淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1402200615504500
中文論文名稱 匯率選擇權隱含波動率與即期匯率之非線性關係
英文論文名稱 The Nonlinear Relationship between the Spot Foreign Exchange Rate and the Implied Volatility
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士在職專班
系所名稱(英) Department of Banking and Finance
學年度 94
學期 1
出版年 95
研究生中文姓名 陳彥錞
研究生英文姓名 Yan-Chun Chen
學號 792490129
學位類別 碩士
語文別 中文
口試日期 2005-12-23
論文頁數 66頁
口試委員 指導教授-聶建中
共同指導教授-莊孟翰
委員-沈中華
委員-韋伯韜
委員-謝劍平
委員-聶建中
委員-莊孟翰
中文關鍵字 歷史波動率  隱含波動率  風險偏向  蝶式價差  門檻誤差修正模型 
英文關鍵字 Historical Volatility  Implied Volatility  Risk Reversal  Butterfly  Threshold Error Correction model 
學科別分類
中文摘要 在現代財務理論及實務中,無論是衡量風險值(Value at Risk)亦或衍生性商品評價,波動率的衡量及估計皆為主要之關鍵課題。依據對未來隱含波動率之走勢研判,交易商可建立選擇權波動率部位,再根據敏感度分析及預期未來標的資產走勢,以標的資產或選擇權做動態避險,而使其部位損益變化僅受隱含波動率變動之影響。因此,標的資產價格與隱含波動率間以及歷史波動率與隱含波動率間之相互關係探討,有助於交易商對其波動率部位做有效管理。
過去文獻有關探討標的資產價格與隱含波動率之關係,大多偏重於權益選擇權,相對以匯率選擇權探討之比例較少。本文以門檻自我回歸模型及門檻誤差修正模型,探討歐元兌美元匯率選擇權波動率市場中之主要交易標的:價平隱含波動率(ATM Implied Volatility)、25D風險偏向(Risk Reversal)及25D蝶式價差(Butterfly)與即期匯率間之非線性關係,以及經由不同方式產生之歷史波動率與價平隱含波動率間之非線性關係。以提供交易商在建立選擇權波動率部位及進行部位避險或短期投機性交易時,除傳統基本面、技術面分析及主觀之趨勢判斷外之另一參考資訊。並經由不同交易標的之long或short,以產生利潤。
實證結果顯示:一、以非線性KSS法及線性KPSS法進行單根檢定,發現所有變數資料之整合級次均為1,即為I(1)序列。二、以門檻自我回歸模型檢定包括即期匯率與ATM隱含波動率、即期匯率與25D Risk Reversal、即期匯率與25D Butterfly、ATM隱含波動率與GARCH歷史波動率以及ATM隱含波動率與簡單移動平均歷史波動率等,各組變數間之長期均衡均具有非線性門檻共整合關係。三、以門檻誤差修正模型為基礎,探討各組研究變數間之長、短期互動關係及往長期均衡調整過程,發現皆各有不一致之特定關係。例如當即期匯率正向變動時,考慮其短期互動關係,則可建立Short ATM Volatility及Long 25D Risk Reversal之選擇權交易部位,進而使Volatility Smile產生變動,產生與Hull and White(1987)相近之結果。
英文摘要 The measure and estimate of volatility are the key topics in pricing derivatives or value at risk. According to the view of the trend in volatility, traders can make the option portfolio value only depend on future volatility move by hedging process. Hence the research of the relationship between the price of underlying asset and the implied volatility can help traders to manage option portfolio.
The empirical literatures in past about the relationship most focused on equity option. This paper discusses for the EUR/USD spot FX rate, historical volatility the ATM implied volatility, 25D risk reversal, and 25D butterfly in the FX option market employing a non-linear version based on asymmetric threshold autoregressive model and threshold error correction model.
The results suggest the significant asymmetric cointegration in spot and ATM implied volatility, spot and 25D risk reversal, spot and 25D butterfly, ATM implied volatility and GARCH volatility, ATM implied volatility and simple moving average volatility. Furthermore, the results from Granger-Causality tests based on corresponding threshold error-correction model clearly point out the asymmetric causality in the short run and asymmetric price transmissions between these pairs in the long run. When the spot moved positively, considering short-term causality, trader can short ATM implied volatility and long 25D risk reversal to ride the volatility smile. Hence the curve will shift and correspond to the result of Hull and White (1987).
論文目次 目 錄
第一章 緒論………………………………………… 1
第一節 研究動機…………………………………… 1
第二節 研究目的…………………………………… 3
第三節 研究架構…………………………………… 3
第二章 理論與文獻探討 …………………………… 5
第一節 歷史波動率………………………………… 5
第二節 隱含波動率………………………………… 9
第三節 匯率選擇權隱含波動率市場……………… 13
第三章 研究方法…………………………………… 27
第一節 單根檢定…………………………………… 27
第二節 GARCH模型估計及檢定…………………… 29
第三節 門檻自我迴歸模型及門檻共整合檢定…… 29
第四節 門檻誤差修正模型………………………… 31
第四章 實證結果…………………………………… 33
第一節 資料蒐集及處理…………………………… 33
第二節 日報酬率GARCH模型估計及檢定………… 35
第三節 基本統計量分析…………………………… 36
第四節 各變數單根檢定…………………………… 38
第五節 門檻共整合及門檻效果檢定……………… 39
第六節 門檻誤差修正模型領先關係檢定………… 44
第五章 研究結論與建議…………………………… 58
第一節 研究結論…………………………………… 58
第二節 後續研究建議……………………………… 60
參考文獻 ……………………………………………… 61
圖 目 錄
圖1.1.1 EUR/USD即期匯率與隱含波動率歷史走勢…………… 2
圖1.1.2 EUR/USD歷史波動率與隱含波動率歷史走勢………… 2
圖1.3.1 研究流程……………………………………………… 4
圖2.2.1 EUR/USD 1個月期Volatility Smile變化…………… 10
圖2.2.2 EUR/USD Volatility Cone…………………………… 10
圖2.2.3 EUR/USD Volatility Surface……………………… 11
圖2.3.1 Straddle pay-off隨spot之變化(到期日)……… 15
圖2.3.2 Straddle delta隨spot之變化(交易日)………… 16
圖2.3.3 Straddle gamma隨spot之變化(交易日)………… 16
圖2.3.4 RR pay-off隨spot之變化(到期日)……………… 18
圖2.3.5 RR delta隨spot之變化(交易日)………………… 18
圖2.3.6 RR gamma隨spot之變化(交易日)………………… 19
圖2.3.7 BF pay-off(到期日)……………………………… 20
圖2.3.8 ATM,RR and BF in Volatility Smile…………… 21
圖2.3.9 Straddle vega隨spot之變化………………………… 24
圖2.3.10 Straddle vomma隨spot之變化……………………… 24
圖2.3.11 Straddle vanna隨spot之變化……………………… 25
圖2.3.12 Straddle delta隨spot與時間之變化……………… 25
圖2.3.13 Straddle gamma隨spot與時間之變化……………… 26
圖4.1.1 SPOT、RR、BF、ATM、HMA 及 HGA走勢圖……………34
圖4.5.1 S & ATM之MTAR門檻值τ=-0.011………………………42
圖4.5.2 S & R之MTAR門檻值τ=-0.003………………………… 43
圖4.5.3 S & B之TAR門檻值τ=0.079…………………………… 43
圖4.5.4 ATM & HGA 之MTAR門檻值τ=-0.054……………………43
圖4.5.5 ATM & HMA 之MTAR門檻值τ=-0.390……………………43
表 目 錄
表2.3.1 匯率選擇權波動率市場報價………………………… 14
表4.2.1 GARCH(1,1)模型係數估計………………………… 35
表4.3.1 各變數敘述性統計資料……………………………… 37
表4.4.1 KSS單根檢定結果……………………………………… 38
表4.4.2 KPSS單根檢定結果…………………………………… 38
表4.5.1 門檻自我迴歸模型選擇、門檻共整合與門檻效果檢定41
表4.6.1 誤差修正模型估計(即期匯率與ATM隱含波動率)… 46
表4.6.2 誤差修正模型估計(即期匯率與25D Risk Reversal)48
表4.6.3 誤差修正模型估計(即期匯率與25D Butterfly)… 50
表4.6.4 誤差修正模型估計(ATM隱含波動率與GARCH歷史波動率)52
表4.6.5 誤差修正模型估計(ATM隱含波動率與簡單移動平均歷史波動率) ……………………………………………………… 55
參考文獻 王凱立與李昀薇(2005),「台股指數現貨、期貨與選擇權市場交互動態關聯之探討」,2005年行為財務學理論與實證研討會。
沈中華與陳建福(2004),「B股開放政策對中國大陸股票市場效率性有影響嗎?不對稱門檻共整合模型的應用」,財務金融學刊,11,89-119。
吳佳貞(1997),「波動度預測模型之探討」,政治大學金融研究所碩士論文。
洪瑞成(2002),「風險值之探討-對稱與不對稱波動GARCH模型之應用」,淡江大學財務金融研究所碩士論文。
章志銘(2004),「以門檻誤差修正模型分析台灣股價指數與匯率及利率之長短期互動關係」,淡江大學財務金融研究所碩士論文。
黃博怡,林卓民,洪瑞成與鄭婉秀(2004),「外匯投資組合不同風險值模型之比較」,華岡經濟論叢,第4卷第1期,1-25。
葉家宏(2004),「匯率選擇權評價實務上『風險反轉』之探討和其應用在台幣匯率預測模型」,政治大學經營管理碩士學程金融組碩士論文。
趙其琳(1998),「波動性預測能力比較-台灣認購權證之實證研究」,淡江大學財務金融研究所碩士論文。
劉邦彥(2004),「股價與匯價非線性關係之探討:以台灣及南韓為例」,逢甲大學經濟學系碩士班碩士論文。
劉建吾(2003),「匯率選擇權價格波動率與評價實務」,輔仁大學金融研究所碩士論文。
鍾緯霖(2004),「匯率選擇權波動度交易策略與相關係數實務探討-以OTC外匯市場為例」,政治大學經營管理碩士學程金融組碩士論文。17
聶建中,陳芾文與王友珊(2003),「金融機構承做選擇權的模型風險與市場風險」,風險管理學報,第5卷第3期,295-317。
二、英文部分
Akgiray, V.(1989), “Conditional Heteroscedasticity in Time Series of Stock Return Evidence and Forecasts,” Journal of Business, 62, 55-59.
Andersson, K.(2003), “Stochastic Volatility,” U.U.D.M. Project Report, 2003:18.
Balke, N. S., and Fomby, T (1997), “Threshold cointegration,” International Economic Review, 38, 624-643.
Bates, D. S. (1996), “ Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options,” Review of Financial Studies, 9 (1), 69-107.
Black, F., and Scholes, M.(1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 81, 637-659.
Bollerslev, T.(1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307-327.
Bollerslev, T.(1987), “A Conditional Heteroskedastic Time Series Model for Speculative Price and Rates of Return, “Review of Economics and Statistics, 69, 542-547.
Campa, J. M., and Chang, P. H. K.(1995), “Testing the Expectations Hypothesis on the Term Structure of Volatility in Foreign Exchange Options,” Journal of Finance, 50, 529-547.
Campbell, J.Y., and Perron, P.(1991), “Pitfalls and opportunities: what macroeconomists should know about unit roots,” NBER Macroeconomics Annual, 141-201.
Carr, P., and Wu, L.(2004), “Stochastic Skew in Currency Options,” Finance 0409014, Economics Working Paper Archive EconWPA.
Chan, K.S.(1993), “Consistency and Limiting Distribution of the Least Squares Estimator of a Threshold Autoregressive Model,” The Annals of Statistics, 21, 520-533.
Chang, T.Y., and Nieh, C.C.(2004), “Using Threshold Error-Correction Model to Investigate Asymmetric Price Transmissions between the Real Estate and Stock Markets in Taiwan,”第五屆全國實證經濟學論文研討會光碟論文集,逢甲大學。
Christie, A. A.(1982), “The Stochastic Behavior of Common Stock Variances-Value, Leverage and Interest Rate Effects,” Journal of financial Economics, 10, 407-432.
Chu, S.H., and Freund, S.(1996), “Volatility Estimation for Stock Index Options: A GARCH approach,” Journal of Political Economy, 96, 116-131.
Cooper, N., and Talbot, J.(1999), “The yen/dollar exchange rate in 1998: views from options markets,” Bank of England Quarterly Bulletin, February, 68-77.
Daglish , T., Hull, J., and Suo, W.(2002), “Volatility Surface: Theory, Rules of Thumb, and Empirical Evidence,” Working Paper, Rotman School of Management, University of Toronto.
Dejong, K.N., Nankervis, J.C. Savin, N.E. and Whiteman, C.H. (1992), “Intergration Versus Stationarity in the Time Series,” Econometrica, 60(2), 423-433.
Derman, E. (1999), “ Regimes of volatility,” Risk, 4, 55-59.
Dupire, B.(1994), “Pricing with a smile,” Risk, 7, 18-20.
Enders, W.(2004), “Applied Econometric Time Serirs,” Wiley, 2nd ed.
Enders, W., and Granger, C. W. F.(1998), “Unit-root tests and asymmertric adjustment with an example using the term structure of interest rates,” Journal of Business Economics & Statistics, 16, 304-311.
Enders, W., and Siklos, P.L.(2001), “Cointegration and Threshold Adjustment,” Journal of Business Economics & Statistics, 19, 166-167.
Engle, R. F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK Inflation,” Econometrica, 55, 987-1008.
Engle, R. F., and Bollerslev, T.(1986), “Modelling The Persistence of Conditional Variances,” Econometric Review, 5, 1-50.
Fama, E. F.(1965), “The behavior stock market prices,” Journal of Business, 38, 34-105.
Garman, M. B., and Kohlhagen, S. W.(1983), “Foreign Currency Option Values,” Journal of International Money and Finance, 2, 231-237.
Giot, P.(2000), “Intraday Value at Risk,” Catholic University Leuven, June, 30-58.
Granger, C. W. J.(1969), “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,” Econometrica, vol. 37, 24-36.
Granger, C. W. J.(1980), “Testing for Causality,” Journal of Economic Dynamic and Control, 4, 225-252.
Granger, C. W. J.(1988), “Some Recent Developments in a Concept of Causality,” Journal of Econometrics, 39, 199-211.
Granger, C. W. J. and Newbold, P.(1974), “Spurious Regressions in Econometrics,” Journal of Econometrics, 2, 111-120.
Hsiao, C. (1979), “ Causality in econometrics,” Journal of Economic Dynamics and Control, 4, 321-346.
Hull, J. C.(2003), “Options, Futures, and Other Derivatives,” Prentice Hall, 5th ed.
Hull, J. C., and White, A.(1987), “ The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, 42(2), 281-300.
Hull, J. C., and White, A.(1998), “Value at Risk When Daily Changes in Market Variables Are Not Normal Distributed,” Journal of Derivatives, 5, no. 3, 9-19.
Jackwerth, J. C., and Rubinstein, M.(1996), “Recovering Probability Distributions from Option Prices,” Journal of Finance, 51, 1611-1631.
Johansen, S.(1988), “Statistical Analysis of Cointegration Vectors,” Journal of Economic Dynamics and Control, 12, 231-254.
Jorion, P.(1995), “Predicting Volatility in the Foreign Exchange Market,” The Journal of Finance, 50(2), 507-528.
J.P. Morgan and Reuters(1996), “RiskMetrics-Technical Document,” J.P. Morgan, 4th ed.
Kapetanios, G., Shin, Y., and Snell, A.(2003), “Testing for a unit root in the nonlinear STAR framework,” Journal of Econometrics, 112, 359-379.
Kwiatkowski, D., Phillips, P., Schmidt, P., and Shin, Y.(1992), “Testing the Null Hypothesis of Stationarity Against the Alternative of A Unit Root: How Sure Are We That Economic Time Series Have A Unit Root ?” Journal of Econometrics, 54, 159-178.
Latané, H., and Rendleman, R.(1976), “Standard Deviation of Stock Price Ratios Implied in Option Prices,” The Journal of Finance, 31, 369-382.
Ljung, G. M., and Box, G. E. P. (1978), “On a Measure of Lack of Fit in Time Models,” Biometrika, 65, 297-303.
Luukkonen, R., Saikkonen, P., and Terasvirta, T.(1988), “Testing Linearity against smooth transition autoregressive models,” Biometrika, 75, 491-499.
Maheu, J. M., and McCurdy, T. H.(2002), “Nonlinear features of realized FX volatility,” The Review of Economics and Statistics, 84(4), 668-681.
Mandelbrot, B.(1963), “The Variation of Certain Speculative Priced,” Journal of Business, 36, 394-419.
Newey, W., and West K.(1987), “A simple positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,” Econometrica, 55, 703-708.
Ng, Serena., and Perron, Pierre. (2001), “Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power,” Econometrica, 69, 1519-1554.
Nieh, C.C., Liu, W.C., and Fang, C.C.(2005), “Asymmetric Causal Relationship between Stock Price and Exchange Rate in Taiwan—Threshold ECM Analysis,” Thirteen Conference on Pacific Basin Business Economics and Finance, 6/10-11, Rutgers University, NJ, U.S.A.
Phillips, P. C. B., and Perron, P (1988), “Testing for a Unit Root in Time Series Regression,” Biometrika, 75, 335-346.
Rubinstein, M.(1985), “Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978,” Journal of Finance, 40, 455-480.
Rubinstein, M.(1994), ”Implied Binomial Trees,” Journal of Finance, 49, 771-818.
Triennial Central Bank Survey of Foreign Exchange and Derivatives Market Activity 2004, Bank for International Settlements.
三、資料庫部份
彭博資訊(Bloomberg)
VolCast(http://ibol01.ibb.ubs.com/VolCast), UBS Investment Bank
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-02-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-02-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信