淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1406200514175900
中文論文名稱 利用灰預測法設計電力系統穩定器
英文論文名稱 Power System Stabilizer Design Using Grey Predicting Method
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 張世鈺
研究生英文姓名 Shih-Yu Chang
學號 885190073
學位類別 博士
語文別 中文
口試日期 2005-06-06
論文頁數 103頁
口試委員 指導教授-黃聰亮
委員-謝冠群
委員-翁慶昌
委員-黃聰耀
委員-蕭瑛東
中文關鍵字 特徵結構指定  灰色預測  分離式設計  滑動模式控制 
英文關鍵字 eigenstructure assignment  optimal reduced model  optimal decentralized  grey prediction 
學科別分類
中文摘要 由於工業發展與人口增加,用電需求量大增,為提供良好供電品質與提高系統穩定度,各電力系統間遂發展為互聯電力系統,使傳輸距離增長,當發電廠遠離負載中心系統時負載變動或故障發生就會容易引發自發性低頻振盪。為改善系統低頻振盪,提高系統阻尼,本論文提出使兩種灰預測電力系統穩定器設計之新方法:1. 次特徵結構指定灰色預測穩定器-適用大型電廠內各機組調度設定 本設計利用最佳降階理論限制輸出變數特性,使輸出變數能主控系統主極點,使穩定器在完成特徵結構指定同時,不會產生其他不良主極點,可有效改善傳統特徵結構指定法之缺點。同時利用灰色預測器預測電力系統響應狀態並且提出利用模糊理論決定預測步距提供給灰測預測器使用,使穩定器更準掌控系統變化狀況,降低取樣時間與訊號傳輸延遲的影響,提高控制精確度。 2. 分離式滑動模式灰色預測穩定器-適合小型電廠組成之區域互聯網路 本設計結合輸出回授分離式設計與滑動模式控制,並利用次特徵結構法選取滑動模式中之切換向量,使系統可只利用輸出回授信號就可指定進入切換界面後之系統特徵值,且不會產生其他不良主極點,提高滑動模式控制在電力系統中之實用性。由系統模擬結果證明兩種穩定器設計皆可達到預估之特性。
英文摘要 In power system, the degree of low frequency oscillation and damping ratio of the system are the most important factors influencing the electro-mechanical output quality. Hence, the improvement of the damping ratio will be the index of the power system stabilizer design. Based on the eigenstructure assignment and grey predicting methods, a new approach to design the decentralized power system stabilizers is proposed.To retain the physical meaning and effectiveness of the output variables, the optimal reduced model is used. We reduce the power system model into two state variables of each generator. By using the output states feedback, a new method of designing optimal decentralized stabilizer is also introduced. The grey predicting method will be adopted to the forecast the information of the output state variables to control power system behaviour. The oscillation of the system will be reduced and the dynamic stability of the power system is also enhanced.
論文目次 論文提要……………………………………………………………… I
ABSTRACT ……...……………………………………………….…. II
目錄 …………………………………………………………………..III
圖目錄 …………………………………………………………….….VI
表目錄 ………………………………………………………………VIII
第一章 緒論 ……..……………………………….….………………1
1.1 研究背景 ………………..……………..……….………….….. 1
1.2 相關文獻探討…………..……………………………………… 2
1.3 研究動機 ……………………………………………………… 3
1.4 研究方法 ……………………………………………………… 4
1.5 本論文之貢獻……..…………………………………………… 5
1.6 內容概要…………..…………………………………………… 6
第二章 特徵結構結構指定法…………………….……….……….….8
2.1 前言 ……………………………………………….……………8 2.2 模態展開理論……………………………………….…………..8
2.3 特徵結構指…………………………………………….…….…11
2.4特徵結構指定法於電力系統穩定器設計之應用……………...18
2.5本章結論……………………………………………………...…21

第三章 最佳降階理論…..…………..……………..………………...22
3.1 前言 ……………………………………………………………22
3.2 最佳降階理論………………..…………………………………22
3.3 最佳降階法於電力系統穩定器設計之應用……………..……27
3.4 本章結論……………..…………………………………………33
第四章 次特徵結構指定灰色預測穩定器之設計.………………....34
4.1 前言 ……………………………………………………………34
4.2 次特徵結構指定法………..……………………………………34
4.3 灰色預測 …………………….………………………..……….39
4.4 模糊預測步距設計………………….………………………….47
4.5 次特徵結構指定灰色預測穩定器設計之應用….…………….55
4.6 本章結論……………..…………………………………………66
第五章 分離式滑動模式灰色預測穩定器之設計……………..…...68
5.1 前言 ……………………………………………………………68
5.2 輸出回授分離式設計理論……………………………..………68
5.3 滑動模式理論………………….……..………………..……….72
5.4 應用次特徵結構指定之切換向量選取………………….…….77
5.5 分離式滑動模式灰色預測穩定器之設計之應用…….……….80
5.6 本章結論………..……..….…………………………………….95
第六章 結論……..……………………………………………………97
6.1 結論 ……………………………………….………………..…..97
6.2 未來研究方向 ……………………………….……………..…..99
參考文獻 …………………………………………….……………….100

圖目錄
圖2.1 雙機無限匯流排電力系統………………………………………..18
圖3.1 一號機負載變動5% 時系統響應圖……………………….….…31
圖3.2 二號機負載變動5% 時系統響應圖…………….…………….…32
圖4.1 原始序列………………………………………………..………....45
圖4.2 映射生成運算所產生序列……………………..……………...….45
圖4.3 映射生成運算與累加生成運算所產生序列………………….….46
圖4.4 灰色預測控制器架構…………………………………..……...….47
圖4.5 系統輸出響應圖………………………………………...…...........49
圖4.6 輸入變數之歸屬函數………………………………………….….51
圖4.7 輸出變數之歸屬函數……………..…………………………...….52
圖4.8 模糊語意輸入與輸出變數對應關係圖………………………......55
圖4.9 灰色預測穩定器架構圖………………………………………...56
圖4.10 一號機負載變動5% 時系統響應圖………………………….…59
圖4.11 二號機負載變動5% 時系統響應圖…………….………………60
圖4.12 一號機負載變動5%與二號機負載變動10% 系統響應圖…….61
圖4.13 一號機負載變動10%與二號機負載變動5% 系統響應圖…….62
圖4.14 一號機負載變動5%與二號機負載變動10% 系統響應圖…….63
圖4.15 一號機負載變動10%與二號機負載變動5% 系統響應圖……64
圖4.16 一號與二號機同時20%負載變動系統響應圖…………………65
圖5.1 輸出回授分離設計法之結構圖………………………..……...…71
圖5.2 滑動模態之產生…………………………………………….……74
圖5.3 分離式滑動模式灰色預測穩定器結構……………………...…..81
圖5.4 一號機負載變動5% 時系統響應圖………………………….…88
圖5.5 二號機負載變動5% 時系統響應圖…………….………………89
圖5.6 一號機負載變動5%與二號機負載變動10% 系統響應圖…….90
圖5.7 一號機負載變動10%與二號機負載變動5% 系統響應圖…….91
圖5.8 一號機負載變動5%與二號機負載變動10% 系統響應圖…….92
圖5.9 一號機負載變動10%與二號機負載變動5% 系統響應圖…….93
圖5.10 一號與二號機同時20%負載變動系統響應圖………………….94

表目錄
表2.1 指定之特徵結構值……………………………..…………………20
表2.2 特徵結構指定法回授增益………………………………………..20
表2.3 使用特徵結構指定法之閉迴路特徵結構………………………..20
表3.1 雙機系統開迴路特徵值 ………………….………………….…..28
表3.2 狀態回授最佳控制與最佳降階法之回授增益………………..…30
表4.1 不同預測步距對系統響應之影響……………………………..…50
表4.2 模糊預測步距規則表…………………………………………..…54
表4.3 次特徵結構指定法回授增益……………………………..………57
表4.4 使用次特徵結構指定法之閉迴路特徵結構…………………..…57
表6.1 三種可指定特徵結構之設計法比較…………………………..…98

參考文獻 [1] V. Arcidiacono, E. Ferrari and F. Saccomanno, “Studies on damping electromechanical oscillation in multimachine system with longitudinal structure,” IEEE Trans. Power Apparatus and Systems, PAS-95, No. 2, 1976, pp. 450-460.
[2] R.L. Cresap and J.F. Hauer, “Emergence of a new swing mode in the Western power system,” IEEE Trans. Power Apparatus and Systems, PAS-100, No. 5, 1981, pp. 2037 -2045.
[3] D.L. Bauer, D.B. Cory, W.D. Buhr, G. B. Ostroski, S. S. Cogswell and D.A. Swanson, “Simulation of low frequency undamped oscillations in large power systems,” IEEE Trans. Power Apparatus and Systems, PAS-89, No. 3, 1996, pp. 1239-1247.
[4] F.R. Schleif and J.H. Whiteg ”Damping for the Northwest-Southwest tie line oscillation analog study,” IEEE Trans. Power Apparatus and Systems, PAS-85, No. 12, 1966, pp. 1239-1247.
[5] Y.Y. Hsu, S.W. Shyue, and C.C. Su, “Low frequency oscillations in longitudinal power systems: experience with dynamic stability of Taiwan Power System,” IEEE Trans. Power Systems, PWRS-2, No. 1, 1987, pp. 92-100.
[6] A.N. Andrey, E.Y. Shapiroand J.C. Chung, ”Eigenstructure assignment for linear systems,” IEEE Trans. Aerospace and Electronic Systems, AES-19, No. 5, 1983, pp.711-729.
[7] W.D. Stevenson, Elements of Power System Analysis, New York McGraw-Hill, 1982.
[8] E.V. Larsen and D.A. Swann, “Applying power system stabilizers, Part I: general concepts,” IEEE Trans. Power Apparatus and Systems, PAS-100, No. 6, 1981, pp. 3017-3024.
[9] E.V. Larsen and D.A. Swann, “Applying power system stabilizers, Part II: performance objectives and tuning concepts,” IEEE Trans. Power Apparatus and Systems, PAS-100, No. 6, 1981, pp. 3025-3033.
[10] E.V. Larsen and D.A. Swann, “Applying power system stabilizers, part III: practical considerations,” IEEE Trans. Power Apparatus and Systems, PAS-100, No. 6, 1981, pp. 3034-3046.
[11] S. Lefebvre, “Tuning of stabilizers in multimachine power systems.” IEEE Trans. Power Apparatus and Systems, PAS-102, No. 2, 1983, pp. 290-299.
[12] C.M. Lim and S. Elangocan, “A new stabilizer design technique for multimachine power systems,” IEEE Trans. Power Apparatus and Systems, PAS-104, No. 10, 1985, pp. 2393-2400.
[13] C.M. Lim and S. Elangocan, “Design of stabilizers in multimachine power system,” IEE Proc., Vol. 132, Pt. C, No. 3, 1985, pp. 146-1531.
[14] C. Lin, S. X. Zhou and Z. H. Feng, “Using descoupled characteristic in the synthesis of stabilizers in multimachine systems," IEEE Trans. Power Systems, PWRS-2, No. 1, 1987, pp. 31-36.
[15] F.P. demello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Trans. Power Apparatus and Systems, PAS-88, No. 4, 1969, pp. 316-329.
[16] R.T. Byerly, D.E. Sherman and D.K. Mclain, “Normal modes and mode shapes applied to dynamic stability analysis,” IEEE Trans. Power Apparatus and Systems, PAS-94, No. 2, 1975, pp. 224-229.
[17] Y.N. Yu and C. Siggers, “Stabilization and optimal control signals for a power system,” IEEE Trans. Power Apparatus and Systems, PAS-90, No. 4, 1971, pp. 1469-1481.
[18] Y.N. Yu and H.A.M. Moussa, “Optimal Power system stabilization of a multi-machine system,” IEEE Trans. Power Apparatus and Systems, PAS-90, No. 4, 1971, pp. 1174-1182.
[19] H.A.M. Moussa and Y.N. Yu, “Optimal power system stabilization through excitation andlor governor control,” IEEE Trans. Power Apparatus and Systems, PAS-91, No. 3, 1972, pp. 1166-1174.
[20] Y.Y. Hsu and C.Y. Hsu, “Design of a proportional-integral power system stabilizer,” IEEE Trans. Power Systems, PWS-1, No. 1, pp. 46-53, 1986.
[21] A. Chandra, O.P. Malik, and G.S. Hope. “A self-tuning controller for the control of multimachine power system,” IEEE Trans. Power Systems, PWRS-3, No. 3, 1988, pp. 1065-1071.
[22] A. Ghandakly and P. Idowu, “Design of a model reference adaptive stabilizer for the exciter and governor loops of power generators,” IEEE Trans. Power Systems, PWRS-5, No. 3, pp. 887-893, 1990.
[23] C.J. Wu and Y.Y. Hsu, “Design of self-tuning PID power system stabilizer for multimachine power system,” IEEE Trans. Power Systems, PWRS-3, No. 3, 1988, pp. 1059-1064.
[24] C.J. Wu and Y.Y. Hsu, “Self-tuning excitation control for synchronous machine,” IEEE Trans. Aerospace and Electronic Systems, AES-22, No. 4, 1986, pp. 389-394.
[25] D. Ostojic and B. Kovacevic, “On the eigenvalue control of electromechanical oscillations by adaptive power system stabifizer,” IEEE Trans. Power Systems, PWRS-5, No. 5, 1990, pp. 1118-1126.
[26] K.S.M. Panicker, S.I. Ahson and C.M. Bhatia, “The transient stabilization of a synchronous machine using variable structure systems theory,” Int. J. Control, Vol. 42, 1985, pp. 715-724.
[27] N.N. Bengiamin and W.C. Chan, “Variable structure control of electric power generation,” IEEE Trans. Power Apparatus and Systems, PAS-101, No. 2, 1982, pp. 376-380.
[28] W.C. Chan and Y.Y. Hsu, “An optimal variable structure stabilizer for power system stabilization,” IEEE Trans. Power Apparatus and Systems, PAS-102, No. 6, 1983, pp. 1738-1746.
[29] Y.Y. Hsu and C.H. Cheng, “Variable structure and adaptive control of a synchronous generator,” IEEE Trans. Aerospace and Electronic Systems, AES-24, No. 2, 1988, pp. 337-344.
[30] A. Feliachi, X. Zhang and C.S. Sims, “Power system stabilizers design using optimal reduced order models Part I:model reduction,” IEEE Trans. Power Systems, PWRS-3, No. 4, 1988, pp. 1670-1685.
[31] A. Feliachi, X. Zhang and C.S .Sims, “Power system stabilizers design using optimal reduced order models Part II:design,” IEEE Trans. Power Systems, PWRS-3, No. 4, 1988, pp. 1676-1684.
[32] S. Srinath Kumar, ”Eigenvalue/eigenvector assignment using output feedback,” IEEE Trans. Automatic Control, AC-23, No. 1, 1978, pp. 79-81.
[33] A.N. Andrey, E.Y. Shapiro and J.C. Chung,”Eigenstructure assignment for linear systems,” IEEE Trans. Aerospace and Electronic Systems, AES-19, No. 5, 1983, pp. 711-729.
[34] T. Kaikath, Linear Systems, Englewood Cliffs, New Jersey, Prentice-Hall, 1980.
[35] P.H. Hung, “Power system dynamic stability study via eigstructure analysis.” Ph. D. dissertation, Dept. Elect. Eng., National Taiwan Univ., 1990.
[36] F.P. Demello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Trans. Power Apparatus and Systems, PAS-88, No. 4, 1969, pp. 316-329.
[37] J.L. Deng, “Control problems of grey system,” System & Control Letters, Vol. 1, No. 5, 1982, pp. 288-294.
[38] J.L. Deng, “Introduction to grey system theory,” The Journal of grey system, Vol. 1, No. 1, 1989, pp. 1-24.
[39] L.A. Azdeh, “Fuzzy set,” Information and Control, Vol. 8, 1965, pp. 338-353.
[40] L.A. Zadeh, “Fuzzy algorithm,” Information and Control, Vol. 12, 1968, pp. 94-102.
[41] Y.L. Abdel-Magid and G.M. Aly, “Two-level optimal stabilization in multi-machine power system,” Electric Power System Research, Vol. 6, No. 1, 1983, pp. 33-41.
[42] O.M.E. Elgezawi, A.S.I. Zinober and S.A. Billing, “Analysis and design of variable structure systems using a geometric approach,” Int. J. Control, Vol. 38, No. 3, 1983, pp. 657-671.
[43] W.C. Su, S.V. Drakunov and U. Ozguner, “Constructing discontinuity surfaces for variable structure system: a Lyapunov approach,” Automatic, Vol. 32, 2001, pp. 925-928.
[44] V.I. Utkin and K.D. Young, “Methods for constructing discontinuity planes in multidimensional variable structure systems,” Automation Remote Control, Vol. 39, 1979, pp. 1466-1470.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-06-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信