淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1308201901272000
中文論文名稱 以創新製程模造精密玻璃微透鏡陣列之研究
英文論文名稱 A Novel Molding Process for Fabricating Precision Glass Micro-Lens Arrays
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生中文姓名 王琬萱
研究生英文姓名 Wan-Hsuan Wang
學號 802370014
學位類別 博士
語文別 中文
口試日期 2019-06-25
論文頁數 191頁
口試委員 指導教授-趙崇禮
委員-左培倫
委員-陳炤彰
委員-陳順同
委員-馬廣仁
中文關鍵字 玻璃模造製程  孔板成形法  微陣列透鏡  雙凸透鏡 
英文關鍵字 glass molding process  hole-plate forming methods  glass micro lens array  biconvex lens 
學科別分類
中文摘要 微透鏡陣列(MLA)已廣泛用於圖像系統、照明系統及光收集裝置,如光場相機、LED照明中的二次光學器件、太陽能集中器…等。迄今為止,塑膠微透鏡陣列以及在玻璃基板上轉印塑膠微透鏡陣列仍是光學及光電行業的主要選擇,主要因塑膠具有出色的成形性、重量輕及低成本等優勢。然而,當塑膠鏡片受紫外線照射時具有老化和降解的缺點,且與玻璃相比塑膠相對具有較低的工作溫度和折射率(nd)值。儘管玻璃具有如此多的先進性能,然而玻璃模造製程中的高成型溫度和應力卻使得製造精密玻璃微透鏡陣列非常具有挑戰性,特別是當所需的矢高量變大、形狀更加複雜(例如雙凸/凹凸透鏡或有多個不同的尺寸及形狀在一個微透鏡陣列中)。本研究旨在開發一種製造精密玻璃微陣列透鏡的新方法,並解決模造複雜形狀微透鏡陣列的問題。除了傳統的玻璃板材成形法外,本研究提出了孔板模造和孔板成形法,並在此研究中進行了相關的模擬和實驗。最終採用孔板模造法成功生成了透鏡矢高量在50μm~150μm之間,表面粗糙度優於10nm(Ra),形狀精度優於0.02μm(P-V)的雙凸玻璃微透鏡陣列。基於模擬顯示,與玻璃板材成形法相比,孔板模造法中涉及的成形應力要低得多。如要使用孔板模造法製作曲面微陣列透鏡,則容易使透鏡出現溢料和填充不完全的情形。研究中提出孔板成形法能夠解決上述問題,並為在曲面上製造精密玻璃微透鏡陣列提供一種可行的方法。
英文摘要 Micro-lens array (MLA) has been widely used in image systems, e.g. light field camera, lighting system, e.g. secondary optics in LED illumination, and light collecting devices, e.g. solar concentrator. Up to this day, plastic MLAs and polymer on glass MLAs are still the main choices in the optical and opto-electronic industry for its superb formability, lightweight, and low cost. However, plastics do have the setback of aging and degradation when subject to ultra-violet exposure and, in general, it has relatively lower working temperature and refraction index (nd) value in comparison to glass. Though has so many advanced properties, high forming temperature and stress involved in glass molding processes have made fabricating precision glass MLAs a very challenging one especially when the required sag gets bigger, shape gets more complicated (such as bi-convex/meniscus lens or several sizes/shapes in one MLA). This study aims to develop a novel way to fabricate precision glass MLAs and to tackle the problem in molding MLAs with complicated shape. Apart from conventional glass plate forming method, hole-plated mold and hole-plate forming methods are proposed and the related simulations together with experiments are conducted in this research. Bi-convex glass MLAs with lens sag between 50μm to 150μm, surface roughness better than 10 nm (Ra) and form accuracy better than 0.02μm (P-V) were successfully generated by using hole-plate mold method. In comparison to glass plate forming method, the forming stress involved in hole-plate mold method is much lower. Based on the simulation, flash and incomplete filling will appear on most of the obtained lenses if hole-plate mold method is to be applied to produce MLAs on a curved surface. The hole-plate forming method is found in the study to be able to resolve the above mentioned problem and offer a feasible way to fabricated precision glass MLAs on a curved surface.
論文目次 圖目錄 I
表目錄 VII
第一章 緒論 1
第二章 基礎理論及文獻回顧 8
2-1光學玻璃材料 8
2-1-1玻璃材料的組成 8
2-1-2玻璃的性質 9
2-1-3玻璃毛胚製作 16
2-1-4玻璃預形體 17
2-2模造模仁之設計與製作 19
2-2-1材料選擇 19
2-2-2模具加工 24
2-2-3磨料噴射加工 39
2-2-4模造模仁表面之抗沾黏鍍層 43
2-3玻璃模造製程 48
2-3-1 模造製程介紹 48
2-3-2 有限元素模擬 51
2-4轉印製程 57
2-4-1 轉印技術 57
2-4-2 轉印材料 59
第三章 研究方法與步驟 64
3-1研究規劃 64
3-2研究設備 68
3-3方法與步驟 76
第四章 模造製程 80
4-1模具設計 80
4-1-1平面型透鏡陣列模具設計 80
4-1-2曲面型透鏡陣列模具設計 86
4-2平面型微透鏡陣列 89
4-2-1 平面型微透鏡陣列模造模擬 89
4-2-2 模仁與玻璃孔板製作 102
4-2-3 高溫模造平面微透鏡陣列 124
4-3曲面型微透鏡陣列 136
4-3-1角度傾斜對於模造透鏡之影響 136
4-3-2模仁與曲面玻璃基板製作 147
4-3-3低溫模造曲面微透鏡陣列 162
第五章 結論 167
參考文獻 169
附錄 181
圖目錄
圖1- 1 各類微透鏡陣列 1
圖1- 2 傳統數位相機 2
圖1- 3 光場相機【9】 3
圖1- 4 微陣列透鏡 3
圖2- 1折射示意圖【26】 10
圖2- 2 SCHOTT公司光學玻璃之分類【27】 12
圖2- 3玻璃材料L-BAL42溫度-體積曲線圖【32】 15
圖2- 4玻璃預形體示意圖 18
圖2- 5 模仁製作流程【44】 25
圖2- 6 超精密加工製程分類 【53】 26
圖2- 7 磨削機制【57】 29
圖2- 8 碳鋼上形成Ni-P鍍層之機制【66】 35
圖2- 9無電鍍與電鍍之鍍層均勻性比較【69】 37
圖2- 10 熱處理1小時後磷含量對硬度的影響【69】 38
圖2- 11 磨粒衝擊的侵蝕機制【75】 39
圖2- 12 脆性材料侵蝕移除機制 40
圖2- 13具有遮罩的磨料噴射加工 40
圖2- 14 光阻遮罩製作流程【73】 41
圖2- 15 不同材料與磨料加工的材料移除率【81】 43
圖2- 16為擴散阻隔層示意圖 46
圖2- 17模造加壓示意圖【32】(a)加熱(b)加壓(c)退火(d)冷卻 48
圖2- 18 雙面微陣列透鏡【89】 50
圖2- 19為FEM應力分布圖【93】 52
圖2- 20模擬集光效率【94】 53
圖2- 21碳化鎢材料模擬持溫(a)120秒(b)180秒(c)220秒【32】 53
圖2- 22潛變及應力鬆弛模型【97】 55
圖2- 23透鏡的設計與模擬【99】 56
圖2- 24奈米壓印光刻技術示意圖 57
圖2- 25熱壓印【100】和紫外光壓印技術【109】之比較。 59
圖2- 26 轉印圖案的SEM照片 61
圖2- 27 一維和二維有序圖案的製造過程示意圖【120】 63
圖3- 1 板材加壓法模壓陣列透鏡(模壓玻璃板材) 64
圖3- 2 孔板模造法模壓陣列透鏡(孔板+玻璃預形體) 65
圖3- 3轉印曲面微陣列透鏡示意圖 66
圖3- 4 實驗規劃 67
圖3- 5 超精密加工機 ULG(HYB-100D) 69
圖3- 6 超精密加工機 ULG(HYB-100D) 各軸示意圖 69
圖3- 7 MB-20V磨料噴射加工機 71
圖3- 8 Keyence 雷射共軛焦顯微鏡(VK-9700) 72
圖3- 9盟立GP-0165玻璃模造機 73
圖3- 10 SU-8 GM1075負光阻膠 74
圖3- 11 高溫-碳化鎢-模造製程之規劃 76
圖3- 12 低溫-無電解鎳-轉印製程之規劃 77
圖3- 13 模具設計與加工流程圖 79
圖4- 1光學模擬-平面微透鏡陣列之焦距與光通量模擬結果 81
圖4- 2光學模擬-平面微透鏡陣列之MTF模擬結果 82
圖4- 3模具圖 85
圖4- 4光學模擬-曲面微透鏡陣列之焦距與光通量模擬結果 87
圖4- 5模具圖 88
圖4- 6溫度之模擬規劃 89
圖4- 7溫度改變對於壓力之影響 90
圖4-8 速率之模擬規劃 91
圖4- 9加壓速率改變對於壓力之影響 92
圖4- 10矢高量模擬規劃 93
圖4- 11模擬平凸透鏡於不同矢高量之影響圖 95
圖4- 12模具形式之模擬規劃 96
圖4- 13 透鏡形式模擬圖 96
圖4- 14單顆透鏡模擬結果 97
圖4- 15 2*2陣列透鏡模擬結果 98
圖4- 16 3*3陣列透鏡模擬結果 98
圖4- 17孔板模造法-各類透鏡之加壓壓力比較 100
圖4- 18板材加壓法-各類透鏡之加壓壓力比較 101
圖4- 19磨料噴射加工示意圖(未使用遮罩) 102
圖4- 20噴嘴與工件距離對於孔輪廓之影響 103
圖4- 21噴嘴與工件距離與入口端直徑之關係圖 104
圖4- 22 噴砂壓力與侵蝕深度之關係圖 105
圖4- 23 噴嘴距離對於侵蝕深度與材料移除體積之影響 106
圖4- 24磨料噴射加工示意圖(使用遮罩) 107
圖4- 25掃描速率對孔洞側壁錐度之影響 108
圖4- 26磨料噴射加工圓孔之入口端與出口端尺寸圖 109
圖4- 27 掃描160次之圓孔結果OM圖 109
圖4- 28 不同間距之圓孔加工結果趨勢圖 110
圖4- 29不同間距之圓孔加工結果圖 110
圖4- 30 掃描次數對於間距誤差百分比之影響 111
圖4- 31孔板遮罩圖 112
圖4- 32玻璃孔板成品圖 113
圖4- 33 sag50之雙面噴砂定位圖 113
圖4- 34 sag50孔徑平均值 115
圖4- 35 sag150孔徑平均值 116
圖4- 36 double孔徑平均值 117
圖4- 37孔板-內壁情況 117
圖4- 38孔板-側壁錐度 118
圖4- 39校正示意圖 120
圖4- 40模具加工流程 120
圖4- 41 加工完成之模仁 122
圖4- 42 陣列透鏡模仁量測順序 122
圖4- 43 sag50-陣列透鏡模仁量測-PV-Ra結果圖 123
圖4- 44 sag150-陣列透鏡模仁量測-PV-Ra結果圖 123
圖4- 45陣列透鏡成品圖 124
圖4- 46材料流動圖 125
圖4- 47通孔成形偏心圖 125
圖4- 48曲率截斷範圍示意圖 126
圖4- 49透鏡之曲率正負截斷範圍 127
圖4- 50板材加壓法-實驗與模擬比對 127
圖4- 51板材加壓法-實驗與模擬疊合圖 127
圖4- 52孔板模造法-雙凸透鏡陣列成品圖 128
圖4- 53孔板模造法-雙凸透鏡陣列成品剖面圖 129
圖4- 54成品拼接量測圖 129
圖4- 55雙凸陣列透鏡-Sag50面之表面粗糙度及形狀精度圖 131
圖4- 56雙凸陣列透鏡-Sag150面之表面粗糙度及形狀精度圖 131
圖4- 57孔板模造法-雙凸陣列透鏡(sag50+150μm) MTF圖 135
圖4- 58 角度傾斜規劃圖 136
圖4- 59孔板模造法-角度傾斜模擬結果 139
圖4- 60板材加壓法-角度傾斜模擬結果 140
圖4- 61 凹凸透鏡模壓材料流動情況(傾斜角度45°) 141
圖4- 62 孔板成形法 142
圖4- 63 (a)孔板成形法-加壓孔板配置圖 143
圖4- 64 模擬傾斜角度時-成形壓力示意圖 145
圖4- 65孔板成形法-成形透鏡圖 145
圖4- 66孔板成形法於傾斜角度成形之模擬結果 146
圖4- 67熱處理後之表面形貌-直接升溫 149
圖4- 68熱處理溫度對於表面粗糙度之影響(Sa/Sq/Sz) 150
圖4- 69熱處理後之硬度比較圖(300-600°C) 151
圖4- 70無電解鎳熱處理溫度300°C之XRD圖 152
圖4- 71無電解鎳熱處理溫度500°C之XRD圖 152
圖4- 72 無電解鎳熱處理溫度600°C之XRD圖 153
圖4- 73 升溫速率0.04℃/s直接升溫至600℃熱處理之表面情況 153
圖4- 74分段升溫與直接升溫之表面粗糙度比較 155
圖4- 75無電解鎳模仁量測圖 156
圖4- 76熱坍塌實驗 161
圖4- 77熱坍塌之玻璃圓板 162
圖4- 78熱坍塌的玻璃圓板R值量測結果 162
圖4- 79光學矽膠-曲面微透鏡陣列 163
圖4- 80光學矽膠-sag20/30/50曲面微透鏡陣列量測結果 164
圖4- 81光學矽膠-sag50曲面微透鏡陣列量測結果 165
圖4- 82光學矽膠-sag150曲面微透鏡陣列量測結果 165

表目錄
表2- 1 玻璃材料缺陷 16
表2- 2 加工法選擇參考【44】 25
表2- 3 不同磨料的特性差異 27
表2- 4 無電解鎳之特性及優勢概述【63、64】 32
表2- 5 不同磷含量之鍍層性能【66】 36
表2- 6玻璃模造模仁之鍍層比較【86】 46
表3- 1超精密加工機ULG(HYB-100D)之規格表 69
表3- 2 Keyence 雷射共軛焦顯微鏡VK-9700規格表 72
表3- 3盟立GP-0165玻璃模造機之規格表 73
表3- 4 Dow Corning® OE-6662規格表 75
表4- 1 MTF模擬結果 82
表4- 2模具參數 83
表4-3溫度改變對於壓力之影響(單位:N/mm2) 90
表4-4速度改變對於壓力之影響(單位:N/mm2) 91
表4- 5模擬之設置 93
表4- 6矢高與壓力之模擬結果(N/mm2) 94
表4- 7各類透鏡模擬壓力比較表 99
表4- 8噴砂加工之基礎實驗參數 103
表4- 9 微影製程參數 107
表4- 10 孔板加工參數 112
表4- 11 孔板-sag50孔徑平均值 114
表4- 12 孔板-sag150孔徑平均值 115
表4- 13 孔板-double孔徑平均值 116
表4- 14 孔徑側壁錐度及側壁高度平均值 118
表4- 15陣列模具加工參數表 121
表4- 16陣列透鏡模仁量測結果 122
表4- 17 板材加壓法-陣列透鏡實驗參數表 124
表4- 18板材加壓法-模造陣列透鏡之曲率半徑量測結果 126
表4- 19實驗與模擬比對之曲率半徑表 127
表4- 20玻璃模造-微透鏡陣列實驗參數表 128
表4- 21 微陣列雙凸透鏡量測結果(um) 130
表4- 22 孔板模造法成形的透鏡陣列焦距 132
表4- 23 孔板模造法-雙凸陣列透鏡(sag50+150μm) MTF值 133
表4- 24 角度傾斜模擬參數表 137
表4- 25 孔板模造法-角度傾斜模擬結果 137
表4- 26 板材加壓法-角度傾斜模擬結果 138
表4- 27 孔板成形法模擬參數表 143
表4- 28孔板成形法之模擬結果 146
表4- 29熱處理實驗參數 148
表4- 30熱處理後之表面粗糙度 150
表4- 31Ni3P結晶尺寸(單位:A) 151
表4- 32 直接升溫-不同速率之表面粗糙度結果 153
表4- 33 分段升溫之實驗參數 154
表4- 34慢刀伺服加工參數及模具圖 156
表4- 35 sag 50模具量測結果 158
表4- 36 sag 50/150模具量測結果 159
表4- 37 sag 20/30/50模具量測結果 160
表4- 38熱坍塌實驗參數 161
表4- 39轉印參數 162
表4- 40透鏡轉印誤差百分比 164
表4- 41 曲面型陣列透鏡焦距量測結果(單位:mm) 166
參考文獻 1. 俞德光學, from http://www.kimoga.com.tw/page_2.htm
2. Xie, S., Wan, X., Yang, B., Zhang, W., Wei, X., & Zhuang, S. (2019). Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures. Nanomaterials (Basel, Switzerland), 9(5). https://doi.org/10.3390/nano9050747
3. Liu, X., Zhou, T., Zhang, L., Zhou, W., Yu, J., Lee, L. J., & Yi, A. Y. (2018). Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding. Journal of Micromechanics and Microengineering, 28(7), 075008. https://doi.org/10.1088/1361-6439/aab995
4. Chen, Y., Yi, A. Y., Yao, D., Klocke, F., & Pongs, G. (2008). A reflow process for glass microlens array fabrication by use of precision compression molding. Journal of Micromechanics and Microengineering, 18(5), 055022. https://doi.org/10.1088/0960-1317/18/5/055022
5. Chou, P.-Y., Wu, J.-Y., Huang, S.-H., Wang, C.-P., Qin, Z., Huang, C.-T., … Huang, Y.-P. (2019). Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement. Optics Express, 27(2), 1164–1177. https://doi.org/10.1364/OE.27.001164
6. Liu, Q., Liu, H., Li, D., Qiao, W., Chen, G., & Ågren, H. (2019). Microlens array enhanced upconversion luminescence at low excitation irradiance. Nanoscale, 11(29), 14070–14078. https://doi.org/10.1039/C9NR03105G
7. Marc Levo y and Pat Hanrahan. (1996). Light Field Rendering. Computer Science Department Stanford University.
8. Pau, S., & Ashok, A. (2019). United States Patent No. US20190197714A1. Retrieved from https://patents.google.com/patent/US20190197714A1/en
9. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., & Hanrahan, P. (2005). Light Field Photography with a Hand-held Plenoptic Camera.
10. Birklbauer, C., & Bimber, O. (2015). Active guidance for light-field photography on smartphones. Computers & Graphics, 53(Part B), 127–135. https://doi.org/10.1016/j.cag.2015.09.008
11. Levoy, M., Zhang, Z., & Mcdowall, I. (2009). Recording and controlling the 4D light field in a microscope using microlens arrays. Journal of Microscopy, 235(2), 144–162. https://doi.org/10.1111/j.1365-2818.2009.03195.x
12. Orth, A., & Crozier, K. (2012). Microscopy with microlens arrays: high throughput, high resolution and light-field imaging. Optics Express, 20(12), 13522–13531. https://doi.org/10.1364/OE.20.013522
13. Zhang, M., Geng, Z., Pei, R., Cao, X., & Zhang, Z. (2017). Three-dimensional light field microscope based on a lenslet array. Optics Communications, 403, 133–142.
https://doi.org/10.1016/j.optcom.2017.07.026
14. Pang, K., Song, L., Fang, F., Zhang, Y., & Zhang, H. (2016). An imaging system with a large depth of field based on an overlapped micro-lens array. CIRP Annals, 65(1), 471–474. https://doi.org/10.1016/j.cirp.2016.04.071
15. Chen, W., Zhang, X., Liu, X., & Fang, F. (2015). Optical design and simulation of a compact multi-aperture camera based on a freeform microlens array. Optics Communications, 338(Supplement C), 300–306. https://doi.org/10.1016/j.optcom.2014.10.029
16. Li, S.-N., Yuan, Y., Liu, B., Wang, F.-Q., & Tan, H.-P. (2018). Influence of microlens array manufacturing errors on light-field imaging. Optics Communications, 410(Supplement C), 40–52.
https://doi.org/10.1016/j.optcom.2017.09.055
17. Li, F., Chen, S., Luo, H., & Gao, Y. (2013). Curved micro lens array for bionic compound eye. Optik, 124(12), 1346–1349.
https://doi.org/10.1016/j.ijleo.2012.03.063
18. Lin, J., Kan, Y., Jing, X., & Lu, M. (2018). Design and Fabrication of a Three-Dimensional Artificial Compound Eye Using Two-Photon Polymerization. Micromachines, 9(7), 336.
https://doi.org/10.3390/mi9070336
19. Cao, Z., Zhai, C., & Wang, K. (2015). Design of artificial spherical superposition compound eye. Optics Communications, 356, 218–222. https://doi.org/10.1016/j.optcom.2015.07.082
20. Zhang, H., Scheiding, S., Li, L., Gebhardt, A., Risse, S., Eberhardt, R., … Yi, A. Y. (2013). Manufacturing of a precision 3D microlens array on a steep curved substrate by injection molding process. Advanced Optical Technologies, 2(3), 257–268. https://doi.org/10.1515/aot-2012-0061
21. Johnson, R. B., & Mandina, M. (2005). Aspheric glass lens modeling and machining (Vol. 5874, pp. 106–120). Presented at the Current Developments in Lens Design and Optical Engineering VI.
https://doi.org/10.1117/12.619382
22. Yuan, W., Li, L.-H., Lee, W.-B., & Chan, C.-Y. (2018). Fabrication of Microlens Array and Its Application: A Review. Chinese Journal of Mechanical Engineering, 31(1), 16. https://doi.org/10.1186/s10033-018-0204-y
23. Li, K., & Gong, F. (2019). Numerical Simulation of Glass molding Process for Large Diameter Aspherical Glass Lens. IOP Conference Series: Materials Science and Engineering, 490, 052018. https://doi.org/10.1088/1757-899X/490/5/052018
24. 許蕙如、許志雄、王木琴。(2006年10月)。玻璃的藝術與科技-玻璃 排列不規則的固體。科學發展(406),08-13頁。
25. 曹志峰(1993)。特種光學玻璃。中國,北京市:兵器工業出版社。
26. J. E. Shelby. (2005). Introduction to Glass Science and Technology (2nd ed.). Royal Society of Chemistry.
27. Hartmann, P., Jedamzik, R., Reichel, S., & Schreder, B. (2010). Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Applied Optics, 49(16), D157–D176. https://doi.org/10.1364/AO.49.00D157
28. 許阿娟、朱嘉雯、林佳芬、陳志隆。(2002)。光學系統設計進階篇。台灣。擷取自 http://www.phys.ncku.edu.tw/optics/book_2/b2_04_2002.pdf
29. Scholze, H. (1991). Glass: nature, structure, and properties. Springer-Verlag.
30. Bourhis, E. L. (2014). Glass: Mechanics and Technology. John Wiley & Sons.
31. Lijuan Su, & Allen Y. Yi. (2011). Investigation of the effect of coefficient of thermal expansion on prediction of refractive index of thermally formed glass lenses using FEM simulation. Journal of Non-Crystalline Solids, 357(15), 3006–3012. https://doi.org/10.1016/j.jnoncrysol.2011.04.005
32. Jiwang Yan, Tianfeng Zhou, Jun Masuda, & Tsunemoto Kuriyagawa. (2009). Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis. Precision Engineering, 33(2), 150–159. https://doi.org/10.1016/j.precisioneng.2008.05.005
33. 王興邦 & 徐瑞坤 (2003)。玻璃微熱壓之成形特性研究。碩士論文,國立交通大學,機械工程系,台灣,新竹市。
34. 林正淳(2010)。光學機構設計:光電產品的設計聖經 (第二版)。台灣: 三民出版社。
35. SUMITA,取自網址
http://www.sumita-opt.co.jp/cn/products/molding/cylindrical-array.html
36. SUMITA,取自網址
http://www.sumita-opt.co.jp/cn/products/optical/preform.html
37. SUMITA,取自網址
http://www.sumita-opt.co.jp/cn/products/optical/hand-press.html
38. SUMITA,取自網址
http://www.sumita-pt.co.jp/cn/products/molding/about-aspheric-lens.html
39. 楊玉森, 許憲斌, & 卓廷彬. (2014). 模具材料與熱處理. 台灣五南圖書出版股份有限公司.
40. Gurland, J. (1988). New scientific approaches to development of tool materials. International Materials Reviews, 33(1), 151–166. https://doi.org/10.1179/imr.1988.33.1.151
41. Kim, C.-S. (2004.). Microstructural mechanical property relationships in wc-co composites (Ph. D. Thesis). Carnegie Mellon University, Pittsburgh, PA 15213, USA. Retrieved from https://pdfs.semanticscholar.org/4eb9/920c5a0403c044d13f1339fa5ad298283913.pdf
42. The International Nickel Company Inc. (INCO), “The Engineering Properties of Electroless Nickel Deposits”, Revision A603, 75C 2-80 (2M 11-77) 5344, USA.
43. Shaw, M. C. (1995). Precision Finishing. CIRP Annals - Manufacturing Technology, 44(1), 343–348. https://doi.org/10.1016/S0007-8506(07)62339-7
44. Mertus, L., & Symmons, A. (2012). Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics (Vol. 8489, pp. 848902-848902–17). https://doi.org/10.1117/12.927771
45. Bifano, T. G., Dow, T. A., & Scattergood, R. O. (1991). Ductile-Regime Grinding: A New Technology for Machining Brittle Materials. Journal of Engineering for Industry, 113(2), 184–189.
https://doi.org/10.1115/1.2899676
46. Bifano, T. G., & Bierden, P. A. (1997). Fixed-abrasive grinding of brittle hard-disk substrates. International Journal of Machine Tools and Manufacture, 37(7), 935–946. https://doi.org/10.1016/S0890-6955(96)00089-2
47. Komanduri, R., Lucca, D. A., & Tani, Y. (1997). Technological Advances in Fine Abrasive Processes. CIRP Annals - Manufacturing Technology, 46(2), 545–596. https://doi.org/10.1016/S0007-8506(07)60880-4
48. Ohmori, H., Ebizuka, N., Morita, S., Yamagata, Y., & Kudo, H. (2001). Ultraprecision Micro-Grinding of Germanium Immersion Grating Element for Mid-Infrared Super Dispersion Spectrograph. CIRP Annals - Manufacturing Technology, 1(50), 221–224. https://doi.org/10.1016/S0007-8506(07)62109-X
49. Ngoi, B. K. A., & Sreejith, P. S. (2000). Ductile Regime Finish Machining - A Review. The International Journal of Advanced Manufacturing Technology, 16(8), 547–550. https://doi.org/10.1007/s001700070043
50. Zhong, Z. (2002). Surface finish of precision machined advanced materials. Journal of Materials Processing Technology, 122(2–3), 173–178. https://doi.org/10.1016/S0924-0136(02)00076-6
51. Ohmori, H., Ebizuka, N., Morita, S., Yamagata, Y., & Kudo, H. (2001). Ultraprecision Micro-Grinding of Germanium Immersion Grating Element for Mid-Infrared Super Dispersion Spectrograph. CIRP Annals - Manufacturing Technology, 1(50), 221–224. https://doi.org/10.1016/S0007-8506(07)62109-X
52. H.Ohmori, Katahira, K., Uehara, Y., & Lin, W. (2003). ELID-grinding of microtool and applications to fabrication of microcomponents. International Journal of Materials and Product Technology, 18(4–6), 498–508. https://doi.org/10.1504/IJMPT.2003.002505
53. Brinksmeier, E., Mutlugünes, Y., Klocke, F., Aurich, J. C., Shore, P., & Ohmori, H. (2010). Ultra-precision grinding. CIRP Annals - Manufacturing Technology, 59(2), 652–671. https://doi.org/10.1016/j.cirp.2010.05.001
54. 喻懷仁。(1990)。金屬切削原理 (第一版). 寧夏;人民出版社。
55. 黃忠良。(1993)。精密陶瓷加工。台灣,台南市;復漢出版社。
56. Fang, F. Z., & Zhang, G. X. (2004). An experimental study of optical glass machining. The International Journal of Advanced Manufacturing Technology, 23(3–4), 155–160. https://doi.org/10.1007/s00170-003-1576-3
57. Lortz, W. (1979). A model of the cutting mechanism in grinding. Wear, 53(1), 115–128. https://doi.org/10.1016/0043-1648(79)90223-0.
58. 張家榮 & 趙崇禮。(2017)。精密微玻璃光學元件之開發及製作 (博士論文)。淡江大學,機械與機電工程學系,台灣,新北市。
59. Cheung, C. F., & Lee, W. B. (2003). Surface generation in ultra-precision diamond turning : modelling and practices. Professional Engineering.
60. Neo, K. S., Rahman, M., Li, X. P., Khoo, H. H., Sawa, M., & Maeda, Y. (2003). Performance evaluation of pure CBN tools for machining of steel. Journal of Materials Processing Tech., 1–3(140), 326–331.
https://doi.org/10.1016/S0924-0136(03)00746-5
61. Balaraju, J. N., Narayanan, T. S. N. S., & Seshadri, S. K. (2003). Electroless Ni–P composite coatings. Journal of Applied Electrochemistry, 33(9), 807–816. https://doi.org/10.1023/A:1025572410205
62. Dini, J. W. (1992). Perspective on plating for precision finishing. Plating and Surface Finishing, 79(5), 121–128.
63. Engineering-Properties-of-EN-Coatings.pdf. (n.d.). Retrieved April 1, 2018, from http://www.techmetals.com/wp-content/uploads/2015/03/Engineering-Properties-of-EN-Coatings.pdf
64. Sahoo, P., & Das, S. K. (2011). Tribology of electroless nickel coatings – A review. Materials & Design, 32(4), 1760–1775. https://doi.org/10.1016/j.matdes.2010.11.013
65. 蔡定侃 & 朝春光。(2004)。無電鍍NiP析鍍於矽基材及應用於生長奈米碳纖之研究 (博士論文) 國立交通大學,材料科學與工程系所,台灣,新竹市
66. 【 】Mainier, F. B., Fonseca, M. P. C., Tavares, S. S. M., & Pardal, J. M. (2013). Quality of Electroless Ni-P (Nickel-Phosphorus) Coatings Applied in Oil Production Equipment with Salinity. Journal of Materials Science and Chemical Engineering, 01(06), 1. https://doi.org/10.4236/msce.2013.16001
67. Brenner, A., & Riddell, G. E. (1946). Nickel plating on steel by chemical reduction. Journal of Research of the National Bureau of Standards, 37(1), 31. https://doi.org/10.6028/jres.037.019
68. ASTM International Headquarters. ASTM B733 - 15 Standard Specification for Autocatalytic (Electroless) Nickel-Phosphorus Coatings on Metal (Vol. 02.05). 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.: ASTM International Headquarters. Retrieved from www.astm.org
69. Ron Parkinson. Properties and Applications of Electroless Nickel (10081). Nickel Development Institute.
70. Syn, C. K., Dini, J. W., Taylor, J. S., Mara, G. L., Vandervoort, R. R., & Donaldson, R. R. (1985). Influence of phosphorus content and heat treatment on the machinability of electroless nickel deposits. NASA STI/Recon Technical Report N, 85.
71. Harvey, J. E., & Thompson, A. K. (1995). Scattering effects from residual optical fabrication errors (Vol. 2576, pp. 155–174). https://doi.org/10.1117/12.215588
72. Tianfeng Zhou, Jiwang Yan, Zhiqiang Liang, Xibin Wang, Ryuichi Kobayashi, & Tsunemoto Kuriyagawa. (2015). Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming. Precision Engineering, 39, 25–30. https://doi.org/10.1016/j.precisioneng.2014.07.002
73. Park, D.-S., Cho, M.-W., Lee, H., & Cho, W.-S. (2004). Micro-grooving of glass using micro-abrasive jet machining. Journal of Materials Processing Technology, 146(2), 234–240.
https://doi.org/10.1016/j.jmatprotec.2003.11.013
74. Slikkerveer, P. J., Bouten, P. C. P., in’t Veld, F. H., & Scholten, H. (1998). Erosion and damage by sharp particles. Wear, 217(2), 237–250. https://doi.org/10.1016/S0043-1648(98)00187-2
75. Wensink, H. (2002, February 22). Fabrication of microstructures by powder blasting (info:eu-repo/semantics/doctoralThesis). University of Twente, Enschede. Retrieved from http://doc.utwente.nl/61698/
76. Sayah, A., Parashar, V. K., Pawlowski, A.-G., & Gijs, M. A. M. (2005). Elastomer mask for powder blasting microfabrication. Sensors and Actuators A: Physical, 125(1), 84–90. https://doi.org/10.1016/j.sna.2005.06.009
77. Liu, G., Tian, Y., & Kan, Y. (2005). Fabrication of high-aspect-ratio microstructures using SU8 photoresist. Microsystem Technologies, 11(4–5), 343–346. https://doi.org/10.1007/s00542-004-0452-x
78. Saragih, A. S., & Ko, T. J. (2009). A thick SU-8 mask for microabrasive jet machining on glass. The International Journal of Advanced Manufacturing Technology, 41(7–8), 734–740. https://doi.org/10.1007/s00170-008-1520-7
79. 紀厚任 & 趙崇禮。(2012,七月)。磨粒流噴射加工脆性材料之研究 (碩士論文) 淡江大學,機械與機電工程學系,台灣,新北市。
80. 趙曾民 & 趙崇禮。(2016,七月)。磨料噴射技術應用於硬脆材料微孔陣列加工之研究 (碩士論文) 淡江大學,機械與機電工程學系,台灣,新北市。
81. Wakuda, M., Yamauchi, Y., & Kanzaki, S. (2002). Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials. Precision Engineering, 26(2), 193–198. https://doi.org/10.1016/S0141-6359(01)00114-3
82. General Carbide. (2008). The Designer’s Guide to Tungsten Carbide. 1151 Garden Street Greensburg, PA 15601: General Carbide Corp.
83. Kyle D. Fischbach, Kyriakos Georgiadis, Fei Wang, O. Dambon, F. Klocke, Yang Chen, & Allen Y. Yi. (2010). Investigation of the effects of process parameters on the glass-to-mold sticking force during precision glass molding. Surface and Coatings Technology, 205(2), 312–319. https://doi.org/10.1016/j.surfcoat.2010.06.049
84. Likai Li, Peng He, Fei Wang, Kyriakos Georgiadis, Olaf Dambon, Fritz Klocke, & Allen Y. Yi. (2011). A hybrid polymer–glass achromatic microlens array fabricated by compression molding. Journal of Optics, 13(5), 055407. https://doi.org/10.1088/2040-8978/13/5/055407
85. 楊恆傑 & 劉全璞。(2002,六月)。直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層應用之研究 (碩士論文)。國立成功大學,材料科學及工程學系,台灣,台南市。
86. 馬廣仁、趙崇禮。(2005,一月)。精密玻璃模造技術。擷取於 2017年2月1日,從 http://www.staff.chu.edu.tw/rdoff/2006rd_result/pdf/post-1.pdf
87. Peiman Mosaddegh, & John C. Ziegert. (2011). Friction measurement in precision glass molding: An experimental study. Journal of Non-Crystalline Solids, 357(16–17), 3221–3225.
https://doi.org/10.1016/j.jnoncrysol.2011.05.012
88. Firestone, G. C., & Yi, A. Y. (2005). Precision compression molding of glass microlenses and microlens arrays—an experimental study. Applied Optics, 44(29), 6115–6122. https://doi.org/10.1364/AO.44.006115
89. Huang, C.-Y., Hsiao, W.-T., Huang, K.-C., Chang, K.-S., Chou, H.-Y., & Chou, C.-P. (2011). Fabrication of a double-sided micro-lens array by a glass molding technique. Journal of Micromechanics and Microengineering, 21(8), 085020. https://doi.org/10.1088/0960-1317/21/8/085020
90. Tianfeng Zhou, Jiwang Yan, & Tsunemoto Kuriyagawa. (2014). High-Efficiency and Ultra-precision Glass Molding of Aspherical Lens and Microstructures. ResearchGate.
Retrieved from https://www.researchgate.net/publication/264843526_High-Efficiency_and_Ultra-precision_Glass_Molding_of_Aspherical_Lens_and_Microstructures
91. Hui Li, Peng He, Jianfeng Yu, L. James Lee, & Allen Y. Yi. (2015). Localized rapid heating process for precision chalcogenide glass molding. Optics and Lasers in Engineering, 73, 62–68. https://doi.org/10.1016/j.optlaseng.2015.04.007
92. C. Brecher, M. Winterschladen, S. Lange, F. Klocke, G. Pongs, & F. Wang. (2006). Finite element analysis of the micro glass moulding process. In Wolfgang Menz, Stefan Dimov, & Bertrand Fillon (Eds.), 4M 2006 - Second International Conference on Multi-Material Micro Manufacture (pp. 251–254). Oxford: Elsevier. https://doi.org/10.1016/B978-008045263-0/50056-8
93. Tianfeng Zhou, Jiwang Yan, Jun Masuda, Takashi Oowada, and Tsunemoto Kuriyagawa. (2011) Investigation on Shape Transferability in Ultraprecision Glass Molding Press for Microgrooves. Precision Engineering, 35(2), 214–220 . https://doi.org/10.1016/j.precisioneng.2010.09.011
94. Noel León, Humberto Aguayo, Hector García, & Alán Anaya. (2011). Computer Aided Optimization/Innovation of Passive Tracking Solar Concentration Fresnel Lens. In Building Innovation Pipelines through Computer-Aided Innovation (pp. 57–70). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22182-8_6
95. Yu-Chung Tsai, Chinghua Hung, & Jung-Chung Hung. (2008). Glass material model for the forming stage of the glass molding process. Journal of Materials Processing Technology, 201(1–3), 751–754. https://doi.org/10.1016/j.jmatprotec.2007.11.294
96. Lijuan Su, Peng He, & Allen Y. Yi. (2011). Investigation of glass thickness effect on thermal slumping by experimental and numerical methods. Journal of Materials Processing Technology, 211(12), 1995–2003. https://doi.org/10.1016/j.jmatprotec.2011.06.020
97. Tianfeng Zhou, Jiwang Yan, Jun Masuda, & Tsunemoto Kuriyagawa. (2009). Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process. Journal of Materials Processing Technology, 209(9), 4484–4489. https://doi.org/10.1016/j.jmatprotec.2008.10.030
98. Nguyen, D., Lv, B., Yuan, J., Wu, Z., & Lu, H. (2013). Experimental study on elastic deformation machining process for aspheric surface glass. The International Journal of Advanced Manufacturing Technology, 65(1), 525–531. https://doi.org/10.1007/s00170-012-4191-3
99. Lijuan Su, Fei Wang, Peng He, Olaf Dambon, Fritz Klocke, & Allen Y. Yi. (2014). An integrated solution for mold shape modification in precision glass molding to compensate refractive index change and geometric deviation. Optics and Lasers in Engineering, 53, 98–103. https://doi.org/10.1016/j.optlaseng.2013.08.016
100. Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1995). Imprint of sub‐25 nm vias and trenches in polymers. Applied Physics Letters, 67(21), 3114–3116. https://doi.org/10.1063/1.114851
101. Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1996). Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14(6), 4129–4133. https://doi.org/10.1116/1.588605
102. Kim, J.-G., Sim, Y., Cho, Y., Seo, J.-W., Kwon, S., Park, J.-W., … Lee, S. (2009). Large area pattern replication by nanoimprint lithography for LCD–TFT application. Microelectronic Engineering, 86(12), 2427–2431. https://doi.org/10.1016/j.mee.2009.05.006
103. Holland, E. R., Jeans, A., Mei, P., Taussig, C. P., Elder, R. E., Bell, C., Howard, E., Stowell, J., O’Rourke, S. (2011). An Enhanced Flexible Color Filter Via Imprint Lithography and Inkjet Deposition Methods. Journal of Display Technology, 7(6), 311–317.
https://doi.org/10.1109/JDT.2010.2090860
104. Häffner, M., Heeren, A., Fleischer, M., Kern, D. P., Schmidt, G., & Molenkamp, L. W. (2007). Simple high resolution nanoimprint-lithography. Microelectronic Engineering, 84(5), 937–939.
https://doi.org/10.1016/j.mee.2007.01.020
105. Le, N. V., Dauksher, W. J., Gehoski, K. A., Nordquist, K. J., Ainley, E., & Mangat, P. (2006). Direct pattern transfer for sub-45nm features using nanoimprint lithography. Microelectronic Engineering, 83(4), 839–842.
https://doi.org/10.1016/j.mee.2006.01.254
106. Lan, H., & Ding, Y. H. (2010). Nanoimprint Lithography. In Lithography Rijeka: InTech. https://doi.org/10.5772/8189
107. Sohn, K.-J., Park, J. H., Lee, D.-E., Jang, H.-I., & Lee, W. I. (2013). Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film. Journal of Micromechanics and Microengineering, 23(3), 035024.
https://doi.org/10.1088/0960-1317/23/3/035024
108. Colburn, M., Johnson, S. C., Stewart, M. D., Damle, S., Bailey, T. C., Choi, B., … Willson, C. G. (1999). Step and flash imprint lithography: a new approach to high-resolution patterning. In Y. Vladimirsky (Ed.) (p. 379). https://doi.org/10.1117/12.351155
109. Mohamed, K. (2009). Three-Dimensional Patterning Using Ultraviolet Curable Nanoimprint Lithography. Retrieved from
https://ir.canterbury.ac.nz/handle/10092/3049
110. Vogler, M., Wiedenberg, S., Mühlberger, M., Bergmair, I., Glinsner, T., Schmidt, H., … Grützner, G. (2007). Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography. Microelectronic Engineering, 84(5), 984–988.
https://doi.org/10.1016/j.mee.2007.01.184
111. Hirai, Y., & Tanaka, Y. (2002). Application of nano-imprint lithography. J Photopolym Sci Technol. Journal of Photopolymer Science and Technology - J PHOTOPOLYM SCI TECHNOL, 15, 475–480.
https://doi.org/10.2494/photopolymer.15.475
112. Hirai, Y. (2005). Polymer Science in Nanoimprint Lithography. Journal of Photopolymer Science and Technology - J PHOTOPOLYM SCI TECHNOL, 18, 551–558. https://doi.org/10.2494/photopolymer.18.551
113. Guo, L. J. (2004). Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics, 37(11), R123. https://doi.org/10.1088/0022-3727/37/11/R01
114. Scheer, H.-C., Bogdanski, N., Wissen, M., Konishi, T., & Hirai, Y. (2005). Polymer time constants during low temperature nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 23(6), 2963–2966. https://doi.org/10.1116/1.2121727
115. Jung, G.-Y., Ganapathiappan, S., Li, X., Ohlberg, D. A. A., Olynick, D. L., Chen, Y., … Williams, S. (2004). Fabrication of molecular-electronic circuits by nanoimprint lithography at low temperatures and pressures. Applied Physics A: Materials Science & Processing, 78, 1169–1173. https://doi.org/10.1007/s00339-003-2393-0
116. Khang, D.-Y., & Lee, H. H. (2000). Room-temperature imprint lithography by solvent vapor treatment. Applied Physics Letters, 76(7), 870–872. https://doi.org/10.1063/1.125613
117. Shukla, V., Bajpai, M., Singh, D. K., Singh, M., & Shukla, R. (2004). Review of basic chemistry of UV-curing technology. Pigment & Resin Technology, 33, 272–279. https://doi.org/10.1108/03699420410560461
118. Decker, C. (1998). The use of UV irradiation in polymerization. Polymer International, 45(2), 133–141. https://doi.org/10.1002/(SICI)1097-0126(199802)45:2<133::AID-PI969>3.0.CO;2-F
119. Beck, M., Graczyk, M., Maximov, I., Sarwe, E.-L., Ling, T. G. I., Keil, M., & Montelius, L. (2002). Improving stamps for 10 nm level wafer scale nanoimprint lithography. Microelectronic Engineering, 61–62, 441–448. https://doi.org/10.1016/S0167-9317(02)00464-1
120. Guo, H., Zhang, X., & Li, X. (2016). Fabrication of ordered micro- and nano-scale patterns based on optical discs and nanoimprint. Optoelectronics Letters, 12(4), 241–244. https://doi.org/10.1007/s11801-016-6097-z
121. Semiconductor Glass Products Corning Semiconductor Glass Wafers, from https://docplayer.net/45096334-Semiconductor-glass-products-corning-semiconductor-glass-wafers.html
122. SUMITA. (2016). SUMITA-optical glass data book (10th ed.). Retrieved from http://www.sumita-opt.co.jp/data/glassdata.pdf?1546440161
123. “Schott B270 Properties” [Online].Available:
https://psec.uchicago.edu/glass/Schott%20B270%20Properties%20-%20Knight%20Optical.pdf
124. “Schott optical glass inquiry glass collection datasheets.” [Online].Available:
https://www.schott.com/d/advanced_optics/555cd92f-3839-4605-b12c-be3cf34c4e03/1.4/schott-optical-glass-inquiry-glass-collection-datasheets-english-03032017.pdf
125. DOW CORNING. (2011). DOW CORNING ® OE 6662. Retrieved from
https://www.silmore.com.tw/0100100665.html

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-08-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-08-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信