octanol (D) toluene……………………………………………45
Figure 1-23. Effect of matrix concentration on the extraction efficiency (A) 2000ppm (B) 5000ppm (C) 10000ppm by using α-CHCA as matrix for 10ng/mL of Gramicidin A in aqueous solution ……………………………………………………46
Figure 1-24. Effect of extraction time on the extraction efficiency (A) 1min (B) 5min (C) 10 min (D) 15 min………47
Figure 1-25. Effect of sample agitation rate on the extraction efficiency
(A) no stirring (B) 120 (C) 240 (D) 360rpm…………………48
Figure 1-26. Effect of addition of salt on the extraction efficiency (A) 0%(B) 10% (C) 20% (D) 40%……………………49
Figure 1-27. SDME/AP-MALDI/MS mass spectra of 5ppm of
Gramicidin A obtained from human urine (A)with no SDME (B)with SDME by using octanol as extraction solvent…………50
Figure 1-28. SDME/AP-MALDI/MS mass spectra of 50ppm of
Gramicidin A obtained from human plasma (A)with no SDME (B)with SDME by using octanol as extraction solvent…………51
Figure 2-1. Side view of the ESI instrument…………………67
Figure 2-2. side view of the Taylor cone……………………68
Figure 2-3. Two mechanisms of multiple charge ionization in gas phase (A) Single ion in droplet (B) Ion Evaporation……………………………………………………………69
Figure 2-4. Reaction of iron nano-particles with water…70
Figure 2-5. CAD results of m/z 376([(H2O)20O]+)for reaction products of iron nano-particles with water………71
Figure 2-6. MS3 of m/z359([(H2O)19OH]+)for reaction products of iron nano-particles with water…………………72
Figure 2-7. structure of water cluster (A) (H2O)5 (B) (H2O)20 (C)(H2O)16…………………………………………………………73
Figure 2-8. CAD results of m/z 288([(H2O)16]+)for reaction products of iron nano-particles with organic solvent…………………………………………………………………74
Table 1a. Reactions of Nano-Fe with methanol………………75
Table 1b. CAD results for reactions products of Nano-Fe with Methanol…………………………………………………………76
Table 1c. CAD results for reactions products of Nano-Fe with Methanol…………………………………………………………77
Table 1d. CAD results for reactions products of Nano-Fe with Methanol…………………………………………………………78
Table 2a. Reactions of Nano-Fe with Ethanol…………………79
Table 2b. CAD results for reactions products of Nano-Fe with Ethanol…………………………………………………………80
Table 3a. Reactions of Nano-Fe with Acetonitrile…………81
Table 3b. CAD results for reactions products of Nano-Fe with Methanol…………………………………………………………82
Table 4. Reactions of Nano-Fe with Acetone…………………83
Table 5. Reactions of Nano-Fe with Dichloromethane………84
其他研究成果
其他研究成果…………………………………………………………88
參考文獻
1.5、參考資料
1. Hung, J. X. Environmental Chemistry 1994, 13, 93
2. Jeannot, M.A.; Cantwell, F. F. Anal. Chem. 1996, 68, 2236.
3. Jeannot, M.A.; Cantwell, F. F. Anal. Chem. 1997, 69,235.
4. Zhao, L.; Lee, H. K. Anal. Chem. 2002, 74, 2486.
5. Wisniak, J.; Elserver, A. T. Liquid-Liquid Equilbrium and Extraction a Literature Source Book Part A, 1980, 28.
6. Prosen, H.; Zupancic-Kralj, L. Trends Anal. Chem. 1999, 18, 272.
7. Apendurada, M. de F. J. Chromatogr. A, 2000, 889, 3.
8. Pedersen-Bjergaard, S.; Rasmussen, K. E. Anal. Chem. 1999, 71,2650.
9. Zhao, L.; Lee, H. K. J. Chromatogr. A, 2001, 931, 95
10. Zhao, L.; Lee, H. K. J. Chromatogr. A, 2001, 919, 381
11. Theis, A. L.; Waldack, A. J.; Hansen, S. M.; Jeannot, M. A. Anal.Chem. 2001, 73, 5651
12. Psillakis, E.; Kalogerakis, N. Trends Anal. Chem. 2002, 21, 53
13. Arthur, C. L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145
14. Tankeviciute, A.; Kazlauskas, R.; Vickackaite, V Analyst, 2001, 126,1674
15. Zhao, L.; Zhu, L.; Lee, H. K. J. Chromatogr. A, 2002, 963, 239
16. Halvorsen, T. G.; Pedersen-Bjergaard, S.; Rasmussen, K. E. J.Chromatogr. A, 2001, 909, 87
17. Laiko,V. V.; Moyer, S.C.; Cotter, R. J. Anal. Chem. 2000, 72, 5239
18. Ehring, H.; Karas, M.; Hillenkamp, F. Org. Mass.Spectrom. 1992, 27,472
19. Van Breemen, R. B.; Snow, M.; Cotter, R. J. Int. J. Mass. Spectrom.Ion. Phys. 1983, 49, 35
20. 林隆清,實用質譜分析,國立編譯館出版,1978 年。
21. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong S. K.; Whitehouse, C.Science, 1989, 246, 64.
22. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.
23. 陳玉如,串聯質譜儀的最新發展,未出版。
24. Mclafferty, F. W. Tandem Mass Spectrometry, J. Wiley & Sans, New York, 1983
25. http://alpha.life.nthu.edu.tw/~92a21/left.htm
26. AP/MALDI Source for LCQ Deca XP ion trap Installation, Operation and Maintenance Manual April, 2003
27. R. Fasenden and J. Fessenden, Organic Luboratory Techniques,
Brooks/Cole Publishing, Monterey, CA, 1984.
28. Pltter, D. W.; Paueszyn, J. J. Chromatogr. 1992, 625, 247.
29. Zhang, Z.; Yang, M.J.; Pawliszyn, J. Anal. Chem. 1994, 66, 160.
2.5、參考資料
1. Liu, K.; Cruzan, J. D.; Saykally, R. J. Science 1996, 271, 929
2. 陳志邦,國立成功大學機械工程系碩士論文,分子動力學模擬水
分子團簇受磁場之影響,2004
3. 郭清癸、黃俊傑、牟中原, 金屬奈米粒子製造物理雙月刊2001,
23, 614
4. 奈米材料導論曹茂盛、關長斌、徐甲強編著、揚緒文校閱、林振
隆審定
5. Chang,Y.Y.; Lee, C.S.; Wang, C. R. C. J. Phys. Chem. B 1997, 101,6661
6. Srnova, I. S.; Vlckova, B Nano Lett. 2002, 2, 121
7. Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Maeda.; Yamaoto, T.; Nagata,Y. Ultrasonics Sonocbemistry. 1996, 3, 249
8. Zeleny, J. Phys. Rev 1917, 10, 1
9. Hines, R. L. J. Applied. Physics 1966, 37, 2730
10. Mack, L. L.; Kralic, P,; Rhedue, A.; Dole, M. J. Chem. Phys. 1970, 52,4977
11. Dole, M.; Mack, L. L.; Hines, R. L. J. Chem. Phys. 1968, 49, 2240
12. Wong, S. F.; Meng, C. K.; Fenn, J. B. J. Chem. Phys. 1988, 92, 546
13. AlekSendriv, M. L.; Gall, L. N.; Shkurov, V. A.; Pavlenko, V. A.;Krasnov, N. V.; Nikolaev, V. I. J. Anal. USSR. 1984, 39, 1268
14. Bruins, A. P.; Covey, T. R.; Henion, J. D. Anal. Chem. 1987, 59, 2642
15. Olivares, J. A.; Nguyen, N. T.; Yonker, C. R.; Smith, R.D. Anal. Chem 1987, 59, 1232
16. Wahl, J. A.; Goodlett, D. R.; Useth, H. R.; Smith, R. D. Anal. Chem.1992, 64, 3194
17. Gale, D. C.; Smith, R. D. Rapid Commun. Mass spetrom 1993, 7,1017
18. Cech, N.; Enke, C. Mass Spectrometry Reviews 2001,20, 362
19. Hewlett Packard. 1994. API-electrospray LC/MS system. User’s Guide.
20. 曾美郡,國立台灣大學化學研究所博士論文,非揮發性緩衝液於毛細電泳/電灑法質譜儀介面之開發與應用,2003
21. Gomez, A.; Tang, K. Phys. Fluid. 1994, 65, 404
22. Iribarne, J. V.; Thornson, B. A. J. Chem. Phys. 1976, 64, 15
23. Rollgen, F. W.; Bramer-Wegner, E.; Butfering, L. J. Phys. 1987, 48,253
24. Wang, C. B.; Zhang, W. Envir. Sci. Technol. 1997, 31, 2154
25. Xu, Y.; Zhang, W. Ind. Eng. Chem. Res. 2000, 39, 2238
26. 川合知二編著/工研院奈米中心編校,圖解奈米科技,全華科技圖書,2003 年
27. 大泊巖/王建義,圖解奈米技術,全華圖書公司,2003 年
28. 呂宗昕編著,圖解奈米科技與光觸媒商周出版社出版,2003 年
29. Kohlmyer, A.; Witschel, W.; Spohr, E. Chemical Physics 1996, 213,211
30. Khan, Arshad.; Journal of Chemical Physics 1999, 110, 11884
31. Maheshwari, S.; Patel, N.; Sathyamurthy, N.; Kulkarni, A. D.; Gadre,S. R. J. Phys. Chem. A 2001, 105, 10525
32. Ruan, C. Y.; Lobastov, V. A.; Vigliotti, F.; Chen, S.; Zewail, A. H.Science, 2004, 304, 80.
33. Zubavicus, Y.; Gunze, M. Science, 2004, 304, 974.
34. Werent, Ph.; Nordlund, D.; Bergmann. U.; Cavalleri, M.; Odelius, M.;Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P.;Pettersson, L. G. M.;Nillsonl, A., Science, 2004, 304, 995
35. Shin, J. W.; Hammer, N. I.; Diken, E. G.; Johnson, M. A.,Walters, R.S.; Jaeger, T. D.; Duncan, M. A.; Christie, R. A.; Jordan, K. D. Science,2004, 304, 1137.
36. Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Science, 2004, 304,1134.
37. Magnera, T. F.; David, D. E.; Michl, J. Chem. Phys. Lett. 1991, 182,363.
38. Nagashima, U.; Nishi, N.; Tanaka, H. J. Chem. Phys. 1986, 84, 209.
39. Wei, S.; Shi, Z.; Castleman Jr., A. W. J. Chem. Phys. 1991, 94, 3268.
40. Yeh, L. I.; Okumura, M.; Myers, J. D.; Price, J. M.; Lee, Y. T. J.Chem. Phys. 1989, 91, 7319.
41. Okumura, M.; Yeh, L. I.; Myers, J. D.; Lee, Y. T. J. Phys. Chem. 1990,94, 3416.
42. Jiang, J. C.; Wang, Y. S.; Chang, H. C.; Lin, S. H.; Lee, Y. T.; Gereon,N. S.; Chang, H. C. J. Am. Chem. Soc. 2000, 122, 1398.
43. Huisken, F.; Kaloudis, M.; Kulcke, A. J. Chem. Phys. 1996, 104, 17.
44. Wilm. S., Mann, M. J. Mass. Spectrom. Ion Processes. 1994, 136, 167
45. Wilm. S., Mann, M. Anal. Chem. 1996, 69, 1
論文全文使用權限
校內
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信