§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1308201804524900
DOI 10.6846/TKU.2018.00356
論文名稱(中文) 基於DSP實現MIG電焊機分段波形控制
論文名稱(英文) Waveform Control of MIG Welding Machine Based on DSP
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 蘇致揚
研究生(英文) Chih-Yang Su
學號 605460038
學位類別 碩士
語言別 英文
第二語言別
口試日期 2018-07-16
論文頁數 55頁
口試委員 指導教授 - 劉寅春(pliu@mail.tku.edu.tw)
委員 - 蕭德仁(jeffery@heropower.com.tw)
委員 - 林偉正(will@heropower.com.tw)
關鍵字(中) 電銲機
電焊機
柔切
全橋式逆變器
熔化性電極惰性氣體保護焊接
分段波形控制
關鍵字(英) Welding
PI control
Control systems
Voltage control
Current control
Digital control
DSP
Waveform control
第三語言關鍵字
學科別分類
中文摘要
焊接技術在科技趨使下快速進步,隨著工業發展焊接開始走向精細化,本論文研究之MIG即為多種類型手工焊其中之一,如何在降低成本與提高安全性的情況下使焊接達到更好的結果,是現今高端產品開發上需要考量之處。
  為解決電焊機使用時在IGBT上消耗大功率的問題,本研究應用ZVS(Zero-Voltage Switch)、ZCS(Zero Current Switch)技術做改善,並且在傳統電焊機中,為了調整焊縫成形、短路過渡、焊絲溶化速度等等現象,需要電感來控制過於麻煩,且不具備適應性,本文將使用德州儀器的DSP晶片TMS320f2808做為數位控制器,利用分段波形控制電壓和電流,分別對於電壓和電流做精細的控制。
  實驗結果顯示ZCS和ZVS的可行性,並且使用數位控制器能精準的控制電壓和電流完成預期的波形。
英文摘要
Welding technology has made rapid progress under the trend of science and technology. As the industrial development of welding begins to become more refined, the MIG studied in this paper is one of many types of manual welding. What needs to be considered in the development of high-end products today is to achieve better results in welding with lower costs and improved safety.
In order to solve the problem of high power consumption on the IGBT when the electric welder is used, this study uses ZVS (Zero-Voltage Switch) and ZCS (Zero Current Switch) technology to improve. In the conventional electric welder, in order to adjust the weld forming and short-circuit transition and the wire melting speed, etc., the inductor is required to be controlled too much trouble and is not adaptable.
This article uses Texas Instruments' DSP chip TMS320f2808 as a digital controller, using segmented waveforms to control voltage and current, and fine-grained waveform control for voltage and current, respectively.
The experimental results show the feasibility of ZCS and ZVS, and the digital controller can accurately control the voltage and current to complete the expected waveform.
第三語言摘要
論文目次
Contents
Abstract in Chinese I
Abstract in English II
Contents III
List of Figures V
List of Tables VII
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Fusion Welding Technical . . . . . . . . . . . . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Welding Machine Inverter Circuit 12
2.1 Three Types of Inverter Principle . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Single-Ended Forward Circuit . . . . . . . . . . . . . . . . . . . 13
2.1.2 Half-bridge Inverter Circuit . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Full-bridge Inverter Circuit . . . . . . . . . . . . . . . . . . . . 14
2.2 Soft-Switching Technology . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Power Switching Compare . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Drive IGBT Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Control Strategies 22
3.1 PI Control with Anti-windup . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Waveform Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Experiment Result 27
4.1 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1 Main Program Flow Diagram . . . . . . . . . . . . . . . . . . . 27
4.1.2 ePWM Interrupt Flow Diagram . . . . . . . . . . . . . . . . . . 27
4.2 Hardware Experiment Environment . . . . . . . . . . . . . . . . . . . . 29
4.3 ZVS and ZCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Constant Voltage,Current . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Waveform Control Result . . . . . . . . . . . . . . . . . . . . . . . . . 43
5 Conclusion 45
References 46
Appendix A DSP TMS320F2808 Configuration 49
A.1 Enhanced Pulse Width Modulator (ePWM) Module Setup . . . . . . . 49
A.2 Analog-to-Digital Converter(ADC) (ePWM) Setup . . . . . . . . . . . 52
A.3 ADC Software Lowpass Filter . . . . . . . . . . . . . . . . . . . . . . . 54
Appendix B OP amp cutoff Frequency Design 55
List of Figures
1.1 Type of Wlelding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Pressure Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Soldering Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Fusion Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 TIG Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 MIG Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Block Diagram of Hardware Environment . . . . . . . . . . . . . . . . 12
2.2 Single-Ended Forward Circuit . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Half-Bridge Inverter Circuit . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Full-Bridge Inverter Circuit . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Switching Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Full Bridge Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 25 % Phast-Shift Soft-Switching PWM Waveform . . . . . . . . . . . . 18
2.8 IGBT Module: DM2G100SH6N . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Pulse Transformer Drive Circuit . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Flow chart of PI controller . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Block Diagram of PI Controller With Anti-wind-up . . . . . . . . . . . 24
3.3 Short Circuit Transition . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Block Diagram of Waveform Control System . . . . . . . . . . . . . . . 26
4.1 Program flow chart of main program and ePWM interrupt . . . . . . . 28
4.2 Experiment environment . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Diagram of Welding Machine . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Welding Machine Schematic Diagram . . . . . . . . . . . . . . . . . . . 32
4.5 Voltage Feedback Circuit Using OP amp . . . . . . . . . . . . . . . . . 33
4.6 Drive Signal of Full-Bridge Inverter . . . . . . . . . . . . . . . . . . . . 34
4.7 Zero Current Switching with Duty Cycle = 8,25,40 % . . . . . . . . . . 35
4.8 Zero Voltage Switching with Duty Cycle = 8,25,40 % . . . . . . . . . . 36
4.9 ZVS and ZCS Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 Constant Voltage Experiments Result . . . . . . . . . . . . . . . . . . . 39
4.11 Settling Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.12 Switch 50 ohm and 2 ohm . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.13 Switch 5A and 30A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.14 Switch 0.5R and 0R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.15 Waveform Control and Set Current on 140A . . . . . . . . . . . . . . . 43
4.16 Waveform Control and Set Current on 160A . . . . . . . . . . . . . . . 44
List of Tables
2.1 Operating Waveforms of Proposed ZVS ZCS Full-Bridge Inverter . . . 15
2.2 Power Switching Device Comparison Table . . . . . . . . . . . . . . . . 19
3.1 Table of PID Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 List of Experimental Instruments . . . . . . . . . . . . . . . . . . . . . 29
參考文獻
[1] G. E. Linnert, Welding metallurgy. American Welding Society New York, 1967,
vol. 2.
[2] H. B. Cary and S. C. Helzer, “Modern welding technology,” 1979.
[3] S. Kalpakjian, K. Vijai Sekar, and S. R. Schmid, Manufacturing engineering and
technology. Pearson, 2014.
[4] K. OI and M. MURAYAMA, “Recent trend of welding technology development
and applications,” JFE Technical Report, Tech. Rep., 2015.
[5] M. I. Khan, Welding science and technology. New Age International, 2007.
[6] A. Farwer, “Inert gas for tig, mig, mag and plasma welding,” May 11 1993, uS
Patent 5,210,388.
[7] I. Karai and S. Horiguchi, “Pterygium in welders.” British journal of ophthalmology,
vol. 68, no. 5, pp. 347–349, 1984.
[8] C. W. Tao, C. M. Wang, and C. W. Chang, “A design of a dc-ac inverter using
a modified zvs-pwm auxiliary commutation pole and a dsp-based pid-like fuzzy
control,” IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 397–405,
Jan 2016.
[9] K. Morimoto, T. Doi, M. Nakaoka, and H. W. Lee, “Advanced high power dcdc
converter using novel type full-bridge soft-switching pwm inverter with high
frequency transformer link for arc welding application,” ICPE (ISPE)    , pp.
239–245, 2004.
[10] F. M. Magalhaes, R. Ostapiak, R. Walk, and N. G. Ziesse, “Zero voltage switching
half bridge resonant converter,” Mar. 21 1989, uS Patent 4,814,962.
[11] L. J. Hitchcock, “Full bridge power converter circuit,” Aug. 22 1989, uS Patent
4,860,189.
[12] H. Sugimura, K. Fathy, S.-P. Mun, T. Doi, T. Mishima, and M. Nakaoka, “Threelevel
phase shifted soft transition pwm dcdc power converter with high frequency
link for arc welders and its extended version,” in Power Electronics and Motion
Control Conference, 2009. IPEMC’09. IEEE 6th International. IEEE, 2009, pp.
1288–1294.
[13] J. P. Agrawal, “Power electronic systems,” Theory and Design, Prentice Hall,
Upper Saddle River, 2001.
[14] P. Qingle, “Design of fuzzy control and expert system based mig arc welding invert
power source,” in Electronic Measurement & Instruments, 2009. ICEMI’09. 9th
International Conference on. IEEE, 2009, pp. 4–89.
[15] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase
voltage-source pwm converters: A survey,” IEEE Transactions on industrial electronics,
vol. 45, no. 5, pp. 691–703, 1998.
[16] Y. Peng, D. Vrancic, and R. Hanus, “Anti-windup, bumpless, and conditioned
transfer techniques for pid controllers,” IEEE Control Systems, vol. 16, no. 4, pp.
48–57, 1996.
[17] M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett, “A unified framework
for the study of anti-windup designs,” Automatica, vol. 30, no. 12, pp. 1869–1883,
1994.
[18] I. S. Hwang, M. J. Kang, and D. C. Kim, “Expulsion reduction in resistance spot
welding by controlling of welding current waveform,” Procedia Engineering, vol. 10,
pp. 2775–2781, 2011.
[19] T. L. Vincent, “Waveform control in welding power supplies,” IEEE Control Systems,
vol. 26, no. 4, pp. 17–18, 2006.
[20] TMS320F2808 Digital Signal Processor, Texas Instruments, Oct. 2003, revised May
2012.
[21] S. Zhou and G. A. Rincon-Mora, “A high efficiency, soft switching dc-dc converter
with adaptive current-ripple control for portable applications,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 53, no. 4, pp. 319–323, 2006.
[22] G. Hua and F. C. Lee, “Soft-switching techniques in pwm converters,” IEEE Transactions
on Industrial Electronics, vol. 42, no. 6, pp. 595–603, 1995.
[23] Y.-M. Chae, J.-S. Gho, H.-S. Mok, G.-H. Choe, and W.-S. Shin, “A new instantaneous
output current control method for inverter arc welding machine,” in Power
Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE, vol. 1.
IEEE, 1999, pp. 521–526.
[24] R. Mancini, Op amps for everyone: design reference. Newnes, 2003.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信