淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1308201310544700
中文論文名稱 鈷硼觸媒合成條件對硼氫化鈉反應器設計之影響
英文論文名稱 Effects of Co-B catalysts synthesis conditions on sodium borohydride hydrolysis reactors design
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系博士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 潘泉亦
研究生英文姓名 Chuan-Yi Pan
學號 600400088
學位類別 碩士
語文別 中文
口試日期 2013-07-03
論文頁數 154頁
口試委員 指導教授-陳逸航
委員-錢義隆
委員-陳逸航
委員-林正嵐
中文關鍵字 鈷硼觸媒  硼氫化鈉  動力學參數  水解反應  化學還原法 
英文關鍵字 Sodium borohydride  Co-B catalyst  Kinetic parameters  Hydrolysis reaction  Chemical reduction method 
學科別分類 學科別應用科學化學工程
學科別應用科學材料工程
中文摘要 本研究探討鈷硼觸媒合成條件與觸媒表面結構、觸媒動力學參數與硼氫化鈉水解反應器設計及操作的關係。以離子交換樹脂作為觸媒載體,硼氫化鈉為還原劑,使用離子交換法及化學還原法進行鈷硼觸媒合成。觸媒合成條件之變數為:還原溫度、還原劑濃度、還原劑pH值、還原劑添加速率以及離子交換樹脂種類。結果顯示,因水解反應及還原反應相互競爭,低還原溫度時還原速率慢,觸媒表面形成緊密排列且樹枝狀的結構,觸媒表面積較大。低溫還原之觸媒在水解產氫上有較好的表現。以L-H動力學模式進行實驗數據進行回歸,得到頻率因子、活化能、40 oC下吸附常數分別為1.17x109mol/g-min、70.65 kJ/mol、6.8 L/mol。更換載體離子交換樹脂為TP-207,以相同變數進行觸媒合成,Co-B/TP-207比上Co-B/IR-120有較高的觸媒負載量、更快的產氫速率以及更好的耐久性。以此觸媒設計硼氫化鈉產氫三相反應器尺寸,並建立數模式,分析系統之反應溫度、進料濃度、進料流率對於反應器出口氫氣流率之影響,並選定進料流率來操控出口氫氣流率。在80oC操作下,I-1至I-4觸媒中,以I-4觸媒有最大的可操作範圍。
英文摘要 The objective of this work is to study the effect of various Co-B catalyst synthesis conditions on the catalyst surface morphology and kinetic parameters. The Co/B catalyst was synthesized on IR-120/TP-207 resin surface by using ion exchange and chemical reduction method using NaBH4 as a reduction agent. The reduction conditions which were investigated here were: reduction temperature, NaBH4 concentration, pH value, NaBH4 adding flow rate and different types of resins. The result shows reduction temperature gives the most dramatic effect on surface morphology which is caused by competing reactions of reduction and hydrolysis. Low reduction temperature resulted in a slower Co/B reduction rate and made the catalyst surface denser with a branched structure. This created more surface area than higher reduction temperatures. Low reduction temperature catalyst had the better performance on NaBH4 hydrolysis reaction for hydrogen generation rate. The optimal reduction temperature of the Co-B/IR-120 is 25 oC. The L-H model was used to regress kinetic parameters from the experiment data. The frequency factor, activation energy and adsorption constant are 1.17x109 mol/g-min, 70.65 kJ/mol, and 6.8 L/mol at 40oC, respectively. Finally, the TP-207 resin was used instead of IR-120. After scanning for all catalyst synthesis conditions, the Co-B/TP-207 had the higher catalyst loading, faster hydrogen generation rate and more durability than Co-B/IR-120. A mathematical model was built to design the NaBH4 hydrolysis reactor for hydrogen generation. The operating variables of the system are: reaction temperature and NaBH4 inlet concentration, inlet flowrate. From sensitivity analysis, the dominant variable of the hydrogen generation system is NaBH4 inlet flowrate. The I-4 catalyst shows the better operability at 80oC than other Co-B/IR-120 catalyst.
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 IX
表目錄 XV
第一章、緒論 1
1.1 背景 1
1.2 文獻回顧 4
1.2.1 硼氫化鈉應用 4
1.2.2 硼氫化鈉觸媒反應 4
1.2.3 觸媒製備方法 10
1.2.3.1 離子交換樹脂反應機制 12
1.2.3.2 化學還原法製備鈷硼觸媒之反應機制 15
1.2.4 硼氫化鈉產氫系統 17
1.3 研究動機 18
1.4 論文組織 19
第二章、實驗藥品與裝置介紹 20
2.1實驗材料 20
2.1.1 觸媒合成及硼氫化鈉產氫實驗藥品 20
2.1.2 觸媒合成及硼氫化鈉產氫實驗設備 21
2.2 實驗裝置 23
2.2.1硼氫化鈉水溶液產氫實驗裝置 23
2.3 觸媒分析鑑定 25
2.4 實驗步驟 26
2.4.1 鈷硼觸媒製備步驟 27
2.4.1.1離子交換 27
2.4.1.2鈷硼觸媒還原 28
2.5實驗數據測量 30
第三章、鈷硼觸媒製備及其製備條件分析 34
3.1系統描述 34
3.1.1離子交換變數 35
3.1.2鈷硼觸媒還原 36
3.2觸媒製備變數分析 37
3.2.1離子交換 37
3.2.1.1離子交換樹脂 37
3.2.1.2離子交換時間 38
3.2.2還原變數 39
3.2.2.1還原溫度 39
3.2.2.2還原劑濃度 41
3.2.2.3還原劑pH值 45
3.2.2.4還原劑添加速率 47
3.2.2.5螯合型離子交換樹脂TP-207還原變數 48
3.2.2.6 Co-B/IR-120與Co-B/TP-207比較 50
3.3觸媒表面組成之定性定量分析 51
3.3.1元素分析(EDS) 51
3.3.2感應耦合電漿質譜分析儀(ICP-MS) 53
3.3.3比表面積(BET) 54
3.4總結 54
第四章、觸媒動力學參數回歸 56
4.1系統描述 56
4.2觸媒動力式 58
4.3反應速率常數及吸附常數回歸 60
4.4觸媒動力學參數回歸 63
4.4.1頻率因子與活化能回歸 63
4.4.2L-H動力式之吸附常數 65
4.4.3回歸結果 67
4.4.3.1還原溫度 67
4.4.3.2還原劑濃度 67
4.4.3.3 還原pH值之影響 68
4.4.3.4還原劑添加速率之影響 68
4.4.3.5基材離子交換樹脂之影響 68
4.5結果與討論 90
4.5.1 Co-B/IR-120觸媒製備還原溫度對表面結構與動力學參數之影響 90
4.5.2 Co-B/IR-120觸媒製備還原劑濃度對表面結構與動力學參數之影響 94
4.5.3 Co-B/IR-120觸媒製備還原pH值對表面結構與動力學參數之影響 95
4.5.4 Co-B/IR-120觸媒製備還原劑添加速率對表面結構與動力學參數之影響 97
4.5.5 Co-B/TP-207觸媒 97
4.5.6 Co-B/IR-120觸媒(I-2)及Co-B/TP-207觸媒(T-2) 98
4.6觸媒適用範圍分析 100
4.7觸媒耐久性 102
4.8總結 106
五、硼氫化鈉產氫三相反應器模式建立與設計操作 108
5.1背景與系統描述 108
5.2系統模式建立 112
5.2.1系統模式假設 112
5.2.2 系統數學模式建立 112
5.3 硼氫化鈉水解反應器尺寸設計 116
5.4硼氫化鈉水解產氫系統操作模擬分析 122
5.4.1硼氫化鈉水解產氫系統操作變數分析 125
5.4.1.1操作溫度之影響 125
5.4.1.2進料濃度之影響 127
5.4.1.3進料流率之影響 129
5.4.2硼氫化鈉水解產氫系統控制結構設計 131
5.4.3硼氫化鈉水解產氫系統操作範圍分析 132
5.4.4硼氫化鈉水解產氫系統進料擾動分析 136
5.5結果與討論 139
六、結論 140
符號說明 141
參考文獻 144
附錄 149


圖目錄
圖1-1、硼氫酸根與酸催化反應機制圖 6
圖1-2、硼氫酸根與金屬觸媒催化反應機制圖 6
圖2-1、硼氫化鈉水解產氫實驗與量測裝置圖 24
圖2-2、硼氫化鈉水解產氫實驗與量測裝置圖 24
圖2-3、觸媒製備示意圖 27
圖2-4、溫度紀錄程式圖示 31
圖2-5、溫度紀錄程式操作介面 31
圖2-6、電子天秤紀錄程式圖示 32
圖2-7、電子天秤紀錄程式操作介面 32
圖3-1、(a)高溫還原觸媒示意圖(b)低溫還原觸媒示意圖 42
圖3-2、Co-B觸媒SEM圖 100000X 43
Co-B/IR-120 reduction at (a) 0oC、(b) 25oC、(c)40oC、(d) 80oC 43
圖3-3、Co-B觸媒SEM圖 50000XCo-B/IR-120 還原劑NaBH4濃度為 (a) 0.5 wt. %, (b) 5 wt. %, (c) 10wt. %, (d) 15 wt. % 44
圖3-4、還原劑濃度對觸媒負載量作圖 44
圖3-5、pH值變化對觸媒還原表面結構之示意圖(a)低 pH值, (b) 高pH值 46
圖3-6、Co-B觸媒SEM圖 46
圖3-7、Co-B觸媒還原改變還原劑添加流速(a)一次添加, (b)5 ml/min 47
圖3-8、Co-B觸媒SEM圖 49
圖3-9、EDS表面元素(a)IR-120樹脂與Co-B/ IR-120, (b)TP-207樹脂與Co-B/ TP-207 52
圖4-1、I-1觸媒反應溫度40、50、60、70、80℃氫氣累積圖 57
圖4-2、I-1觸媒反應溫度40、50、60、70、80℃L-H動力參數迴歸 62
圖4-3、反應速率常數中頻率因子及活化能之線性迴歸圖 64
圖4-4、吸附常數中焓變化(ΔH0)及熵變化(ΔS0)之線性迴歸圖 66
圖4-5、Co-B/IR-120觸媒製備還原溫度之產氫實驗氫氣累積圖操作溫度(a)40oC(b) 50oC (c)60oC (d)70oC (e)80oC 70
圖4-6、Co-B/IR-120觸媒製備還原溫度之動力學參數回歸圖操作溫度(a)40oC(b) 50oC (c)60oC (d)70oC (e)80oC 71
圖4-7、Co-B/IR-120觸媒製備還原溫度之動力學參數回歸(a)I-1, k、(b)I-1,Ka (c) I-2, k、(d)I-2,Ka (e) I-3, k、(f)I-3,Ka (g) I-4, k、(h)I-4,Ka 72
圖4-8、Co-B/IR-120觸媒產氫實驗氫氣累積圖操作溫度(a)40oC(b) 60oC (c)80oC改變製備還原劑濃度,操作溫度(d)40oC (e)60oC(f) 80oC改變製備還原之pH值 73
圖4-9、Co-B/IR-120觸媒動力學參數回歸圖操作溫度(a)40oC(b) 60oC (c)80oC改變製備還原劑濃度,操作溫度(d)40oC (e)60oC(f) 80oC改變製備還原之pH值 74
圖4-10、Co-B/IR-120觸媒製備還原劑濃度及pH值之動力學參數回歸(a)I-5, k、(b)I-5,Ka (c) I-6, k、(d)I-6,Ka (e) I-7, k、(f)I-7,Ka 75
圖4-11、Co-B/IR-120觸媒製備還原劑添加速率之產氫實驗氫氣累積圖,操作溫度(a)40oC(b) 60oC (c)80oC 76
圖4-12、Co-B/IR-120觸媒製備還原劑添加速率之動力學參數回歸圖操作溫度(a)40oC(b)60oC (c)80oC 77
圖4-13、Co-B/IR-120觸媒製備還原劑添加速率之動力學參數回歸(a)I-8, k、(b)I-8,Ka (c) I-9, k、(d)I-9,Ka 78
圖4-14、Co-B/TP-120觸媒製備還原溫度之產氫實驗氫氣累積圖操作溫度(a)40oC(b) 50oC (c)60oC (d)70oC (e)80oC 79
圖4-15、Co-B/TP-207觸媒製備還原溫度之動力學參數回歸圖操作溫度(a)40oC(b) 50oC (c)60oC (d)70oC (e)80oC 80
圖4-16、Co-B/TP-207觸媒製備還原溫度之動力學參數回歸(a)T-1, k、(b)T-1,Ka (c) T-2, k、(d)T-2,Ka (e) T-3, k、(f)T-3,Ka (g) T-4, k、(h)T-4,Ka 81
圖4-17、Co-B/TP-120觸媒產氫實驗氫氣累積圖操作溫度(a)40oC(b) 60oC (c)80oC改變製備還原劑濃度,操作溫度(d)40oC (e)60oC(f) 80oC改變製備還原之pH值 82
圖4-18、Co-B/TP-207觸媒動力學參數回歸圖操作溫度(a)40oC(b) 60oC (c)80oC改變製備還原劑濃度,操作溫度(d)40oC (e)60oC(f) 80oC改變製備還原之pH值 83
圖4-19、Co-B/TP-207觸媒製備還原劑濃度及pH值之動力學參數回歸(a)T-5, k、(b)T-5,Ka (c) T-6, k、(d)T-6,Ka (e) T-7, k、(f)T-7,Ka 84
圖4-20、Co-B/TP-207觸媒製備還原劑添加速率之產氫實驗氫氣累積圖,操作溫度(a)40oC(b) 60oC (c)80oC 85
圖4-21、Co-B/TP-207觸媒製備還原劑添加速率之動力學參數回歸圖操作溫度(a)40oC(b)60oC (c)80oC 86
圖4-22、Co-B/TP-207觸媒製備還原劑添加速率之動力學參數回歸(a)T-8, k、(b)T-8,Ka (c) T-9, k、(d)T-9,Ka 87
圖4-23、Co-B/IR-120觸媒製備還原溫度變化之水解產氫曲線圖(a)40oC (b)60oC (c)80oC 93
圖4-24、Co-B/IR-120觸媒製備還原pH值變化之水解產氫曲線圖(a)40oC (b)60oC (c)80oC 96
圖4-25、Co-B/IR-120及Co-B/TP-207觸媒進行硼氫化鈉水解產氫之氫氣累積圖,反應溫度(a)40oC(b) 50oC (c)60oC (d)70oC (e)80oC 99
圖4-26、I-1~I-4觸媒在各溫度下之產氫速率 101
圖4-27、觸媒產氫持久度測試(a)I-2觸媒, (b)T-2觸媒 104
圖4-28、觸媒產氫持久度SEM圖(a)IR-120載體 30000X (b)觸媒使用前(c)觸媒使用後(d)使用多次後(e)TP-270載體 30000X (f)觸媒使用前(g)觸媒使用後(h)使用多次後 105
圖5-1、不同類型流動模式圖 109
圖5-2、水平式反應器 110
圖5-3、直立式反應器(a)底部進料(b)頂部進料 110
圖5-4、新型式硼氫化鈉水解反應器概念性設計 111
圖5-5、硼氫化鈉水解產氫固定床反應器 112
圖5-6、WHSV(1/hr)對轉化率作圖 118
圖5-7、反應器設計參數示意圖 121
圖5-8、水解反應器內各反應物與產物對反應器觸媒量之模擬 124
圖5-9、使用I-2觸媒改變操作溫度對於氫氣流率、出口濃度、產氫速率、滯留時間、轉化率關係圖 126
圖5-10、使用I-2觸媒改變進料濃度對於氫氣流率、出口濃度、產氫速率、滯留時間、轉化率關係圖 128
圖5-11、使用I-2觸媒改變進料流率對於氫氣流率、出口濃度、產氫速率、滯留時間、轉化率關係圖 130
圖5-12、用電負荷量及氫氣需求量示意圖 131
圖5-13、硼氫化鈉水解產氫系統控制結構 132
圖5-14、進料流率限制範圍 133
圖5-15、不同觸媒進料流率操作範圍 133
圖5-16、不同觸媒改變進料流率對於氫氣流率、出口濃度、產氫速率、滯留時間、轉化率關係圖 135
圖5-17、進料流率對於燃料電池氫氣需求量關係圖 136
圖5-18、溫度擾動對進料流量變化圖 137
圖5-19進料濃度擾動對進料流量變化圖 138
圖7-1、觸媒I-2與T-2之TGA曲線 150
圖7-2、I-2觸媒XRD分析結果 151
圖7-3、T-2觸媒XRD分析結果 151
圖7-4、改變觸媒量產氫累積圖 153
圖7-5、改變硼氫化鈉濃度產氫累積圖 154

表目錄
表1-1、燃料電池應用 2
表1-2、儲氫物儲氫量比較表 4
表1-3、貴金屬觸媒文獻整理表 8
表1-4、非貴金屬觸媒文獻整理表 9
表2-1、實驗設備與儀器 22
表3-1、離子交換樹脂物性比較表 38
表3-2、IR-120/TP-207載體觸媒各變數整理表 42
表3-3、Co-B/IR-120與Co-B/TP-207觸媒比較表 50
表3-4、Co-B/IR-120表面元素分析 52
表3-5、Co-B/TP-207表面元素分析 52
表3-6、Co與B含量 53
表3-7、觸媒比表面積表格 54
表4-1、I-1觸媒操作溫度對反應速率常數及吸附常數迴歸表 62
表4-2、Co-B/IR-120觸媒製備條件之動力學參數迴歸表 88
表4-3、Co-B/TP-207觸媒製備條件之動力學參數迴歸表 89
表4-4、Co-B/IR-120觸媒製備還原溫度改變之動力學參數表 91
表4-5、Co-B/IR-120觸媒製備還原劑濃度改變之動力學參數表 94
表4-6、Co-B/IR-120觸媒製備還原pH值變化之動力學參數表 95
表4-7、Co-B/IR-120觸媒製備還原劑添加速率之動力學參數表 97
表4-8、Co-B/IR-120及Co-B/TP-207觸媒動力學參數表 100
參考文獻 [1] Brunetti, A., Barbieri, G., Drioli, E..“ A PEMFC and H2 membrane purification integrated plant ”, Chemical Engineering and Processing: Process Intensification, 47. 7, 1081-1089, 2008.
[2] Sakintuna, B., Lamari-Darkrim, F., Hirscher, M.. “Metal hydride materials for solid hydrogen storage: A review ”, International Journal of Hydrogen Energy, 32.9, 1121-1140, 2007.
[3] Li, Z. P., Liu, B. H., Arai, K., Morigazaki, N., Suda, S.. “Protide compounds in hydrogen storage systems”, Journal of Alloys and Compounds, 356–357.0, 469-474, 2003.
[4] Schlesinger, H. I., Brown, H. C., Finholt, A. B., Gilbreath, J. R., Hockstra, H. R., Hyde, E. K.. “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen”, Journal of the American Chemical Society, 75, 215-219, 1953.
[5] Liu, B. H., Li, Z. P.. “A review: Hydrogen generation from borohydride hydrolysis reaction”, Journal of Power Sources, 187.2, 527-534, 2009.
[6] Holbrook, K. A., Twist, P. J.. “Hydrolysis of the borohydride ion catalysed by metal-boron alloys”, Journal of the American Chemical Society, 15A, 890-894, 1971.
[7] Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H.. “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide”, International Journal of Hydrogen Energy, 27.10, 1029-1034, 2002.
[8] Muir, S. S., Yao, X.. “Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems”, International Journal of Hydrogen Energy, 36.10, 5983-5997, 2011.
[9] Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J., Binder, M.. “An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst”, Journal of Power Sources, 85.2, 186-189, 2000.
[10] Wu, C., Zhang, H., Yi, B.. “Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells”, Catalysis Today, 93–95.0, 477-483, 2004.
[11] Bai, Y., Wu, C., Wu, F., Yi, B.. “Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution”, Materials Letters, 60.17–18, 2236-2239, 2006.
[12] Simagina, V. I., Storozhenko, P. A., Netskina, O. V., Komova, O. V., Odegova, G. V., Samoilenko, T. Y., Gentsler, A. G.. “Effect of the nature of the active component and support on the activity of catalysts for the hydrolysis of sodium borohydride”, Kinetics and Catalysis, 48.1, 168-175, 2007.
[13] Liu, Z., Guo, B., Chan, S. H., Tang, E. H., Hong, L.. “Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions”, Journal of Power Sources, 176.1, 306-311, 2008.
[14] Hsueh, C., Chen, C., Ku, J., Tsai, S., Hsu, Y., Tsau, F., Jeng, M.. “Simple and fast fabrication of polymer Template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution”, Journal of Power Sources, 177.2, 485-492, 2008.
[15] Larichev, Y. V., Netskina, O. V., Komova, O. V., Simagina, V. I.. “Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 35.13, 6501-6507, 2010.
[16] Wu, C., Wu, F., Bai, Y., Yi, B., Zhang, H.. “Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution”, Materials Letters, 59.14–15, 1748-1751, 2005.
[17] Lee, J., Kong, K. Y., Jung, C. R., Cho, E., Yoon, S. P., Han, J., Lee. T. G., Nam, S. W.. “A structured Co–B catalyst for hydrogen extraction from NaBH4 solution”, Catalysis Today, 120.3–4, 305-310, 2007.
[18] Ingersoll, J. C., Mani, N., Thenmozhiyal, J. C., Muthaiah, A.. “Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst”, Journal of Power Sources, 173.1, 450-457, 2007.
[19] Jeong, S. U., Cho, E. A., Nam, S. W., Oh, I. H., Jung, U. H., Kim, S. H.. “Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali solution”, International Journal of Hydrogen Energy, 32.12, 1749-1754, 2007.
[20] Dai, H. B., Liang, Y., Wang, P., Yao, X. D., Rufford, T., Lu, M., Cheng, H. M.. “High-performance cobalt–tungsten–boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution”, International Journal of Hydrogen Energy, 33.16, 4405-4412, 2008.
[21] Liu, B. H., Li, Q.. “A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis”, International Journal of Hydrogen Energy, 33.24, 7385-7391, 2008.
[22] Patel, N., Fernandes, R., Miotello, A.. “Promoting effect of transition metal-doped Co–B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution”, Journal of Catalysis, 271.2, 315-324, 2010.
[23] Zagorodni, A. A.. “Chapter 2 - ion exchangers, their structure and major properties”, Ion exchange materials. Oxford: Elsevier, 9-54, 2007.
[24] Levy A., Brown, J. B., Lyons, C. J.. “A practical controlled source of hydrogen-catalyzed hydrolysis of sodium borohydride”, Journal of Industrial and Engineering Chemistry 52, 211-214, 1960.
[25] Glavee, G. N., Klabunde, K. J., Sorensen, C. M., Hadjapanayis, G. C.. “Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates”, Langmuir, 8.3, 771-773, 1992.
[26] Glavee, G. N., Klabunde, K. J., Sorensen, C. M., Hadjipanayis, G. C.. “Borohydride reduction of cobalt ions in water. chemistry leading to nanoscale metal, boride, or borate particles”, Langmuir, 9.1, 162-169, 1993.
[27] Kim, J., Lee, H., Han, S., Kim, H., Song, M., Lee, J.. “Production of hydrogen from sodium borohydride in alkaline solution: Development of catalyst with high performance”, International Journal of Hydrogen Energy, 29.3, 263-267, 2004.
[28] Richardson, B. S., Birdwell, J. F., Pin, F. G., Jansen, J. F., Lind, R. F.. “Sodium borohydride based hybrid power system”, Journal of Power Sources, 145.1, 21-29, 2005.
[29] Gislon, P., Monteleone, G., Prosini, P. P.. “Hydrogen production from solid sodium borohydride”, International Journal of Hydrogen Energy, 34.2, 929-937, 2009.
[30] Liu, C., Chen, B., Hsueh, C., Ku, J., Tsau, F., Hwang, K.. “Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution”, Applied Catalysis B: Environmental, 91.1–2, 368-379, 2009.
[31] California State University, Northridge, Chemistry 321, Laboratory Manual. http://www.csun.edu/~hcchm003/321l/321lmco.pdf
[32] Zhu, J., Li, R., Niu, W., Wu, Y., Gou, X.. “Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride”, Journal of Power Sources, 211.0, 33-39, 2012.
[33] Lu, J., Dreisinger, D. B., Cooper, W. C.. “Cobalt precipitation by reduction with sodium borohydride”, Hydrometallurgy, 45.3, 305-322, 1997.
[34] Minkina, V. G., Shabunya, S. I., Kalinin, V. I., Martynenko, V. V., Smirnova, A. L.. “Stability of alkaline aqueous solutions of sodium borohydride”, International Journal of Hydrogen Energy, 37.4, 3313-3318, 2012.
[35] Hung, A., Tsai, S., Hsu, Y., Ku, J., Chen, Y., Yu, C.. “Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation”, International Journal of Hydrogen Energy, 33.21, 6205-6215, 2008.
[36] Zhang, J. S., Delgass, W. N., Fisher, T. S., Gore, J. P.. “Kinetics of ru-catalyzed sodium borohydride hydrolysis”, Journal of Power Sources, 164.2, 772-781, 2007.
[37] Andrieux, J., Demirci, U. B., Miele, P.. “Langmuir–Hinshelwood kinetic model to capture the cobalt nanoparticles-catalyzed hydrolysis of sodium borohydride over a wide temperature range”, Catalysis Today, 170.1, 13-19, 2011.
[38] Fernandes, R., Patel, N., Miotello, A., Filippi, M.. “Studies on catalytic behavior of Co–Ni–B in hydrogen production by hydrolysis of NaBH4”, Journal of Molecular Catalysis A: Chemical, 298.1–2, 1-6, 2009.
[39] Jeong, S. U., R. K. Kim, E. A. Cho, H. -J Kim, S. -W Nam, I. -H Oh, S. -A Hong, and S. H. Kim.. “A Study on Hydrogen Generation from NaBH4 Solution using the High-Performance Co-B Catalyst”, Journal of Power Sources, 144 .1, 129-134, 2005.
[40] Thermopedia. A-to-Z guide to Thermodynamics, Heat & Mass Transfer, and Fluids Engineering. Gas-Liquid Flow. http://www.thermopedia.com/content/2/?tid=104&sn=1297
[41] Kojima, Y., Suzuki, K., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., Matsumoto, S.. “Development of 10 kW-scale hydrogen generator using chemical hydride”, Journal of Power Sources, 125.1, 22-26, 2004.
[42] Couper, J. R., Penney, W. R., Fair, J. R., Walas, S. M.. “Chapter 18 - PROCESS VESSELS”, Chemical process equipment (second edition), Boston: Gulf Professional Publishing, 641-661, 2010.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信