§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1308201814361300
DOI 10.6846/TKU.2018.00362
論文名稱(中文) 治療白內障的親水性羊毛甾醇衍生物和調配聚集放射的三苯(三炔苯)苯材料合成
論文名稱(英文) Synthesis of Hydrophilic Lanosterol Derivatives for Cataract Treatment and Triphenyl(triphenylethynyl)benzenes for Aggregation-Modulated Emission
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 鄭宇翔
研究生(英文) Yu-Hsiang Cheng
學號 605160158
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-06-19
論文頁數 93頁
口試委員 指導教授 - 徐秀福
委員 - 吳俊弘
委員 - 山田徹
關鍵字(中) 羊毛甾醇水溶性
濃度依賴性
治療白內障
聚集誘導發光
三苯基(三苯基乙炔基)苯
關鍵字(英) Hydrophilic Lanosterol Derivatives
Triphenyl(triphenylethynyl)benzenes
Aggregation-Modulated Emission
第三語言關鍵字
學科別分類
中文摘要
羊毛甾醇被報導具有減少水晶體上的蛋白結晶,可以眼藥水方式有效的治療白內障,並透過實驗也發現了羊毛甾醇的濃度對於白內障的治療具有相關性。由於大部分羊毛甾醇衍生物的水溶性不佳,故無法提高治療區域濃度而侷限期臨床應用。本篇論文將具有不同水溶性的官能團結合到羊毛甾醇骨架上,期盼改善這些新衍生羊毛甾醇化合物的水溶性,並利用這些化合物對白內障進行生物試驗。
另外,近期聚集誘導發光(aggregation induced emission, AIE)特性引起許多人的興趣。目前已經發現許多分子結構顯示出AIE現象。目前已被報導具有AIE性質常見的分子架構並不多,主要為四苯乙烯和六苯基噻咯兩類,因此尋找具AIE現象的新分子架構將成為未來進展基礎和應用拓展關鍵。在本論文中,結合上述兩者的結構特性開發了三苯基(三苯基乙炔基)苯,期待展現AIE現象。
英文摘要
Lanosterol derivatives were reported to show effective reduction of aggregation of lens crystalline proteins for treating cataract which is known to be caused by clumping of crystalline proteins to cloud eyes. The reduction of aggregation of crystalline proteins was found to be lanosterol-concentration-dependent. However, the lanosterol compounds examined were with low water solubilities which hampered practical applications. In this report, functional groups with different water solubilities are incorporated onto the lanosterol skeleton. The water solubilities of these newly derivatized lanosterol compounds are examined and the biological investigation of these compounds on cataract is studied. 
Aggregation-induced emission (AIE) or aggregation-modulated emission (AME) properties have attracted much attention. There have been several molecular skeletons found to show AIE phenomenon. The two well-known molecular frameworks showing AIE are tetraphenylethene and
hexaphenylsilole. Developing new molecular skeletons showing AIE is a must to advance fundamentals and applications. In this thesis, combining the structural features of the two mentioned above, triphenyl(triphenylethynyl)benzenes has been investigated to show AME phenomenon.
第三語言摘要
論文目次
目錄	
目錄		I
圖表目錄	Ⅲ
附圖目錄	Ⅵ
第一章 簡介	1
1.1 白內障與羊毛甾醇簡介與研究動機	1
1.2 聚集誘導放射材料簡介	4
1.2.1 AIE與構像平面化	7
1.22 AIE與RIV	9
1.2.3 AIE與TICT	11
1.2.4 AIE與J-聚集體形成	13
1.2.5 AIE發光材料與應用	15
1.3 聚集誘導放射材料研究動機	16



第二章 實驗與合成	19
2.1 實驗簡介	19
2.2 儀器設備	20
2.3 實驗藥品	23
2.4 合成步驟	25
第三章 結果與討論	32
3.1合成討論	32
3.2羊毛甾醇衍生物之生物試驗	36
3.3 三苯(三炔苯)苯材料之聚集調配放射螢光光譜	38
3.4 晶體結構模擬與解析	44
3.5 結論	50
參考資料	51
附錄		56















圖表目錄
圖1、lanosterol結構	1
圖2、(2-Hydroxypropyl)-β-cyclodextrin結構	2
圖3、利用羊毛甾醇治療前(左)與治療後(右)之照片22	3
圖4、噻咯化合物(silole compound 1-methyl1,2,3,4,5-pentaphenylsilole)的螢光光譜圖。7(A) 水與乙醇90:10體積比溶液下、無水乙醇以及固體薄膜,濃度為10 mM (B) 化合物在不同THF/ H2O體積比下的量子產率。(C) 噻咯化合物 (1-methyl1,2,3,4,5-pentaphenylsilole)分子結構	5
圖5、化合物在不同體積比之acetonitrile/H2O溶液下之吸收與放射光譜 (10 µM) of (A) 1, (B) 2, and (C) 3; 激發波長為350 nm. (D) 化合物在UV燈下之acetonitrile溶液與粉末之圖片。37	7
圖6、TPE、THBDBA與BDBA之結構。(A) THBDBA在不同THF/ H2O體積比下的螢光強度(B) THBDBA與BDBA在不同THF/ H2O體積比下之螢光差異圖。38	9
表7、TPE、THBDBA與BDBA之吸收與放射光譜性質比對圖表	10
圖8、化合物BODIPY 13 (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene derivative)的螢光光譜圖29 (A) 化合物在不同THF/ H2O體積比下之螢光光譜圖比較 (B) 化合物在不同THF/ H2O體積比下的量子產率。	12
圖9、晶體結構與晶體在365nm的UV燈波長下(a)具有J-aggregates的9,10-MADSA 和(b) 具有H-aggregates的9,10-PADSA	13
圖10、365nm的UV燈波長下的固體照片以及兩化合物之螢光光譜(激發波長為355 nm)之 (a)具有J-aggregates的9,10-MADSA 和(b) 具有J-aggregates的9,10-PADSA	14
圖11、文獻已發表常見的AIEgens分子	15
圖12、tetraphenylethene (TPE) 與 hexaphenylsilole (HPS)之結構	16
圖13、(A)為六苯(苯)結構(B)為六炔苯(苯)結構(C)為1,3,5三炔苯三苯(苯)結構(D)為1,2,4三炔苯(三苯)苯結構	17
圖14、吸收光譜在 optical density (OD) = 450 nm 波長下, LS1與羊毛甾醇之澄清水晶體能力之比較。	37
圖15、化合物5a在(A)不同比例之THF/H2O環境下以302 nm紫外燈照射圖片 (B)化合物5a不同比例THF/ H2O環境下之螢光光譜圖,激發波長為309 nm		39
圖16、化合物5a在不同比例下的THF/ H2O在396 nm波長之螢光相對強度,激發波長為309 nm	40
圖17、化合物5b在(A)不同比例之THF/H2O環境下以302 nm紫外燈照射圖片 (B)化合物5b不同比例THF/ H2O環境下之螢光光譜圖,激發波長為312 nm		41
圖18、化合物5b在不同比例下的THF/ H2O (A) 394 nm與(B) 444 nm波長下之螢光相對強度激發波長為312 nm	42
圖19、LE態轉變至TICT態示意圖	42
表20、分子5a與5b在不同比例下的THF/ H2O之最大螢光波長 (λem)、波長位移 (λshift) 、量子產率 (ΦF)。	43
圖21、化合物5a之單晶分子結構俯視圖與側視圖	44
圖22、化合物5a之苯環與苯環最短間距	45
圖23、化合物5a之spartan軟體模擬的能量最佳化結構之電子雲分布圖			46
圖24、化合物5a的單晶結構氫原子與氟原子的分子間氫鍵關係	46
圖25、化合物5b之單晶分子結構俯視圖與側視圖	47
圖26、化合物5b之spartan軟體模擬的能量最佳化結構之電子雲分布圖			48
圖27、化合物5b之stacking 作用力	48
圖28、化合物5b的單晶結構氫原子與氟原子的分子間氫鍵	49


















附圖目錄
附圖1、化合物LS1之1H NMR光譜 (CDCl3, 600 MHz)。	57
附圖2、化合物LS1之13C NMR光譜 (CDCl3, 150 MHz)。	58
附圖3、化合物LS2之1H NMR光譜 (CDCl3, 600 MHz)。	59
附圖4、化合物LS2之13C NMR光譜 (CDCl3, 150 MHz)。	60
附圖5、化合物5a之1H NMR光譜 (CDCl3, 600 MHz)。	61
附圖6、化合物5a之13C NMR光譜 (CDCl3, 150 MHz)。	62
附圖7、化合物5b之1H NMR光譜 (CD2Cl2, 300 MHz)。	63
附圖8、化合物5b之13C NMR光譜 (CD2Cl2, 150 MHz)。	64
附圖9、化合物之LS2質譜分析。	65
附圖10、化合物之5a質譜分析。	66
附圖11、化合物之5b質譜分析。	67
附圖12、化合物5b之元素分析測量。	68
附圖13、化合物4之單晶繞射分析結果。	69
附表14、化合物4之單晶繞射數據及結構分析。	70
附圖15、化合物5a之單晶繞射分析結果。	73
附表16、化合物5a之單晶繞射數據及結構分析。	74
附圖17、化合物5b之單晶繞射分析結果。	83
附圖18、化合物5b之單晶繞射數據及結構分析。	84
附圖19、化合物5a粒徑在不同比例THF/H2O溶劑下測量。	88
附圖20、化合物5b粒徑在不同比例THF/H2O溶劑下測量。	90
附圖21、化合物5a於偏光顯微鏡下,在液相以速率為10 oC/min回溫至固相圖。(38 oC,scale bar: 100 μm,物鏡倍率: 10X)	92
附圖22、化合物5b於偏光顯微鏡下,在液相以速率為10 oC/min回溫至固相圖。(155 oC,scale bar: 100 μm,物鏡倍率: 10X)	92
附圖23、化合物5a之UV/PL疊圖,PL激發波長為309 nm,濃度為1x10-5 M in THF	93
附圖24、化合物5b之UV/PL疊圖,PL激發波長為309 nm,濃度為1x10-5 M in THF	93
參考文獻
1.	Makley, L. N.; McMenimen, K. A.; DeVree, B. T.; Goldman, J. W.; McGlasson, B. N.; Rajagopal, P.; Dunyak, B. M.; McQuade, T. J.; Thompson, A. D.; Sunahara, R., Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science 2015, 350, 674-677.
2.	Fujii, N.; Uchida, H.; Saito, T., The damaging effect of UV-C irradiation on lens alpha-crystallin. Mol Vis. 2004, 10, 814-820.
3.	Gimbel, H. V.; Dardzhikova, A. A., Consequences of waiting for cataract surgery. Curr. Opin. Ophthalmol. 2011, 22, 28-30.
4.	Lamoureux, E. L.; Fenwick, E.; Pesudovs, K.; Tan, D., The impact of cataract surgery on quality of life. Curr. Opin. Ophthalmol. 2011, 22, 19-27.
5.	Schaller, H., The role of sterols in plant growth and development. Prog. Lipid. Res. 2003, 42, 163-175.
6.	Zhao, L.; Chen, X.-J.; Zhu, J.; Xi, Y.-B.; Yang, X.; Hu, L.-D.; Ouyang, H.; Patel, S. H.; Jin, X.; Lin, D., Lanosterol reverses protein aggregation in cataracts. Nature 2015, 523, 607.
7.	Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 0, 1740-1741.
8.	Hong, Y.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.
9.	Parrott, E. P.; Tan, N. Y.; Hu, R.; Zeitler, J. A.; Tang, B. Z.; Pickwell-MacPherson, E., Direct evidence to support the restriction of intramolecular rotation hypothesis for the mechanism of aggregation-induced emission: temperature resolved terahertz spectra of tetraphenylethene. Mater. Horiz. 2014, 1, 251-258.
10.	Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z., Changing the behavior of chromophores from aggregation‐caused quenching to aggregation‐Induced emission: development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159-2163.
11.	Cunha-Vaz, J., The blood-ocular barriers. Surv. Ophthalmol. 1979, 23, 279-296.
12.	Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z., Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 2010, 20, 1858-1867.
13.	Hong, Y.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 0, 4332-4353.
14.	Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W.; Tang, B. Z., Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chem. Eur. J. 2014, 20, 15349-15353.
15.	Hu, R.; Lam, J. W.; Liu, Y.; Zhang, X.; Tang, B. Z., Aggregation‐induced emission of tetraphenylethene–hexaphenylbenzene adducts: effects of twisting amplitude and steric hindrance on light emission of nonplanar fluorogens. Chem. Eur. J. 2013, 19, 5617-5624.
16.	Cacialli, F.; Wilson, J. S.; Michels, J. J.; Daniel, C.; Silva, C.; Friend, R. H.; Severin, N.; Samorì, P.; Rabe, J. P.; O'Connell, M. J., Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions. Nat. Mater. 2002, 1, 160.
17.	Zhao, Z.; Chen, S.; Shen, X.; Mahtab, F.; Yu, Y.; Lu, P.; Lam, J. W.; Kwok, H. S.; Tang, B. Z., Aggregation-induced emission, self-assembly, and electroluminescence of 4, 4′-bis (1, 2, 2-triphenylvinyl) biphenyl. Chem. Commun. 2010, 46, 686-688.
18.	Zhong, Y.-L.; Gauthier Jr, D. R.; Shi, Y.-J.; McLaughlin, M.; Chung, J. Y.; Dagneau, P.; Marcune, B.; Krska, S. W.; Ball, R. G.; Reamer, R. A., Synthesis of antifungal glucan synthase inhibitors from enfumafungin. J. Org. Chem. 2012, 77, 3297-3310.
19.	Hrdina, R.; Müller, C. E.; Schreiner, P. R., Kinetic resolution of trans-cycloalkane-1, 2-diols via Steglich esterification. Chem. Commun. 2010, 46, 2689-2690.
20.	Mulla, S.; Inamdar, S.; Pathan, M.; Chavan, S., Highly efficient cobalt (II) catalyzed O-acylation of alcohols and phenols under solvent-free conditions. OJSTA. 2012, 1, 31-35.
21.	Fan, P.; Ablordeppey, S. Y., An alternative synthesis of 10H‐indolo [3, 2‐b] quinoline and its selective N‐alkylation. J. Heterocyclic. Chem. 1997, 34, 1789-1794.
22.	Yadong, Z.; Jianxun, W., A convenient synthesis of fluoro-aromatic acetylene derivatives. J. Fluorine. Chem. 1990, 47, 533-535.
23.	Hsu, H.-F.; Lin, M.-C.; Lin, W.-C.; Lai, Y.-H.; Lin, S.-Y., Novel columnar liquid crystals with nonidentical peripheral groups: 1, 3, 5-triphenylethynyl-2, 4, 6-triphenylbenzene. Chem. Mater. 2003, 15, 2115-2118.
24.	Lin, M. -J., B.S. Thesis, Tamkang University, October 2003. 
25.	Ooi, K. G.-J.; Galatowicz, G.; Towler, H. M.; Lightman, S. L.; Calder, V. L., Multiplex cytokine detection versus ELISA for aqueous humor: IL-5, IL-10, and IFNγ profiles in uveitis. Inves.  Ophthalmol. Vis. Sci. 2006, 47, 272-277.
26.	Varma, S. D.; Hegde, K. R.; Kovtun, S., Inhibition of selenite‐induced cataract by caffeine. Acta Ophthalmolo. 2010, 88, 245-249
27.	Heinrich, G.; Schoof, S.; Gusten, H., 9, 10-diphenylanthracene as a fluorescence quantum yield standard. J. Photochem. 1974, 3, 315-320.
28.	Yu, C. Y.; Xu, H.; Ji, S.; Kwok, R. T.; Lam, J. W.; Li, X.; Krishnan, S.; Ding, D.; Tang, B. Z., Mitochondrion‐anchoring photosensitizer with aggregation‐induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation. Adv. Mater. 2017, 29, 6083-6088
29.	Hong, Y.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 0, 4332-4353.
30.	Wang, E.; Lam, J. W.; Hu, R.; Zhang, C.; Zhao, Y. S.; Tang, B. Z., Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. J. Mater. Chem. C. 2014, 2, 1801-1807.
31.	Hu, R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J.; Lam, J. W.; Sung, H. H.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Pena-Cabrera, E., Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J. Phys. Chem. C. 2009, 113, 15845-15853.
32.	Howard, J. A.; Hoy, V. J.; O'Hagan, D.; Smith, G. T., How good is fluorine as a hydrogen bond acceptor? Tetrahedron 1996, 52, 12613-12622.
33.	Janiak, C., A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans. 2000, 3885-3896.
34.	Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z., Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479.
35.	Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
36.	Lee, S. L.; Lin, H. A.; Lin, Y. H.; Chen, H. H.; Liao, C. T.; Lin, T. L.; Chu, Y. C.; Hsu, H. F.; Chen, C. h.; Lee, J. J., Gearing of molecular swirls: columnar packing of nematogenic hexakis (4‐alkoxyphenylethynyl) benzene Derivatives. Chem. Eur. J. 2011, 17, 792-799.
37.	De la Rosa, E.; Sepulveda-Guzman, S.; Reeja-Jayan, B.; Torres, A.; Salas, P.; Elizondo, N.; Yacaman, M. J., Controlling the growth and luminescence properties of well-faceted ZnO nanorods. J Phys Chem C 2007, 111, 8489-8495.
38.	Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W.; Tang, B. Z., Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chem-Eur J 2014, 20, 15349-15353.
39.	Kawahara, S.-i.; Tsuzuki, S.; Uchimaru, T., Theoretical study of the C− F/π interaction: attractive interaction between fluorinated alkane and an electron-deficient π-system. J Phys Chem A 2004, 108, 6744-6749.
40.	Dexter, D.; Schulman, J. H., Theory of concentration quenching in inorganic phosphors. J Chem Phys 1954, 22, 1063-1070.
41.	Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z., AIE luminogens: emission brightened by aggregation. Mater today 2015, 18, 365-377.
42.	An, B.-K.; Kwon, S.-K.; Jung, S.-D.; Park, S. Y., Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 2002, 124, 14410-14415.
43.	Wang, Y.; Liu, T.; Bu, L.; Li, J.; Yang, C.; Li, X.; Tao, Y.; Yang, W., Aqueous nanoaggregation-enhanced one-and two-photon fluorescence, crystalline J-aggregation-induced red shift, and amplified spontaneous emission of 9, 10-bis (p-dimethylaminostyryl) anthracene. J Phys Chem C 2012, 116, 15576-15583.
44.	Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z., Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J Am Chem Soc 2012, 134, 9956-9966.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信