§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1406201000234000
DOI 10.6846/TKU.2010.00370
論文名稱(中文) 次世代行動通訊系統之基地台協調分析
論文名稱(英文) Performance Analysis in the Coordination Among Base Stations for Next Generation Communication System
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 羅智元
研究生(英文) Chih-Yuan Lo
學號 697440161
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-05-27
論文頁數 46頁
口試委員 指導教授 - 李揚漢
委員 - 李永定
委員 - 許獻聰
委員 - 詹益光
委員 - 李揚漢
委員 - 陳懷恩
關鍵字(中) 長期演進技術
協調合作
關鍵字(英) Long Term Evolution(LTE)
Coordination
第三語言關鍵字
學科別分類
中文摘要
LTE-A 技術擁有高傳輸速度與高頻寬優點,及高速移動速度下有較優質的吞吐量(throughput),將在下一代無線行動通訊系統扮演著重要的角色,將以提供未來IMT-Advanced 無線通訊系統參考之依據,當次世代行動通訊系統使用之頻寬越來越大時,因不同時間、環境,基地台範圍覆蓋下之使用者,有時密集,有時鬆散,當使用者人數鬆散,基地台頻寬使用效率變差,於此基地台協調合作新的技術產生,來使頻寬有效利用,而提高使用者之訊號準確。
鑑於文獻基地台協調合作技術下有幾項優點,如降低雜訊干擾、增加接收分集效果、增加接收端增益…等,由於使用此技術時需要付出較大量頻寬,本論文將探討基地台協調合作技術下頻寬使用情形,對使用者影響情形,當使用不同傳輸模式TDD 或FDD 之差別。當考慮微小型基地台(Femto cell)與訊號增益器(Repeater)時,基地台之頻寬使用情形及與系統之影響。
本論文將可提供基地台佈設與何時使用基地台協調合作技術參考,加入Femto cell 與Repeater 可模擬室內情況,使得使用情境更加完善。
英文摘要
LTE-A technique will play an important roll in the next generation wireless communication system due to it has the advantages of high transmission rate and wide communication bandwidth especially it has high quality throughput when the uses is moving in high velocity. The system performance and parameters characteristics resulting from utilizing LTE-A technique will be provided to the system designers as the references to the development of future IMT-Advanced wireless communication system. When the system bandwidth becomes wider the system utilization performance will be varied widely and becomes inefficiency because the number of users served in the system coverage areas will be varied and the signal transmission environments are changed. It needs to adopt coordination technique among base stations so as to effectively utilize the system resources and to improve the signal purity in its transmission. It has many advantages when considering coordination among base stations such as the reduction of system interference, the improvement of diversity effect and the increase of system gain at the receiver terminal etc. However it has the requirement of increasing system bandwidth when the coordination among base stations is considered.
In this study when the coordination among base stations are implemented the following system characteristics such as the system capacity, the required system bandwidth, the
effect on the users and the performance difference when FDD or TDD technique is implemented etc. will be investigated. Specifically it will also consider the system performance when Femto cells or Repeaters are included in the system. When the data characterizing the system performance are generated and studied they can be provided as references in the base stations installations and they can also be provided as the procedures of how and when to coordinating among various base stations. With Femto cells and Repeaters are included in the system they can be used to simulate the indoor transmission environments and to provide better services to users.
第三語言摘要
論文目次
第一章 緒論...1
1.1 研究動機與目的...1
1.2 章節介紹...2
第二章 LTE 系統架構...3
2.1 系統介紹...3
2.2 訊框格式...3
2.3 系統參數...5
第三章 通道分析...7
3.1 通道模型...7
3.2 路徑損失模型...7
3.3 訊雜比與距離分析...9
3.4 使用者接收限制...10
3.5 接近現實下之基地台情境...13
第四章 基地台協調合作技術...15
4.1 使用者情境規劃...15
4.2 基地台效能分析...16
4.2.1 情境差異分析...16
4.2.2 基地台頻寬使用分析...18
4.2.3 使用者情況...20
4.3 頻寬使用差異分析...22
4.4 TDD 下之頻寬使用分析...24
4.5 單一基地台負荷人數過大下頻寬使用分析...27
第五章 微小型基地台與訊號增益器之研析...29
5.1 訊號增益器(Repeater)...29
5.1.1 訊號增益器研析...29
5.1.1 Coordination 下加入訊號增益器之效能分析...30
5.2 微小型基地台(femto)...32
5.1.1 微小型基地台研析...32
5.1.2 Coordination 下加入微小型基地台之情境分析...35
5.1.3 Coordination 下加入微小型基地台之效能分析...38
第六章 結論與未來展望...42
參考文獻...44


圖目錄
圖1.1:UE落在複數個基地台下示意圖...2
圖2.1:LTE系統之TDD訊框結構...4
圖2.2:LTE系統之FDD訊框結構	...5
圖3.1:路徑損失模型...9
圖3.2:SNR與距離分析圖...10
圖3.3:PER與SNR關係圖...12
圖3.4:最大吞吐量...12
圖3.5:The Near Real Scene...14
圖3.6:The Near Real Scene Path Loss...14
圖4.1:使用者情境與顏色示意圖...15
圖4.2:使用Coordination下UE接收資料情形...17
圖4.3:未使用Coordination下UE接收資料情形...18
圖4.4:With Coordination頻寬佔用情形...19
圖4.5:Without Coordination頻寬佔用情形...19
圖4.6:With Coordination DL/UL頻寬佔用情形...20
圖4.7:Report 格式	...21
圖4.8:單一個BS使用者DL服務情況...23
圖4.9:單一個BS使用者頻寬使用情形...24
圖4.10:三個BS使用者頻寬使用情形...24
圖4.11:單一基地台負荷人數過大情境示意圖...28
圖5.1:Repeater架設情境...29
圖5.2:室內天線送出來的SNR值...30
圖5.3:Coordination下Repeater架設情境...31
圖5.4:加入Repeater下Total BS Capacity...32
圖5.5:微小型基地台情境示意圖...33
圖5.6:Femto路徑損失模型...34
圖5.7:Femto SNR與距離關係圖...34
圖5.8:使用者選擇機制...35
圖5.9:未加入Femto下使用者分佈情形...36
圖5.10:加入Femto下使用者分佈情形...37
圖5.11:未加入Femto下BS頻寬使用情形...37
圖5.12:加入Femto下BS頻寬使用情形...38
圖5.13:加入Femto下Femto頻寬使用情形...38
圖5.14:單一基地台(BS2)下之capacity (Femto=10)...40
圖5.15:基地台總合之capacity (Femto=10)...40
圖5.16:單一基地台下之capacity (Femto=50)...41
圖5.17:基地台總合之capacity (Femto=50)...41
圖6.1:Coordination與Femto對系統效能關係圖...42
圖6.2:Multicarrier之Coordination架構...43


表目錄
表2.1:LTE系統TDD訊框支援的上下行比例...4
表2.2:LTE系統參數...5
表3.1:PER參數整理表...11
表4.1:LTE Parameter...16
表4.2:Report 使用單位...21
表4.3:使用者服務與頻寬佔用情形...22
表4.4:使用者服務斷線率...22
表4.5:TDD系統模擬參數...25
表4.6:TDD下case 1之使用者服務與頻寬佔用情形...26
表4.7:TDD下case 1之使用者服務斷線率...26
表4.8:TDD下case 2之使用者服務與頻寬佔用情形...26
表4.9:TDD下case 2之使用者服務斷線率...26
表4.11:單一基地台負荷人數過大下之使用者服務與頻寬佔用情形...28
表4.12:單一基地台負荷人數過大下之使用者服務斷線率...28
表5.1:加入Repeater之使用者服務與頻寬佔用情形...31
表5.2:微小型基地台參數...33
表5.3:增加微小型基地台下之基地台連線分析...39
表5.4:未增加微小型基地台下之基地台連線分析...39
參考文獻
[1] Eiko Seidel “Overview LTE PHY: Part 1 – Principles and numerology etc, ” Nomor
3GPP Newsletter ,June 2007
[2] Rel.9 3GPP TR 36.814 “Further advancements for E-UTRA physical layer
aspects, ” Mar. 2010
[3] Rec. ITU-R P.1816, “The prediction of the time and the spatial profile for broadband
land mobile services using UHF and SHF bands”.
[4] Christian Hoymann, “Analysis and performance evaluation of the OFDM-based
metropolitan area network IEEE 802.16,” The International Journal of Computer
and Telecommunications Networking, vol. 49, pp.341-363, October, 2005.
[5] Qingwen Liu, Student Member, IEEE, Shengli Zhou, Member, IEEE, and Georgios
B. Giannakis, Fellow, IEEE “Cross-Layer Combining of Adaptive Modulation
andCoding With Truncated ARQ Over Wireless Links,” IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS, Vol. 3, No. 5, Sep. 2004.
[6] Base Station (BS) radio transmission and reception(Release 8)” 3GPP TS 36.104
V8.5.0, Mar.2009
[7] Physical Channels and Modulation(Release 8)” 3GPP TS 36.211 V8.6.0, Mar.2009
[8] IEEE 802.16m Evaluation Methodology Document (EMD), IEEE 02.16m-08/004r5,
Jan. 2009
[9] Christian Hoymann,“Analysis and performance evaluation of the OFDM-based
metropolitan area network IEEE 802.16,” International Journal of Computer and
Telecommunications Networking, vol. 49, pp.341-363, October, 2005.
[10] Roshni Srinivasan, Jeff Zhuang, Louay Jalloul, Robert Novak, Jeongho Park,“IEEE 802.16m Evaluation Methodology Document,” IEEE 802.16 Broadband
Wireless Access Working Group, 80216m-08_003r7(SDD), Jan. 15, 2009.
[11] V. Erceg, K. V. S. Hari, M. S. Smith, D.S. Baum, and P. Soma, “Channel Models
for Fixed Wireless Applications,” IEEE 802.16 Broadband Wireless Access Working
Group, C802.16.3c-01/29r4, June 2003.
[12] Andreas F. Molisch, Henrik Asplund, Ralf Heddergott, Martin Steinbauer, and
Thomas Zwick, “The COST259 directional channel model – I. overview and
methodology,” IEEE Trans. Wireless Communcation, Vol. 5, pp. 3421–3433, 2006.
[13] Martin Steinbauer, Andreas F. Molisch, and Ernst Bonek, “The double-directional
radio channel,” IEEE Antennas and Propagation Magazine, pp. 51–63, August
2001.
[14] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading
environment when using multiple antennas,” Wireless Personal Communications,
Vol. 6, pp. 311–335, Feb. 1998.
[15] William Stallings, “Wireless communications and networks,” Prentice-Hall, 2002.
[16] COST Action 231, ”Digital Mobile Radio Towards Future Generation systems,
Final report,” Tech., Rep., European Communities, EUR 18957, 1999
[17] Rec. ITU-R P.1816, ” The prediction of the time and the spatial profile for
broadband land mobile services using UHF and SHF bands”
[18] Alcatel-Lucent, picoChip Designs, Vodafone “Simulation assumptions and
parameters for FDD HeNB RF requirements,” 3GPP TSG RAN WG4 (Radio)
Meeting #51, San Francisco, CA, 4 – 8 May 2009
[19] Guangyi Liu, Jianhua Zhang, Dajie Jiang, Lei Lei, Qixing Wang, Fei Qin,
“Downlink Interference Coordination and Mitigation for future LTE-Advanced
System,” Asia-Pacific Conference on Communications, 2009. APCC 2009, pp. 225 -229
[20] Mahmudur Rahman, Halim Yanikomeroglu, and William Wong, “Interference
Avoidance with Dynamic Inter-Cell Coordination for Downlink LTE System,” IEEE
Wireless Communications and Networking Conference, 2009. WCNC 2009. pp. 1-6
[21] S. Brueck, J. Giese, L. Zhao, A. Dekorsy, “On MAC Layer Throughput
Enhancements in LTE-A by Downlink Macro Diversity,” IEEE International
Conference ON Communications Workshops, 2009. ICC Workshops 2009. , pp. 1-5
[22] Coiler, “WiMAX Band Selective Repeate- BR-2600”, www.coiler.com.tw
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信