淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1308201212430600
中文論文名稱 製備光可調控溫度敏感型複合載體以作為藥物控制釋放系統
英文論文名稱 Preparation of optical-controlled thermal-responsive composite carrier for drug delivery system
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 林昱伸
研究生英文姓名 Yu-Shen Lin
電子信箱 eason7791@hotmail.com
學號 699400320
學位類別 碩士
語文別 中文
口試日期 2012-07-17
論文頁數 128頁
口試委員 指導教授-董崇民
委員-邱文英
委員-鄭廖平
委員-陳信龍
中文關鍵字 溫度敏感型  可逆加成-斷裂鏈轉移聚合  奈米金桿  藥物釋放系統 
英文關鍵字 thermal-responsive  Reversible addition-fragmentation chain transfer polymerization  gold nanorod  drug delivery system 
學科別分類
中文摘要 本研究主要在製備具有光可調控的溫度敏感性複合載體以作為藥物控制釋放載體,希望利用可穿透皮膚組織的近紅外光照射藥物載體,進而產生光熱效應而引起溫度上升,使載體收縮而釋放出藥物。此研究選擇聚氮-異丙基丙烯醯胺(Poly(N-isopropyl acrylamide),PNIPAAm)作為溫感性高分子的主體,而為了調控低臨界溫度值(Lower critical solution temperature,LCST),也嘗試在合成反應系統中加入單端碳雙鍵的乙二醇甲醚丙烯酸酯寡聚物(Semi-telechelic oligo(ethylene glycol) methyl ether acrylate,OEGA),不僅可提高LCST值,也可增進生物相容性。合成反應是將NIPAAm及OEGA溶解在DMF溶劑中,以2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸(2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid,DMP)作為鏈移轉劑(Chain transfer agent,CTA)及 4,4'-偶氮雙(4-氰基戊酸) ((4,4′-azobis(4-cyanovaleric acid),ACVA)起始劑以可逆加成-斷裂鏈轉移聚合(Reversible addition- fragmentation chain transfer polymerization,RAFT)活性自由基聚合方法合成末端帶有酸基和十二烷基三硫代碳酸酯的窄分子量分佈HOOC-P(N-OEG)-CTA高分子。當添加的親水性單端碳雙鍵OEGA含量為6%時,可以得到LCST略高於人體溫度的38.5°C。接著利用硼氫化鈉(NaBH4)將末端的三硫代碳酸酯基還原成巰基(-SH),結果卻發現也會將共聚物中的親水OEG侧基還原成酸基及醇基,造成共聚物的LCST值下降。
光熱效應(Opto-thermal effect)則是利用奈米金桿的表面電漿共振效應(Surface plasmon resonance,SPR),利用種晶生成法合成出長35.9(±4.6) nm和寬10.2(±1.26) nm,長寬比值(Aspect ratio,AR)為3.52(±0.61),且形狀均一之奈米金桿(GNR),其表面電漿共振頻率(SPL,max)約在793 nm的近紅外光。最後加入不同比例的HOOC-PNIPAAm-CTA(MW= 8503 kDa,PDI= 1.12,LCST= 31.6°C)及HOOC-P(N-OEG6)-CTA(MW= 11512 kDa,PDI= 1.01,LCST= 38.5°C)溫感性高分子(Thermo-responsive polymer,TRP)於奈米金桿溶液中進行接枝反應以形成TRP/GNR複合材料。實驗發現50 mg之TRP與2.11×10-10 M的GNR在pH7下接枝反應24 h後,複合材料會有較佳之穩定性,並藉由STEM證實硫元素僅吸附於奈米金桿表面,而在TEM影像顯示奈米金桿受到高分子鏈之保護。接枝後,PNIPAAm/GNR及P(N-OEG6)/GNR複合材料的的LCST值分別為31.4°C及38.6°C,表示TRP在接枝上GNR後,對LCST值並無影響。最後將TRP/GNR複合材料溶液進行紅外光雷射引導(808 nm)及細胞培養等測試。TRP/GNR溶液經過近紅外光(1000 mW)照射5分鐘後,由於奈米金桿的表面電漿共振效應,溫度可從25°C上昇至43°C,此溫度上昇進而引發TRP的相變化;同時此溫度敏感性行為在經過近紅外光開關5次循環後,仍具有可逆變化。TRP/GNR複合材料不但具有光熱轉換之效應,且具可逆性,並且明顯改善原奈米金桿之生物毒性,在經過HOOC-PNIPAAm-CTA及HOOC-P(N-OEG6)-CTA接枝保護後,細胞存活率從原先的44%分別提升至86%及93%。
英文摘要 In this study, optical-controlled thermal-responsive composites based on thermo-responsive polymers (TRP) and gold nanorod (GNR) were prepared as a potential carrier for drug delivery system. When the composites were irradiated by near IR laser which could penetrate deep into tissues, the GNR could transform the absorbed light into heat due to the surface plasmon effect (SPR) and thus raised the temperature, which leaded to the volume shrinkage of the TRP and thereby releasing the encapsulated drug. Copolymers based on N-isopropyl acrylamide (PNIPAAm) and telechelic oligo(ethylene glycol) methyl ether acrylate (OEGA) were synthesized as the TRP. The OEGA was added into the reaction system to modulate the lower critical solution temperature (LCST) and increase the biocompatibility of the resulting copolymers. First, NIPAAm monomer and semi-telechelic OEGA with different molar ratios were dissolved in DMF. Subsequently, 2-(dodecyl thiocarbonothioylthio)-2-methylpropionic acid (DMP) as the chain transfer agent (CTA) and 4,4′-azobis(4-cyanovaleric acid) (ACVA) as the initiator were added into the solution to undergo the reversible addition-fragmentation chain transfer (RAFT) polymerization. The produced HOOC-P(N-OEG)-CTA copolymers with α-carboxylic acid and ω-dodecyltrithiocarbonate end groups were proved to have a very low dispersity in molecular weight. When the feeding molar ratio of the OEGA was 0.06, the resulting HOOC-P(N-OEG)-CTA copolymer had a LCST value of 38.5°C, slightly higher than the physiological temperature. Subsequently, the terminal trithiocarbonate group of the copolymers was reduced by NaBH4 to obtain thiol-terminated thermo-responsive copolymers. However, it was found that the acrylate side group of the OEGA was reduced as well to carboxylic and even hydroxyl groups, resulting in a decrease in the LCST value.
Opto-thermal effect was induced by surface plasmon effect of gold nanorod (GNR). Using the seed-mediated growth method, the synthesized GNR was very uniform in both size and shape with a dimension of 35.9(±4.6) nm in length and 10.2(±1.26) nm in width, thus having an aspect ratio (AR) of 3.52(±0.61) and a corresponding SPL,max of 793 nm. Both the HOOC-PNIPAAm-CTA (MW=8503 kDa, PDI=1.12, LCST=31.6°C) and HOOC-P(N-OEG6)-CTA (MW=11512 kDa, PDI=1.01, LCST=38.5°C) with different amounts were tried to graft onto the GNR to produce opto-thermal responsive TRP/GNR composites. It was found the TRP/GNR composites prepared by grafting 50 mg TRP onto 3 mL GNR (2.11×10-10 M) at pH7 for 24 h had the best stability. STEM results confirmed that the trithiocarbonate group could be adsorbed onto the surface of GNR, and the TEM image showed that the GNR was protected by a surrounding polymer layer. After grafting, the HOOC-PNIPAAm-CTA/GNR and HOOC-P(N-OEG6)-CTA)/GNR had LSCT values at 31.4°C and 38.6°C, respectively, indicating that the grafting process did not affect the LCST values. The TRP/GNR solution was tested for the near-IR irradiation-induced thermo-responsibility and cell compatibility. Because of the surface plasmon effect of GNR, the irradiation of near-IR (808 nm, 1000 mW) for 5 min could induce the temperature to rise from 25°C to 43°C. The thermo-responsibility was also reversible during five test cycles. Moreover, the protection polymer layer could decrease the cytotoxicity of the GNR. Cell viability was increased from 44% for the GNR to 86% and 93% for the HOOC-PNIPAAm-CTA/GNR and HOOC-P(N-OEG6)-CTA/GNR, respectively.
論文目次 目錄
中文摘要 I
Abstract III
目錄 VI
圖目錄 X
表目錄 XV
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧與基礎理論 3
2.1 可逆加成-斷裂鏈轉移聚合法(Radical Addititon Fragmentation Transfer Polymerization,RAFT Polymerization) 3
2.2 溫度敏感型高分子 6
2.3 奈米金 9
2.3.1 奈米金桿的製備 12
2.3.2 奈米金的穩定性 13
2.3.3 奈米金的光熱性質 15
第三章 實驗方法與步驟 22
3.1 實驗藥品 22
3.2 實驗儀器 26
3.3 實驗步驟 29
3.3.1 合成HOOC-PNIPAAm-CTA 高分子 29
3.3.1.1 HOOC-PNIPAAm-CTA 高分子單體轉化率 30
3.3.1.2 HOOC-PNIPAAm-CTA 高分子的結構分析與分子量測定 30
3.3.1.3 HOOC-PNIPAAm-CTA 高分子相變化溫度(LCST)的量測 31
3.3.2 合成HOOC-P(N-OEG)-CTA共聚物 32
3.3.2.1 HOOC-P(N-OEG)-CTA共聚物單體轉化率 32
3.3.2.2 HOOC-P(N-OEG)-CTA共聚物的結構分析與分子量測定 33
3.3.2.3 HOOC-P(N-OEG)-CTA共聚物相變化溫度(LCST)的量測 34
3.3.3 合成HOOC-PNIPAAm-SH及HOOC-P(N-OEG)-SH 高分子 35
3.3.3.1 巰基數的測量(Ellman’s test) 36
3.3.3.2 HOOC-PNIPAAm-SH及HOOC-P(N-OEG)-SH高分子的結構分析 38
3.3.3.3 HOOC-P(N-OEG)-SH高分子相變化溫度(LCST)的量測 38
3.3.4 奈米金桿(GNR)的製備 38
3.3.4.1 紫外光-可見光光譜分析(UV-Visible spectrophotometry) 39
3.3.4.2 穿透式電子顯微鏡分析(TEM) 39
3.3.5 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料的製備 39
3.3.5.1 穿透式電子顯微鏡分析(TEM) 40
3.3.5.2 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料對激發光源之光熱效應 41
3.3.5.3 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料光熱效應之可逆性質 42
3.3.5.4 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料細胞相容性測試 42
3.3.5.4.1 L929細胞株培養 42
3.3.5.4.2 細胞接種 43
3.3.5.4.3 MTS測試 43
第四章 結果與討論 44
4.1 合成HOOC-PNIPAAm-CTA 高分子與其分子量 44
4.1.1 HOOC-PNIPAAm-CTA高分子結構分析 47
4.1.2 HOOC-PNIPAAm-CTA高分子的相變化溫度(LCST) 52
4.2 合成HOOC-P(N-OEG)-CTA共聚物與其分子量 55
4.2.1 HOOC-P(N-OEG)-CTA共聚物結構分析 56
4.2.2 HOOC-P(N-OEG)-CTA共聚物的相變化溫度(LCST) 62
4.3 合成HOOC-PNIPAAm-SH及HOOC-P(N-OEG)-SH高分子 65
4.3.1 巰基數的測量(Ellman’s test) 65
4.3.2 HOOC-PNIPAAm-SH及HOOC-P(N-OEG)-SH高分子的結構分析 67
4.3.3 HOOC-P(N-OEG)-SH高分子的相變化溫度(LCST) 71
4.4 奈米金桿(GNR)的性質與型態 73
4.5 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料 76
4.5.1 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料穩定度測試 77
4.5.2 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料的相變化溫度(LCST) 80
4.5.3 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料的顆粒性質 88
4.5.4 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料的穿透式電子顯微鏡分析(TEM) 90
4.5.5 不同pH值對Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料之影響 99
4.5.6 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料對激發光源之光熱效應 111
4.5.7 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料光熱效應之可逆性質 112
4.5.8 Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料細胞相容性測試 114
第五章 結論 116
第六章 參考文獻 118
第七章 建議事項 128


圖目錄
圖2-1 鏈轉移劑的結構 3
圖2-2 RAFT Polymerization機制[5] 5
圖2-3 PNIPAAm水膠之藥物釋放機制[11] 7
圖2-4溫度敏感型高分子微胞之藥物釋放機制[12] 8
圖2-5表面電漿共振示意圖[23] 10
圖2-6 Aspect ratio與SPL之關係圖[27] 11
圖2-7奈米金桿成長機制示意圖[29] 13
圖2-8 奈米金-硫醇高分子以及奈米金-三硫代碳酸酯高分子之鍵結示意圖[55] 14
圖2-9 Ren之Au@IPN-PNIPAAm奈米膠合成步驟示意圖[59] 15
圖2-10 (a)血液(b)奈米金桿溶液之UV-Vis光譜比較圖(左虛線區塊為奈米金顆粒;右虛線區塊為奈米金桿之吸收峰)[60] 16
圖2-11 El-Sayed以不同的注射方式之小鼠腫瘤隨時間變化圖(藍:直接瘤內注入PBS;紅:直接腫瘤注射PEG-GNR;綠為尾靜脈注射方式PEG-GNR) [64] 18
圖2-12 El-Sayed注入不同物質經近紅外光照射後的小鼠腫瘤變化(左:直接瘤內注入PBS;右:直接腫瘤注射PEG-GNR) [64] 18
圖2-13 Gorelikov微凝膠顆粒在雷射光源照射下的體積變化圖(◇Poly(NIPAAm-co-AAc);◆Poly(NIPAAm-co-AAc)/GNR)[56] 19
圖2-14 Kawano之凝膠顆粒合成步驟示意圖[62] 20
圖2-15 Kawano動物實驗結果 [62] 20
圖2-16 Ji之Au NR/PNIPAAm藥物載體之實驗示意圖[45] 21
圖3-1 RAFT反應裝置圖 29
圖3-2 合成HOOC-PNIPAAm-CTA高分子流程圖 31
圖3-3 HOOC-PNIPAAm-CTA高分子反應結構式 32
圖3-4 合成HOOC-P(N-OEG)-CTA共聚物流程圖 34
圖3-5 HOOC-P(N-OEG)-CTA共聚物反應結構式 35
圖3-6 合成HOOC-PNIPAAm-SH及HOOC-P(N-OEG)-SH高分子流程圖 35
圖3-7 以NaBH4還原(水解) HOOC-PNIPAAm-CTA為HOOC-PNIPAAm-SH之反應式 36
圖3-8 Ellman’s reagent 反應流程圖 37
圖3-9 製備Thermo-Responsive Polymer/Gold Nanorod (TRP/GNR)複合載體的流程圖 40
圖3-10 Temperature-Responsive Polymer/Gold Nanorod (TRP/GNR)複合材料之光熱轉換實驗裝置示意圖 41
圖4-1 HOOC-PNIPAAm-CTA高分子(a)不同反應時間下的轉化率圖及僞一階動力(pseudo first-order kinetic)對時間作圖,ln{[M]0/[M]}=kt;(b) PDI對轉化率作圖 45
圖4-2 (a) PNIPAAm(sigma); (b)DMP; (c)ACPA起始劑; (d)HOOC-PNIPAAm-CTA的紅外線吸收光譜圖 48
圖4-3 HOOC-PNIPAAm-CTA(MW= 8503 Da)之1H-NMR光譜圖 50
圖4-4 HOOC-PNIPAAm-CTA(MW= 11996 Da)之1H-NMR光譜圖 50
圖4-5 HOOC-PNIPAAm-CTA(MW= 14710 Da)之1H-NMR光譜圖 51
圖4-6 HOOC-PNIPAAm-CTA(MW= 16494 Da)之1H-NMR光譜圖 51
圖4-7 HOOC-PNIPAAm-CTA(MW= 21487 Da)之1H-NMR光譜圖 52
圖4-8 不同分子量的HOOC-PNIPAAm-CTA高分子溶液在λ=450 nm下的(a)穿透率與溫度的關係圖 (b)穿透率對溫度的一次微分圖 53
圖4-9 (a)HOOC-PNIPAAm-CTA;(b)HOOC-P(N-OEG)-CTA的紅外線吸收光譜圖 57
圖4-10 HOOC-P(N-OEG4)-CTA的1H-NMR光譜圖 59
圖4-11 HOOC-P(N-OEG6)-CTA的1H-NMR光譜圖 59
圖4-12 HOOC-P(N-OEG8)-CTA的1H-NMR光譜圖 60
圖4-13 HOOC-P(N-OEG9)-CTA的1H-NMR光譜圖 60
圖4-14 HOOC-P(N-OEG10)-CTA的1H-NMR光譜圖 61
圖4-15 HOOC-P(N-OEG)-CTA共聚物fOEG與FOEG關係圖 62
圖4-16 HOOC-P(N-OEG)-CTA共聚物溶液在λ=450 nm下的(a)穿透率與溫度的關係圖 (b)穿透率對溫度的一次微分圖 63
圖4-17 HOOC-P(N-OEG)-CTA共聚物的OEGA含量與LCST關係圖 64
圖4-18 Ellman’s test巰基檢量線 66
圖4-19 (a) HOOC-PNIPAAm-CTA; (b) HOOC-PNIPAAm-SH; (c) HOOC-P(N-OEG)-CTA; (d) HOOC-P(N-OEG)-SH的紅外線吸收光譜圖 68
圖4-20 (a) HOOC-P(N-OEG9)-CTA; (b) HOOC-P(N-OEG9)-SH的1H-NMR光譜圖 70
圖4-21 HOOC-P(N-OEG)-SH高分子溶液在λ=450 nm下的(a)穿透率與溫度的關係圖 (b)穿透率對溫度的一次微分圖 72
圖4-22 經透析袋純化過後之奈米金桿與濃縮透析液的UV-Vis光譜圖 74
圖4-23 種晶溶液與濃縮透析液的UV-Vis光譜圖 74
圖4-24 奈米金桿的TEM圖,scale bar為(a)10 nm;(b)100 nm 75
圖4-25 不同配方之PNIPAAm/GNR複合材料溶液在λ=640 nm下的(a)穿透率與溫度的關係圖 (b)穿透率對溫度的一次微分圖 81
圖4-26 TRP/GNR複合材料溶液在λ=640 nm下的(a)穿透率與溫度的關係圖;(b)穿透率對溫度的一次微分圖 83
圖4-27 PNIPAAm/GNR (a)在不同溫度的相轉移可逆圖(λ=640 nm);(b)經過5次升降溫動作之UV-Vis光譜比較圖 85
圖4-28 P(N-OEG6)/GNR(a)在不同溫度的相轉移可逆圖(λ=640 nm);(b)經過5次升降溫動作之UV-Vis光譜比較圖 86
圖4-29 GNR(a)在不同溫度的相轉移可逆圖(λ=640 nm);(b)經過5次升降溫動作之UV-Vis光譜比較圖 87
圖4-30 CTAB雙層微膠示意圖[67] 89
圖4-31 奈米金桿溶液含少量CTAB之型態示意圖[75] 90
圖4-32 GNR溶液經兩次離心前處理、室溫攪拌24 h及兩次離心後處理的TEM圖,scale bar為(a) 100 nm;(b) 20 nm 91
圖4-33 (a) PNIPAAm/GNR;(b) P(N-OEG6)/GNR的TEM圖,scale bar為100 nm 92
圖4-34 (a) PNIPAAm/GNR;(b) P(N-OEG6)/GNR的TEM圖,scale bar為20 nm 93
圖4-35 含有1% 磷鎢酸處理後之P(N-OEG6)/GNR的TEM圖,scale bar為20 nm 94
圖4-36 (a) PNIPAAm/GNR;(b) P(N-OEG6)/GNR 的STEM Line Scan元素分析圖 96
圖4-37 PNIPAAm/GNR 的STEM mapping元素分析圖 97
圖4-38 P(N-OEG6)/GNR 的STEM mapping元素分析圖 98
圖4-39 PNIPAAm/GNR(a) pH3;(b) pH7;(c)pH10的TEM圖,scale bar=100 nm 104
圖4-40 PNIPAAm/GNR(a) pH3;(b) pH7;(c)pH10的TEM圖,scale bar為20 nm 105
圖4-41 PNIPAAm/GNR於(a) pH3;(b) pH7;(c) pH10的STEM Line Scan元素分析圖 106
圖4-42 PNIPAAm/GNR(pH3)的STEM mapping元素分析圖 107
圖4-43 PNIPAAm/GNR(pH7)的STEM mapping元素分析圖 108
圖4-44 PNIPAAm/GNR(pH10)的STEM mapping元素分析圖 109
圖4-45 PNIPAAm/GNR(pH3)示意圖 110
圖4-46 PNIPAAm/GNR(pH7)示意圖 110
圖4-47 PNIPAAm/GNR(pH10)示意圖 110
圖4-48 經不同功率雷射照射NIPAAm/GNR水溶液(pH7,1.5 mL)與水五分鐘之溫度關係圖(照射前之起始溫度為25°C) 111
圖4-49 PNIPAAm/GNR水溶液(pH7,1.5mL)於1000 mW之功率的近紅外光雷射(808 nm)照射下,多次開關雷射(每5分鐘)與穿透率之關係圖 113
圖4-50 P(N-OEG6)/GNR水溶液(pH7,1.5mL)於1000 mW之功率的近紅外光雷射(808 nm)照射下,多次開關雷射(每5分鐘)與穿透率之關係圖 113
圖4-51 L929細胞濃度檢量線 115
圖4-52 L929細胞培養於GNR、PNIPAAm/GNR及P(N-OEG6)/GNR的細胞濃度圖 115


表目錄
表4-1 HOOC-PNIPAAm-CTA在不同反應時間的反應配方 46
表4-2 HOOC-PNIPAAm-CTA在不同反應時間的轉化率及分子量 46
表4-3 HOOC-PNIPAAm-CTA高分子1H-NMR光譜的吸收位置 49
表4-4 不同分子量的HOOC-PNIPAAm-CTA高分子之LCST及WH 54
表4-5 不同單體入料比合成HOOC-P(N-OEG)-CTA共聚物的配方 55
表4-6 HOOC-P(N-OEG)-CTA共聚物的轉化率及分子量 56
表4-7 HOOC-P(N-OEG)-CTA共聚物1H-NMR光譜的吸收位置 58
表4-8 HOOC-P(N-OEG)-CTA共聚物的FOEG,NMR 61
表4-9 HOOC-P(N-OEG)-CTA共聚物的LCST及WH 64
表4-10 HOOC-PNIPAAm-CTA及HOOC-P(N-OEG6)-CTA在經過不同還原反應時間後的巰基含量及還原率 66
表4-11 HOOC-P(N-OEG9)-CTA與HOOC-P(N-OEG9)-SH共聚物的FOEG 69
表4-12 HOOC-P(N-OEG)-CTA與HOOC-P(N-OEG)-SH高分子的LCST 71
表4-13 奈米金種晶溶液的配方 73
表4-14 成長溶液以合成奈米金桿的配方 73
表4-15 PNIPAAm/GNR複合材料之配方 77
表4-16 不同配方之PNIPAAm/GNR複合材料儲存於室溫的SPL,max及吸光度變化 78
表4-17 P(N-OEG6)/GNR複合材料之配方 79
表4-18 P(N-OEG6)/GNR複合材料儲存於室溫的SPL,max及吸光度變化 79
表4-19 不同配方之PNIPAAm/GNR複合材料的LCST及WH 80
表4-20 TRP與TRP/GNR複合材料的LCST比較 82
表4-21 TRP/GNR複合材料之表面電位(zata potential) 89
表4-22 GNR之前處理與後處理後之粒徑 89
表4-23 TRP/GNR複合材料之粒徑 89
表4-24 不同pH值下進行接枝反應之PNIPAAm/GNR複合材料的配方 99
表4-25 不同pH值進行接枝反應之PNIPAAm/GNR複合材料儲存於室溫的SPL,max及吸光度變化 100
表4-26 於室溫但不同pH值下,PNIPAAm/GNR複合材料的表面電位(zata potential) 102
表4-27 於室溫但不同pH值下,PNIPAAm/GNR複合材料的粒徑 102

參考文獻 1. Chiefari, J., Chong, Y. K., Ercole, F., Krstina, J., Jeffery, J., Le, T. P. T., Mayadunne, R. T. A., Meijs, G. F., Moad, C. L., Moad, G., Rizzardo, E., & Thang, S. H. (1998). Living free-radical polymerization by reversible addition - fragmentation chain transfer: The RAFT process. Macromolecules, 31(16), 5559-5562.
2. Chiefari, J., Mayadunne, R. T. A., Moad, C. L., Moad, G., Rizzardo, E., Postma, A., Skidmore,M.A., & Thang, S. H. (2003). Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). effect of the activating group Z. Macromolecules, 36(7), 2273-2283.
3. Chong, B. Y. K., Krstina, J., Le, T. P. T., Moad, G., Postma, A., Rizzardo, E., & Thang, S. H. (2003). Thiocarbonylthio compounds [S=C(ph)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). role of the free-radical leaving group (R). Macromolecules, 36(7), 2256-2272.
4. Smith, A. E., Xu, X., & McCormick, C. L. (2010). Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Progress in Polymer Science (Oxford), 35(1-2), 45-93.
5. Moad, G., Rizzardo, E., & Thang, S. H. (2005). Living radical polymerization by the RAFT process. Australian Journal of Chemistry, 58(6), 379-410.
6. Moad, G., Rizzardo, E., & Thang, S. H. (2006). Living radical polymerization by the RAFT process - A first update. Australian Journal of Chemistry, 59(10), 669-692.
7. Moad, G., Rizzardo, E., & Thang, S. H. (2009). Living radical polymerization by the RAFT process A second update. Australian Journal of Chemistry, 62(11), 1402-1472.
8. Gil, E. S., & Hudson, S. M. (2004). Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science (Oxford),29(12), 1173-1222.
9. Ben-Naim, A.(1980). Hydrophobic Interactions, Plenum Press, New York.
10. Zhang, X. -Z., Xu, X. -D., Cheng, S. -X., & Zhuo, R. -X. (2008). Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter, 4(3), 385-391.
11. Zhang, X. -Z., Zhuo, R. -X., Cui, J. -Z., & Zhang, J. -T. (2002). A novel thermo-responsive drug delivery system with positive controlled release. International Journal of Pharmaceutics, 235(1-2), 43-50.
12. Nakayama, M., Okano, T., Miyazaki, T., Kohori, F., Sakai, K., & Yokoyama, M. (2006). Molecular design of biodegradable polymeric micelles for Thermo-Responsive drug release. Journal of Controlled Release, 115(1), 46-56.
13. Singh, D., Kuckling, D., Koul, V., Choudhary, V., Adler, H. -J., & Dinda, A. K. (2008). Studies on copolymerization of N-isopropylacrylamide with poly(ethylene glycol) methacrylate. European Polymer Journal, 44(9), 2962-2970..
14. Ma, X., Xi, J., Zhao, X., & Tang, X. (2005). Deswelling comparison of temperature-sensitive poly(N-isopropylacrylamide) microgels containing functional - OH groups with different hydrophilic long side chains. Journal of Polymer Science, Part B: Polymer Physics, 43(24), 3575-3583.
15. Greenwald, R. B., Choe, Y. H., McGuire, J., & Conover, C. D. (2003). Effective drug delivery by PEGylated drug conjugates.Advanced Drug Delivery Reviews, 55(2), 217-250.
16. Veronese, F. M., & Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug Discovery Today, 10(21), 1451-1458.
17. 張耿銘(2011),光可調控溫度敏感型聚氮異丙基丙烯醯胺高分子的製備及其細胞相容性,淡江大學碩士論文。
18. Raether H. (1988). Surface Plasmons, Springer, New York.
19. Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. (2005). Nano-optics of surface plasmon polaritons. Physics Reports, 408(3-4), 131-314.
20. Schultz, D. A. (2003). Plasmon resonant particles for biological detection. Current Opinion in Biotechnology, 14(1), 13-22.
21. Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Seeding growth for size control of 5-40 nm diameter gold nanoparticles.Langmuir, 17(22), 6782-6786.
22. Sau, T. K., & Murphy, C. J. (2004). Seeded high yield synthesis of short au nanorods in aqueous solution. Langmuir, 20(15), 6414-6420.
23. Link, S., Mohamed, M. B., & El-Sayed, M. A. (1999). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. Journal of Physical Chemistry B, 103(16), 3073-3077.
24. Link, S., & El-Sayed, M. A. (2005). Erratum: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (journal of physical chemistry B (1999) 103B). Journal of Physical Chemistry B, 109(20), 10531-10532.
25. Yan, B., Yang, Y., & Wang, Y. (2003). Comment on "simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant". Journal of Physical Chemistry B, 107(34), 9159.
26. Brioude, A., Jiang, X. C., & Pileni, M. P. (2005). Optical properties of gold nanorods: DDA simulations supported by experiments.Journal of Physical Chemistry B, 109(27), 13138-13142.
27. Huang, X., Neretina, S., & El-Sayed, M. A. (2009). Gold nanorods: From synthesis and properties to biological and biomedical applications. Advanced Materials, 21(48), 4880-4910.
28. Liu, M., & Guyot-Sionnest, P. (2005). Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. Journal of Physical Chemistry B, 109(47), 22192-22200.
29. Murphy, C. J., Thompson, L. B., Chernak, D. J., Yang, J. A., Sivapalan, S. T., Boulos, S. P., Huang, J., Alkilany, A. M., & Sisco,P.N. (2011). Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Current Opinion in Colloid and Interface Science,16(2), 128-134.
30. Mohamed, M. B., Ahmadi, T. S., Link, S., Braun, M., & El-Sayed, M. A. (2001). Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chemical Physics Letters, 343(1-2), 55-63.
31. 邱作沛(2009),利用氧化還原起始劑合成 PMMA 奈米顆粒及製備光可調控溫度敏感型共聚物以做為藥物控制釋放載體,淡江大學博士論文。
32. Mössmer, S., Spatz, J. P., Möller, M., Aberle, T., Schmidt, J., & Burchard, W. (2000). Solution behavior of poly(styrene)-&Zoc&-poly(2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules, 33(13), 4791-4798.
33. Kariuki, N. N., Han, L., Ly, N. K., Patterson, M. J., Maye, M. M., Liu, G., & Zhong, C. -J. (2002). Preparation and characterization of gold nanoparticles dispersed in poly(2-hydroxyethyl methacrylate). Langmuir, 18(21), 8255-8259.
34. Filali, M., Meier, M. A. R., Schubert, U. S., & Gohy, J. -F. (2005). Star-block copolymers as templates for the preparation of stable gold nanoparticles. Langmuir, 21(17), 7995-8000.
35. Chen, H., Wang, Y., Wang, Y., Dong, S., & Wang, E. (2006). One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer, 47(2), 763-766.
36. Nu, S., Bttcher, H., Wurm, H., & Hallensleben, M. L. (2001). Gold nanoparticles with covalently attached polymer chains.Angewandte Chemie - International Edition, 40(21), 4016-4018.
37. Jordan, R., West, N., Ulman, A., Chou, Y. -M., & Nuyken, O. (2001). Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules, 34(6), 1606-1611.
38. Ohno, K., Koh, K. -M., Tsujii, Y., & Fukuda, T. (2002). Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules, 35(24), 8989-8993.
39. Mandal, T. K., Fleming, M. S., & Walt, D. R. (2002). Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Letters, 2(1), 3-7.
40. Zhao, H., Kang, X., & Liu, L. (2005). Comb-coil polymer brushes on the surface of silica nanoparticles. Macromolecules, 38(26), 10619-10622.
41. Wuelfing, W. P., Gross, S. M., Miles, D. T., & Murray, R. W. (1998). Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. Journal of the American Chemical Society, 120(48), 12696-12697.
42. Corbierre, M. K., Cameron, N. S., Sutton, M., Mochrie, S. G. J., Lurio, L. B., Rühm, A., & Lennox, R. B. (2001). Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices . Journal of the American Chemical Society, 123(42), 10411-10412.
43. Mangeney, C., Ferrage, F., Aujard, I., Artzner, V., Jullien, L., Ouari, O., Djouhar Rékai, E., Laschewsky, A., Vikholm, I., & Sadowski, J. W. (2002). Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers. Journal of the American Chemical Society, 124(20), 5811-5821.
44. Lowe, A. B., Sumerlin, B. S., Donovan, M. S., & McCormick, C. L. (2002). Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. Journal of the American Chemical Society, 124(39), 11562-11563.
45. Wei, Q., Ji, J., & Shen, J. (2008). Synthesis of near-infrared responsive gold Nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for smart drug delivery. Macromolecular Rapid Communications, 29(8), 645-650.
46. Kim, D. J., Kang, S. M., Kong, B., Kim, W. -J., Paik, H. -J., Choi, H., & Choi, I. S. (2005). Formation of thermoresponsive gold nanoparticle/PNIPAAm hybrids by surface-initiated, atom transfer radical polymerization in aqueous media. Macromolecular Chemistry and Physics, 206(19), 1941-1946.
47. Li, D., He, Q., Cui, Y., Wang, K., Zhang, X., & Li, J. (2007). Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment. Chemistry - A European Journal, 13(8), 2224-2229.
48. Dong, H., Zhu, M., Jeong, A. Y., Gao, H., Jin, R., & Matyjaszewski, K. (2008). One-pot synthesis of robust core/shell gold nanoparticles. Journal of the American Chemical Society, 130(39), 12852-12853.
49. Raula, J., Shan, J., Nuopponen, M., Niskanen, A., Jiang, H., Kauppinen, E. I., & Tenhu, H. (2003). Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization. Langmuir, 19(8), 3499-3504.
50. Duwez, A. -S., Guillet, P., Colard, C., Gohy, J. -F., & Fustin, C. -A. (2006). Dithioesters and trithiocarbonates as anchoring groups for the "grafting-to" approach. Macromolecules, 39(8), 2729-2731.
51. Han, D. -E., & Pan, C. -Y. (2008). Synthesis and characterization of water- soluble gold nanoparticles stabilized by comb-shaped copolymers. Journal of Polymer Science, Part A: Polymer Chemistry, 46(1), 341-352.
52. Yusa, S. -I., Fukuda, K., Yamamoto, T., Iwasaki, Y., Watanabe, A., Akiyoshi, K., & Morishima, Y. (2007). Salt effect on the heat-induced association behavior of gold nanoparticles coated with poly(N-isopropylacrylamide) prepared via reversible addition-fragmentation chain transfer (RAFT) radical polymerization. Langmuir, 23(26), 12842-12848.
53. Shan, J., Nuopponen, M., Jiang, H., Kauppinen, E., & Tenhu, H. (2003). Preparation of poly(N-isopropylacrylamide)-monolayer-protected gold clusters: Synthesis methods, core size, and thickness of monolayer. Macromolecules, 36(12), 4526-4533.
54. Aqil, A., Qiu, H., Greisch, J. -F., Jérôme, R., De Pauw, E., & Jérôme, C. (2008). Coating of gold nanoparticles by thermosensitive poly(N-isopropylacrylamide) end-capped by biotin. Polymer, 49(5), 1145-1153.
55. Boyer, C., Whittaker, M. R., Luzon, M., & Davis, T. P. (2009). Design and synthesis of dual thermoresponsive and antifouling hybrid polymer/gold nanoparticles. Macromolecules, 42(18), 6917-6926.
56. Gorelikov, I., Field, L. M., & Kumacheva, E. (2004). Hybrid microgels photoresponsive in the near-infrared spectral range. Journal of the American Chemical Society, 126(49), 15938-15939.
57. O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., & West, J. L. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters, 209(2), 171-176.
58. Sershen, S. R., Westcott, S. L., Halas, N. J., & West, J. L. (2000). Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 51(3), 293-298.
59. Zhao, X. -Q., Wang, T. -X., Liu, W., Wang, C. -D., Wang, D., Shang, T., Shen, L. -H., & Ren, L. (2011). Multifunctional Au@IPN-PNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. Journal of Materials Chemistry, 21(20), 7240-7247.
60. García, M. A., Bouzas, V., & Carmona, N. (2010). Synthesis of gold nanorods for biomedical applications. AIP Conference Proceedings , 1275, 84-87.
61. Weissleder, R. (2001). A clearer vision for in vivo imaging. Nature Biotechnology , 19(4), 316-317.
62. Kawano, T., Niidome, Y., Mori, T., Katayama, Y., & Niidome, T. (2009). PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. Bioconjugate Chemistry, 20(2), 209-212.
63. Shah, N., Cerussi, A., Eker, C., Espinoza, J., Butler, J., Fishkin, J., Hornung, R., & Tromberg, B. (2001). Noninvasive functional optical spectroscopy of human breast tissue. Proceedings of the National Academy of Sciences of the United States of America ,98(8), 4420-4425.
64. Dickerson, E. B., Dreaden, E. C., Huang, X., El-Sayed, I. H., Chu, H.,Pushpanketh, S., McDonald, J. F., & El-Sayed, M. A. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters,269(1), 57-66.
65. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70-77.
66. Verheul, R. J., Van Der Wal, S., & Hennink, W. E. (2010). Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles . Biomacromolecules, 11(8), 1965-1971.
67. Riddles, P. W., Blakeley, R. L., & Zerner, B. (1983). Reassessment of Ellman’s reagent. Methods in Enzymology.,91(C), 49-60.
68. Riddles, P. W., Blakeley, R. L., & Zerner, B. (1979). Ellman's reagent: 5,5'-dithiobis(2-nitrobenzoic acid) - a reexamination.Analytical Biochemistry, 94(1), 75-81.
69. Didychuk, C. L., Ephrat, P., Belton, M., & Carson, J. J. L. (2008). Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods. Paper presented at the Progress in Biomedical Optics and Imaging - Proceedings of SPIE, , 6856
70. Bogliotti, N., Oberleitner, B., Di-Cicco, A., Schmidt, F., Florent, J. -C., & Semetey, V. (2011). Optimizing the formation of biocompatible gold nanorods for cancer research: Functionalization, stabilization and purification. Journal of Colloid and Interface Science, 357(1), 75-81.
71. Boca, S. C., & Astilean, S. (2010). Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of raman tags. Nanotechnology, 21(23)
72. Xia, Y., Yin, X., Burke, N. A. D., & Stöver, H. D. H. (2005). Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 38(14), 5937-5943.
73. Zou, R., Zhang, Q., Zhao, Q., Peng, F., Wang, H., Yu, H., & Yang, J. (2010). Thermal stability of gold nanorods in an aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372(1-3), 177-181.
74. Cheng, J., Ge, L., Xiong, B., & He, Y. (2011). Investigation of pH effect on gold nanorod synthesis. Journal of the Chinese Chemical Society, 58(6), 822-827.
75. Becker, R., Liedberg, B., & Käll, P. -O. (2010). CTAB promoted synthesis of au nanorods - temperature effects and stability considerations. Journal of Colloid and Interface Science, 343(1), 25-30.
76. Wang, C. -H., Chang, C. -W., & Peng, C. -A. (2011). Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. Journal of Nanoparticle Research, 13(7), 2749-2758.
77. Guo, R., Zhang, L., Qian, H., Li, R., Jiang, X., & Liu, B. (2010). Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir, 26(8), 5428-5434.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-08-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信