§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1403201313313500
DOI 10.6846/TKU.2013.00370
論文名稱(中文) 都市垃圾焚化飛灰摻合淨水污泥以機械研磨製成水泥取代料氯鹽穩定能力之研究
論文名稱(英文) A study on the chloride stabilizing ability by mechanical milling to produce cement substitute from MSWI fly ash blended with water treatment plant sludge
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 1
出版年 102
研究生(中文) 曾柏倫
研究生(英文) Po-Lun Tseng
學號 699480777
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-01-15
論文頁數 86頁
口試委員 指導教授 - 高思懷
委員 - 鄭大偉
委員 - 周錦東
關鍵字(中) 焚化飛灰
淨水污泥
水泥
弗氏鹽
氯鹽
關鍵字(英) MSWI fly ash
water treatment plant sludge
cement
Friedel’s salt
chloride
第三語言關鍵字
學科別分類
中文摘要
都市垃圾焚化飛灰成份複雜且含有高濃度的重金屬、戴奧辛與氯鹽等問題,因此被歸類為有害廢棄物,資源化的難度高。本研究團隊發現水萃反應灰具有卜作嵐材料的特性,且水萃灰經研磨後的重金屬溶出濃度都相當低。但飛灰中大量的氯鹽即便經過水萃程序仍無法完全洗出,做為水泥摻配料會對水泥漿體的工程性質造成影響。因此本研究將淨水污泥摻合都市垃圾焚化飛灰來製成水泥取代料,並探討摻入水泥後的水泥漿體氯鹽穩定能力。
   研究中將不同比例的煆燒淨水污泥與水萃灰混合,以不同濃度NaOH溶液、時間進行研磨活化,活化完之活化粉摻入水泥灌漿,進行7天及28天養護後檢測活化粉、水泥漿體的氯鹽再溶出量及氯鹽穩定能力,並搭配FTIR及XRD來觀察穩定氯鹽的機制。   
   由實驗結果得知,水萃灰中氯鹽含量高達160,000 mg/kg,當煆燒淨水污泥與水萃灰混合配比為70%比30%時,以水研磨活化96小時之活化粉,取代10%水泥量灌漿養護28天後,水泥漿體的氯鹽溶出量為N.D,氯鹽穩定率高達100%,相對抗壓強度亦提升至96.29%,無論在氯鹽穩定或抗壓強度都有相當好的成果。
英文摘要
The composition of municipal solid waste incinerator (MSWI) fly ash is complex, which contains high concentration of heavy metals, dioxins and chloride, was classified as hazardous waste and difficult to be recycled. From the former study, it was found that water-extracted MSWI fly ash (WFA) has the characteristic of pozzolanic property, and the heavy metals leaching potential of WFA are quite low after mechanical milling. Nevertheless, the large amount of chloride in the MSWI fly ash could not be lowed down effectively even after several times of water-extraction, that will impact the utility of the WFA recovery.
   In this study, chloride stabilizing ability was explored by mechanical milling and alkali activation for the water treatment plant sludge (CWTPS) blended with WFA, in order to evaluate the feasibility of recovery the MSWI fly ash as cement substitute.
In this study, calcined CWTPS was blended with WFA in different weight ratios, milled and activated by different concentrations of NaOH solution compared with water for different periods to produce the activated powder, replaced a part of the cement, grouted and cured for 7 and 28 days, exam the chloride stabilizing ability of activated powder and the cement paste by FTIR and XRD analysis.
   The results showed that, the chloride content of WFA as high as 160,000 mg / kg. When CWTPS blended with WFA in 70% to 30% by weight, milled with water for 96 hours, and then replaced 10% of cement, grouted and cured for 28 days, the chloride leaching concentration of cement paste was non-detectable. The chloride stabilizing rate reached 100%, and the relative compressive strength compared with pure cement reached 96.29%. Both the chloride stabilizing rate and compressive strength presented excellent results.
第三語言摘要
論文目次
目錄
第一章	前言1
1-1	研究緣起1
1-2	研究目的2
1-3	研究內容2
第二章	文獻回顧4
2-1	焚化飛灰特性4
2-1-1	飛灰之物理特性5
2-1-2	飛灰之化學特性7
2-1-3	水萃處理焚化飛灰9
2-2	淨水污泥特性10
2-2-1	淨水污泥之物理特性10
2-2-2	淨水污泥之化學性質10
2-3	水泥特性與性質11
2-3-1	水泥原料與製程11
2-3-2	波特蘭水泥的分類13
2-3-3	水泥熟料礦物成分與水化作用14
2-4	水泥中氯離子之影響與穩定機制21
2-4-1	水泥中氯離子分類21
2-4-2	氯離子對水泥的影響21
2-4-3	弗氏鹽22
2-4-4	水泥中的弗氏鹽形成22
2-5	無機聚合物23
2-5-1	無機聚合反應23
2-5-2	無機聚合物結構24
第三章	研究方法與材料27
3-1	實驗方法27
3-1-1	實驗設計27
3-1-2	實驗流程圖32
3-2	實驗材料33
3-2-1	都市垃圾焚化飛灰33
3-2-2	淨水污泥33
3-2-3	市售水泥33
3-3	實驗步驟33
3-3-1	兩段水萃程序33
3-3-2	煆燒程序34
3-3-3	研磨活化36
3-4	實驗設備36
3-5	檢測分析38
3-5-1	分析方法38
3-5-2	分析設備41
第四章	結果與討論44
4-1	原料物化特性分析44
4-1-1	焚化飛灰與水萃灰物化特性分析44
4-1-2	淨水污泥與煆燒淨水污泥物化特性分析46
4-2	研磨活化配比探討50
4-2-1	原料中氯鹽含量及不同混合配比計算氯鹽含量51
4-2-2	活化粉氯鹽溶解率51
4-2-3	活化粉氯鹽穩定率52
4-2-4	活化粉性質分析與穩定氯鹽關聯54
4-2-5	水泥漿體氯鹽穩定現象58
4-3	不同濃度鹼液研磨活化探討60
4-3-1	活化粉氯鹽溶解率60
4-3-2	活化粉氯鹽穩定率61
4-3-3	水泥漿體氯鹽穩定現象65
4-4	研磨活化時間之影響68
4-4-1	活化粉氯鹽溶解率69
4-4-2	活化粉氯鹽穩定率70
4-4-3	水泥漿體氯鹽穩定現象73
4-5	EN 196-2:2005 Methods of testing cement試驗結果78
第五章	結論與建議80
5-1	結論80
5-2	建議81
第六章	參考文獻82
 
圖目錄
圖2-1 水泥製造程序圖12
圖2-2 無機聚合物之結構25
圖3-1 氯鹽分佈說明29
圖3-2 實驗流程圖32
圖3-3 淨水污泥TG/DTA圖(室溫升溫至1000℃,每分鐘上升15℃)35
圖4-1 焚化飛灰粒徑分佈圖45
圖4-2 水萃灰粒徑分佈圖45
圖4-3 淨水污泥外觀	47
圖4-4 淨水污泥粒徑分佈圖47
圖4-5 煆燒淨水污泥外觀48
圖4-6 煆燒淨水污泥粒徑分佈圖	48
圖4-7 淨水污泥煆燒前後之XRD圖50
圖4-8 三種混合配比以5M NaOH研磨活化24小時之氯鹽溶解率52
圖4-9 三種混合配比以5M NaOH研磨活化24小時製成活化粉之氯鹽穩定率53
圖4-10原料及以5M NaOH研磨活化三種混合配比24小時製成活化粉之FTIR圖譜56
圖4-11 原料及以5M NaOH研磨活化三種混合配比24小時製成活化粉之XRD圖57
圖4-12 三種混合配比以5M NaOH研磨活化24小時製成活化粉取代10%水泥灌漿養護7天及28天水泥漿體之氯鹽穩定率59
圖4-13 三種混合配比以5M NaOH研磨活化24小時製成活化粉取代10%水泥灌漿養護7天及28天水泥漿體之相對抗壓強度60
圖4-14 S7A3以三種濃度NaOH研磨活化24小時之氯鹽溶解率61
圖4-15 S7A3以三種濃度NaOH研磨活化24小時製成活化粉之氯鹽穩定率62
圖4-16 S7A3以三種濃度NaOH研磨活化24小時製成活化粉之FTIR圖譜63
圖4-17 S7A3以三種濃度NaOH研磨活化24小時製成活化粉之XRD圖65
圖4-18 S7A3以三種濃度NaOH研磨活化24小時製成活化粉取代10%水泥灌漿養護7天及28天水泥漿體之氯鹽穩定率67
圖4-19 S7A3以三種濃度NaOH研磨活化24小時製成活化粉取代10%水泥灌漿養護7天及28天水泥漿體之相對抗壓強度68
圖4-20 S7A3以0M NaOH研磨活化24及96小時之氯鹽溶解率69
圖4-21 S7A3以0M NaOH研磨活化24及96小時製成活化粉之氯鹽穩定率70
圖4-22 S7A3以0M NaOH研磨活化24及96小時製成活化粉之FTIR圖譜71
圖4-23 S7A3以0M NaOH研磨活化24及96小時製成活化粉之XRD圖72
圖4-24 S73A以0M NaOH研磨活化24及96小時製成活化粉取代10%水泥灌漿養護7天及28天水泥漿體之氯鹽穩定率74
圖4-25 S73A以0M NaOH研磨活化24及96小時製成活化粉取代10%水泥灌漿養護7天及28天水泥漿體之相對抗壓強度75
圖4-26 S73A以0M NaOH研磨活化24及96小時製成活化粉取代10%水泥灌漿養護7天及28天之水泥漿體FTIR圖譜78
 
表目錄
表2-1 污泥之化學組成11
表2-2 波特蘭水泥主要成分表14
表2-3 波特蘭水泥化學簡寫符號說明15
表2-4 矽酸鈣鹽類之水化過程及機理17
表4-1 焚化飛灰與水萃灰物化特性44
表4-2 焚化飛灰與水萃灰元素組成46
表4-3 焚化飛灰與水萃灰重金屬含量46
表4-4 淨水污泥與煆燒前後之元素組成49
表4-5 淨水污泥煆燒前後之重金屬含量49
表4-6 淨水污泥煆燒前後之鹼溶出試驗結果50
表4-7 原料加熱萃氯之氯溶出量51
表4-8 不同混合配比之計算氯鹽含量51
表4-9 三種混合配比以5M NaOH研磨活化24小時之氯鹽再溶出量53
表4-10三種混合配比以5M NaOH研磨活化24小時製成活化粉取代10%水泥灌漿養護7天及28天之氯鹽再溶出量58
表4-11 S7A3以三種濃度NaOH研磨活化24小時之氯鹽再溶出量62
表4-12 S7A3以三種濃度NaOH研磨活化24小時製成活化粉取代10%水泥灌漿養護7天及28天水泥漿體之氯鹽再溶出量67
表4-13 S7A3以0M NaOH研磨活化24及96小時之氯鹽再溶出量70
表4-14 S7A3以0M NaOH研磨活化24及96小時製成活化粉取代10%水泥灌漿養護7天及28天之氯鹽再溶出量74
表4-15 S7A3以0M NaOH研磨活化24及96小時製成活化粉鹼溶出量74
表4-16 S7A3經不同活化參數製成活化粉取代10%水泥灌漿養護28天水泥漿體以EN 196-2:2005 Methods of testing cement測得實測氯鹽含量79
參考文獻
Arya, C., Buenfeld, N., Newman, J. (1990), "Factors influencing chloride-binding in concrete", Cement and concrete research, vol.20, No.2, pp. 291-300.
Chimenos, J., Segarra, M., Fernandez, M., and Espiell, F. (1999), "Characterization of the bottom ash in municipal solid waste incinerator", Journal of hazardous materials, vol.64, No.3, pp. 211-222.
Davidovits, J. (1984), "Synthetic mineral polymer compound of the silicoaluminates family and preparation process".
Eighmy, T.T., Eusden, J.D., Krzanowski, J.E., Domingo, D.S., Staempfli, D., Martin, J.R., and Erickson, P.M.,  (1995), "Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash", Environmental science & technology, vol.29, No.3, pp. 629-646.
Enevoldsen, J., Hansson, C., and Hope, B., (1994), "Binding of chloride in mortar containing admixed or penetrated chlorides", Cement and concrete research, vol.24, No.8, pp. 1525-1533.
Huang, S.J., Chang, C.Y., Mui, D.T., Chang, F.C., Lee, M.Y., and Wang, C.F., (2007), "Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash", Journal of hazardous materials, vol.149, No.1, pp. 180-188.
Kim, J.M., and im, H.S., (2004), "Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content", Journal of the European Ceramic Society, vol.24, No.8, pp. 2373-2382.
Kosson, D., Van der Sloot, H., and T. Eighmy, T., (1996), "An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues", Journal of hazardous materials, vol.47, No.1, pp. 43-75.
Mangialardi, T., Paolini, A., Polettini, A., and Sirini, P., (1999), "Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices", Journal of hazardous materials, vol.70, No.1, pp. 53-70.
Matsunaga, T., Kim, J., Hardcastle, S., and Rohatgi, P., (2002), "Crystallinity and selected properties of fly ash particles", Materials Science and Engineering: A, vol.325, No.1, pp. 333-343.
Mizutani, S., Yoshida, T., Sakai, S., and Takatsuki, H., (1996), "Release of metals from MSW I fly ash and availability in alkali condition", Waste management, vol.16, No.5, pp. 537-544.
Najafi Kani, E., Allahverdi, A., and Provis, J.L., (2012), "Efflorescence control in geopolymer binders based on natural pozzolan", Cement and Concrete Composites, vol.34, No.1, pp. 25-33.
Suryavanshi, A., Scantlebury, J., and Lyon, S., (1995), "The binding of chloride ions by sulphate resistant Portland cement", Cement and concrete research, vol.25, No.3, pp. 581-592.
Thipse, S.S., Schoenitz, M., and Dreizin, E.L., (2002), "Morphology and composition of the fly ash particles produced in incineration of municipal solid waste", Fuel processing technology, vol.75, No.3, pp. 173-184.
Van Herck, P. and Vandecasteele, C., (2001), "Evaluation of the use of a sequential extraction procedure for the characterization and treatment of metal containing solid waste", Waste management, vol.21, No.8, pp. 685-694.
Van Jaarsveld, J., Van Deventer, J., and Lorenzen, L., (1997), "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications", Minerals Engineering, vol.10, No.7, pp. 659-669.
Wey, M.Y., Liu, Y.K., Tsai, T.H., and Chou, J.T., (2006), "Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln", Journal of hazardous materials, vol.137, No.2, pp. 981-989.
Xu, H., and Van Deventer, J., (2000), "The geopolymerisation of alumino-silicate minerals", International Journal of Mineral Processing, vol.59, No.3, pp. 247-266.
Youcai, Z., Lijie, S., and Guojian, L., (2002), "Chemical stabilization of MSW incinerator fly ashes", Journal of hazardous materials, vol.95, No.1, pp. 47-63.
Yvon, J., Antenucci, D., Jdid, E.A., Lorenzi, G., Dutre, V., Leclerq, D.,  Nielsen, P., and Veschkens, M., (2006), "Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders", Journal of Geochemical Exploration, vol.90, No.1, pp. 143-155.
Zibara, H., Hooton, R., Thomas, M., and Stanish, K., (2008), "Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures", Cement and concrete research, vol.38, No.3, pp. 422-426.
李孟翰 (2009),「前處理程序對於垃圾焚化飛灰再利用為水泥取代料之研究」,碩士論文,淡江大學水資源及環境工程學系碩士班。
李建中、李釗、何啟華、鄭清江 (1996),「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物焚化灰渣資源化技術與實務研討會,第193-226頁。
沈佩玲 (2011),「利用淨水污泥與燃煤飛灰合成無機聚合材料之研究」,碩士論文,國立臺北科技大學資源工程碩士班。
周錦東、蕭溫華、何鴻哲 (2004),「水洗與磷酸前處理對垃圾焚化飛灰之穩定作用」,第十九屆廢棄物處理技術研討會。
洪珮瑜 (2001),「淨水污泥及其燒結體對銅、鉛離子之吸附反應」,National Taiwan University Department of Environmental Engineering.
高思懷、王鯤生 (1998),「垃圾焚化灰渣利用之研發建制及推廣計畫EPA 87-E3E1-03- 01」,行政院環境保護署。
張一岑 (1991),「有害廢棄物焚化技術」,聯經出版事業公司。
張鈞維 (2006),「以淨水污泥及鐵氧化物吸附劑去除水庫水體含磷之研究」,碩士論文,國立成功大學環境工程學系碩士班。
陳佑倫 (2007),「都市垃圾焚化飛灰再利用作為水泥替代物之研究」,碩士論文,淡江大學水資源及環境工程學系碩士班。
陳志賢 (2009),「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木工程學系博士班。
曾淑滿 (2011),「高氯含量廢水去除氯離子之研究」,碩士論文,國立臺北科技大學資源工程碩士班。
黃兆龍 (1997),「混凝土性質與行為」,詹氏書局。 
楊萬發、李穆生 (1990),「垃圾及其焚化飛灰之污染特性」,環工會刊第一卷第四期,第52-65頁。
葉宗智、王鯤生 (1997),「垃圾焚化飛灰粒徑對燒結效果之研究」,碩士論文,國立中央大學環境工程碩士班。
蔡孟翰 (2005),「硫酸鹽對垃圾焚化灰渣全利用於燒結水泥之影響」,碩士論文,輔英科技大學環境工程與科學系碩士班。
羅文林 (2001),「添加劑對都市垃圾焚化飛灰水泥固化體強度及重金屬溶出影響之研究」,碩士論文,國立臺灣大學環境工程學碩士班。
蘇寶洲 (2002),「普蜀蘭反應對碳酸鈣白華之影響機制」,碩士論文,國立成功大學土木工程學系碩士班。
露木尚光、梅村靖弘 (2001),「塩化物イオンの透過性と固定化に関する混合剤および混合材の影響」,コンクリート工学,第19-24頁。
龔人俠 (1977),「水泥化學概論」,台灣水泥工業同業工會。
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信