§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1308201212292600
DOI 10.6846/TKU.2012.00500
論文名稱(中文) 以改進式共沉澱法製備硬磁性鐵酸鋇
論文名稱(英文) Magnetic properties of BaFe12O19 prepared by a modified co-precipitation
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 朱婉婷
研究生(英文) Wan-Ting Chu
學號 698401170
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-17
論文頁數 90頁
口試委員 指導教授 - 余宣賦
委員 - 張裕祺
委員 - 尹庚鳴
關鍵字(中) 鐵酸鋇
共沉澱法
硬磁性磁體
關鍵字(英) BaFe12O19
Hard magnets
Co-precipitation
第三語言關鍵字
學科別分類
中文摘要
本實驗利用共沉澱法來製備BaFe12O19硬磁性粉體。實驗程序中,起始水溶液為含有生成BaFe12O19所需化學劑量比的硝酸鐵與硝酸鋇,沉澱劑為氨水,而反應液態介質為水和丙酮的混合溶液。固定反應液態介質的總體積並探討改變反應液態介質中水和丙酮比例(R值:丙酮使用體積量/水和丙酮總體積量)對製得的鐵酸鋇粉體性質影響。離心收集到的沉澱物經過90℃乾燥後先做300℃5小時的預熱處理以形成所需的前驅物粉體,接著再進行600℃到1000℃5小時的煆燒處理。前驅物粉體與煆燒後所得粉體藉由熱分析儀、X-光繞射分析儀、紅外線光譜儀、掃描式電子顯微鏡、穿透式電子顯微鏡和超導量子干涉磁量儀對其特性分析。實驗結果顯示當R值為0.6時所得前驅物經600℃煆燒處理後就可出現鐵酸鋇的結晶相態,且900℃煆燒則可得到單一相態鐵酸鋇。而煆燒達1000℃時得到的鐵酸鋇粉體有67 emu/g高飽和磁化強度、33 emu/g的殘留磁場強度和5 kOe矯頑磁力。
英文摘要
BaFe12O19 powder, a hard magnetic ceramic, was synthesized using a co-precipitation method. In preparation, the following materials were used: an aqueous solution of ferric and barium nitrates, in a stoichiometric ratio to form BaFe12O19, as starting solution, ammonium as precipitating agent and a mixed liquids containing acetone and water as reaction liquid medium. By fixing the total volume of the reaction liquid medium, effects of the acetone fraction R ( = volume of acetone used/total volume of the reaction medium) in the liquid medium on the characteristics of the obtained barium ferrite powder were investigated. After precipitation and centrifugal filtration, the collected solid precipitants were dried at 90℃ and then preheated at 300℃ to form the solid precursors. The solid precursors were then calcined at different temperatures ranging from 600℃ to 1000℃. The calcined powder was characterized using thermal analyzer, x-ray diffractometer, infrared spectrometer, scanning electronic microscope, transmission electronic microscope and superconducting quantum interference device. When R = 0.6, BaFe12O19 crystalline phase was first appeared in the powder calcined at 600℃and BaFe12O19 monophase powder was obtained at 900℃. The BaFe12O19 powder obtained at R = 0.6 and 1000℃ possessed good magnetic properties: saturation magnetization of 67 emu/g, remanence magnetization of 32~33 emu/g and coercive force of 5 kOe.
第三語言摘要
論文目次
主目錄
中文摘要.....................................................................................................I
英文摘要..................................................................................................III
主目錄......................................................................................................V
圖目錄.....................................................................................................VII
表目錄......................................................................................................XI
第一章 緒論............................................................................................. 1
第二章 文獻回顧與理論基礎..................................................................4
2-1 鐵酸鋇分子結構.................................................................................4
2-2 鐵酸鋇磁性質.....................................................................................6
	2-2-1 飽和磁化強度...............................................………............…6
	2-2-2 矯頑磁力.…….………….........................................................8
2-3 理論密度……………………...........................................................10
2-4 BaFe12O19粉體製備方法……...........................................................11
   	2-4-1 傳統固態反應法....................................………............…….11
	2-4-2 水熱合成法.….………….......................................................12
  	2-4-3 溶膠-凝膠法…………...........................................................13
	2-4-4 噴霧熱解法....................................………............………….14
	2-4-5 檸檬鹽先驅物法.…………....................................................15
  	2-4-6 化學共沉澱法………….........................................................16
第三章 實驗步驟與儀器分析................................................................20
3-1 實驗步驟.......................................................................................... 20
3-2 特性分析...........................................................................................23
3-3 儀器分析...........................................................................................24
	3-3-1 X光繞射分析儀.....................................................................24
	3-3-2 傅氏轉換紅外線光譜儀.........................................................26
	3-3-3 掃描式電子顯微鏡.................................................................27
	3-3-4 穿透式電子顯微鏡……………….........................................28
3-3-5 熱重損失分析儀與熱差掃描分析儀.....................................29
3-3-6 超導量子干涉磁量儀.............................................................30
第四章	結果與討論................................................................................31
4-1 粉體熱行為表現與特性分析...........................................................31
	4-1-1 前驅物粉體熱行為表現.........................................................31
	4-1-2 鐵酸鋇特性分析….................................................................50
4-2 鐵酸鋇之形態與磁性分析...............................................................66
第五章	結論............................................................................................83
參考文獻..................................................................................................85
 
圖目錄
圖2-1 BaFe12O19晶體結構.........................................................................5
圖2-2 BaFe12O19的飽和磁化強度與溫度變化的關係.............................7
圖2-3 磁滯曲線圖....................................................................................8
圖3-1 BaFe12O19粉體製備實驗流程圖...................................................22
圖3-2 X光對晶體所產生之繞射............................................................25
圖3-3 掃描式電子顯微鏡剖面機構示意圖..........................................28
圖4-1 前驅物粉體在空氣流率30mL/min和加熱速率10℃/min下所得之TG/DSC圖: (a) R = 0, (b) R = 0.2, (c) R = 0.4, (d) R = 0.6, (e) R = 0.7 和 (f) R = 0.8.......................................................................................…34
圖4-2 R = 0前驅物粉體加熱至90℃、300℃、400℃、600℃和900℃後(不持溫)所得粉體的XRD圖…………………………………...…..36
圖4-3 R = 0前驅物粉體加熱至90℃、300℃、400℃、500℃、600℃和900℃後(不持溫)所得粉體的FT-IR圖…………………….........…37
圖4-4 R = 0.6前驅物粉體加熱至90℃、300℃、400℃、600℃和900℃後(不持溫)所得粉體的XRD圖…………………………….................39
圖4-5 R = 0.6前驅物粉體加熱至90℃、300℃、400℃、500℃、600℃和900℃後(不持溫)所得粉體的FT-IR圖.............................................40
圖4-6 R = 0.8前驅物粉體加熱至90℃、250℃、300℃、400℃、600℃和900℃後(不持溫)所得粉體的FT-IR圖.............................................43
圖4-7 R = 0.8前驅物粉體加熱至90℃、250℃、300℃、400℃、600℃和900℃後(不持溫)所得粉體的XRD圖..............................................44
圖4-8 前驅物粉體300℃預熱處理後在空氣流率30 mL/min和加熱速率10 ℃/min下所得之TG/DSC圖: (a) R = 0, (b) R = 0.2, (c) R = 0.4, (d) R = 0.6, (e) R = 0.7 和 (f) R = 0.8..................................................……48
圖4-9 R = 0.8,90℃乾燥、300℃(不持溫)和300℃(持溫5小時)後所得粉體的XRD圖.............................................................................49
圖4-10 R = 0前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的XRD圖........................54
圖4-11 R = 0前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的FT-IR圖.......................55
圖4-12 R = 0.2前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的XRD圖........................56
圖4-13 R = 0.2前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的FT-IR圖.......................57
圖4-14	R = 0.4前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的XRD圖..........................58
圖4-15 R = 0.4前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的FT-IR圖.........................59
圖4-16 	R = 0.6前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的XRD圖..........................60
圖4-17 	R = 0.7前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的XRD圖..........................61
圖4-18 	R = 0.8前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的XRD圖..........................62
圖4-19 	R = 0.6前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的FT-IR圖.........................63
圖4-20 	R = 0.7前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的FT-IR圖.........................64
圖4-21 	R = 0.8前驅物粉體熱處理溫度至90℃、300℃、600℃、700℃、800℃、900℃和1000℃後(5小時)所得粉體的FT-IR圖.........................65
圖4-22 	不同R值,前驅粉體熱處理800℃所得粉體之SEM圖(a) R = 0, (b) R = 0.2, (c) R = 0.4, (d) R = 0.6, (e) R = 0.7 和 (f) R = 0.8.............................................................................................................69
圖4-23 	不同R值,前驅粉體熱處理900℃所得粉體之SEM圖(a) R = 0, (b) R = 0.2, (c) R = 0.4, (d) R = 0.6, (e) R = 0.7和(f)R = 0.8.............................................................................................................70
圖4-24 	不同R值,前驅粉體熱處理1000℃所得粉體之SEM圖(a) R = 0, (b) R = 0.2, (c) R = 0.4, (d) R = 0.6, (e) R = 0.7 和(f) R = 0.8............................................................................................................71
圖4-25 	不同R值,前驅粉體熱處理1000℃所得粉體之TEM圖(a) R = 0, (b) R = 0.2, (c) R = 0.4, (d) R = 0.6, (e) R = 0.7 和(f) R = 0.8............................................................................................................73圖4-26 R=0時,前驅粉體熱處理(a)900℃和(b)1000℃所得粉體之磁性分析........................................................................................................74
圖4-27 R=0.2時,前驅粉體熱處理(a)900℃和(b)1000℃所得粉體之磁性分析......................................................................................................75
圖4-28 R=0.4時,前驅粉體熱處理(a)900℃和(b)1000℃所得粉體之磁性分析......................................................................................................76
圖4-29 R=0.6時,前驅粉體熱處理(a)800℃、(b)900℃和(c)1000℃所得粉體之磁性分析......................................................................................78
圖4-30 R=0.7時,前驅粉體熱處理(a)900℃和(b)1000℃所得粉體之磁性分析......................................................................................................79
圖4-31 R=0.8時,前驅粉體熱處理(a)900℃和(b)1000℃所得粉體之磁性分析......................................................................................................80
圖4-32 	R值為0、0.6和0.8時,前驅物粉體熱處理溫度至1000℃後(5小時)所得粉體之磁性分析....................................................................82


表目錄
表2-1 BaFe12O19之Fe3+磁矩方向............................................…………...7
表3-1 實驗所需藥品……………….......................................................21
表3-2 實驗中溶劑之體積比…...............................................................21
表4-1 不同R值鐵酸鋇在不同熱處理溫度下之磁性質........................81
參考文獻
1.	楊志信,垂直記錄原理,台灣資訊儲存技術協會會刊,(2005)。
2.	M. P. Sharrock, “Particulate Magnetic Recording Media: A Review,” IEEE Trans. on Magn., 25, 4374-89 (1989).
3.	黃忠良編譯,精密陶瓷材料概論,復漢出版社印行,(1986)。
4.	B. T. Shirk, W. R. Buessem, “Temperature Dependence of M. and Kl of BaFe12O19 and SrFe12O19 Single Crystals,” J. Appl. Phys, 40, 1294-1296 (1969).
5.	V. Pillai, P. Kumar, M. S. Multani, D. O. Shah, “Structure and magnetic properties of nanoparticles oh barium ferrite synthesized using microemulsion processing,” Colloids Surf. A : Physicochemical and Engineering, 80, 69-75 (1993).
6.	H. P. Steier, J. S. Moya, Cabanas, J. M. Gonzalez-Calbet, M. Vallet-Regi, “Transmission electron microscopy study of barium hexaferrite formation from barium carbonate and hematite,” J. Mater. Res., 14, 3647-52 (1999).
7.	File NO. 39-1433, Powder Diffraction File, compiled by the JCPDS-International Centre for Diffraction Data in cooperation with the American Society for Testing and Materials.
8.	鄭振東編譯,實用磁性材料,全華科技圖書股份有限公司,(1999)。
9.	J. Smit, H. P. Wijn, J. Ferrites. pp. 369 (New York: Wily, 1959. This book is published in the Philips Technical Library series).
10.	馬振基主編,奈米材料科技原理與應用,全華科技圖書股份有限公司,(2005)。
11.	E. C. Stoner, E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Phil. Trans. Roy. Soc., A-240, 599-642 (1948). 
12.	M. V. Cabafias, J. M. Gonzdlez-Calbet, “Influence of the synthetic route on the BaFe12O19 properties,” Solid State Ionics, 63-65, 207-212 (1993).
13.	V. Berbennia, A. Marinia, N. J. Welhamb, P. Galinettoc, M. C. Mozzatic, “The effect of mechanical milling on the solid state reactions in the barium oxalate–iron(III) oxide system,” J. Eur. Ceram. Soc., 23, 179–187 (2003).
14.	T. Yamauchi, Y. Tsukahara, T. Sakata, H. Mori, T. Chikata, S. Katoh, Y. Wada, “Barium ferrite powders prepared by microwave-induced hydrothermal reaction and magnetic property,” J. Magn. Magn. Mater., 321, 8–11 (2009).
15.	X. Liu, J. Wang, L. M. Gan, S. C. Ng, “Improving the magnetic properties of hydrothermally synthesized barium ferrite,” J. Magn. Magn. Mater., 195, 452-459 (1999).
16.	D. Mishra, S. Ananda, R. K. Panda, R. P. Das, “Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation–calcination route,” Mater. Chem. Phys., 86, 132–136 (2004).
17.	S. S. Fortes, J. G. S. Duque, M. A. Maceˆdo, “Nanocrystals of BaFe12O19 obtained by the proteic sol–gel process,” Physica B, 384, 88–90 (2006).
18.	Y. Li, Q. Wang, H. Yang, “Synthesis, characterization and magnetic properties on nanocrystalline BaFe12O19 ferrite,” Current Applied Physics, 9, 1375–1380 (2009).
19.	A. Mali, A. Ataie, “Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route,” Scripta Mater., 53, 1065–1070 (2005).
20.	G. L. Messing, S. C. Zhang, G. V. Jayanthi, “Ceramic Powder Synthesis by Spray Pyrolsis,” J. Am. Ceram. Soc., 76(11), 2707-2726 (1993).
21.	V. K. Sankaranarayanan, R. P. Pant, A. C. Rastogi, “Spray pyrolytic deposition of barium hexaferrite thin films for magnetic recording applications,” J. Magn. Magn. Mater., 220, 72-78 (2000).
22.	H. M. Lee, S. Y. Bae, J. H. Yu, Y. J. Kim, “Preparation of Unsintered Spherical BaFe12O19 Nanoparticles via an Alcohol-Assisted Spray-Pyrolysis Route,” J. Am. Ceram. Soc., 91(9), 2856–2861 (2008).
23.	P. Ren, J. G. Guanb, X. D. Cheng, “Influence of heat treatment conditions on the structure and magnetic properties of barium ferrite BaFe12O19 hollow microspheres of low density,” Mater. Chem. Phys., 98, 90–94 (2006).
24.	W. J. Lee, T. T. Fang, “The effect of the molar ratio of cations and citric acid on the synthesis of barium ferrite using a citrate process,” J. Mater. Sci., 30, 4349-4354 (1995).
25.	H.- F. Yu, P.- C. Liu, “Effects of pH and calcination temperatures on the formation of citrate-derived hexagonal barium ferrite particles,” J. Alloys Compd., 416, 222–227 (2006).
26.	V. K. Sankaranamyanan, Q. A. Pankhurst, D. P. E. Dickson, C. E. Johnson, J. Magn. Magn. Mater., 125, 199 (1993).
27.	V. K. Sankaranarayanan, D. C. Khan, “Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method,” J. Magn. Magn. Mater., 153, 337-346 (1996).
28.	H.- F. Yu, K.- C. Huang, “Effects of pH and citric acid contents on characteristics of ester-derived BaFe12O19 powder,” J. Magn. Magn. Mater., 260, 455–461 (2003).
29.	Guohong Mu*, Xifeng Pan, Na Chen, Keke Gan, Mingyuan Gu, “Preparation and magnetic properties of barium hexaferrite nanorods,” Mater. Res. Bull., 43, 1369–1375 (2008).
30.	G. Xu, H. Ma, M. Zhong, J. Zhou, Y. Yue, Z. He, “Influence of pH on characteristics of BaFe12O19 powder prepared by sol–gel auto-combustion,” J. Magn. Magn. Mater., 301, 383–388 (2006).
31.	M. M. Rashad, I. A. Ibrahim, “Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method,” J. Magn. Magn. Mater., 323, 2158–2164 (2011).
32.	S. R. Janasi, M. Emura, F. J. G. Landgraf, D. Rodrigues, “The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders,” J. Magn. Magn. Mater., 238, 168–172 (2002).
33.	D. Lisjak, M. Drofenik, “The low-temperature formation of barium hexaferrites,” J. Eur. Ceram. Soc., 26, 3681–3686 (2006).
34.	M. M. Rashad, M. Radwan, M. M. Hessien, “Effect of Fe/Ba mole ratios and surface-active agents on the formation and magnetic properties of co-precipitated barium hexaferrite,” J. Alloys Compd., 453, 304–308 (2008).
35.	K. K. Mallick, P. Shepherd, R. J. Green, “Dielectric properties of M-type barium hexaferrite prepared by co-precipitation,” J. Eur. Ceram. Soc., 27, 2045–2052 (2007).
36.	H. Sozeri, “Effect of pelletization on magnetic properties of BaFe12O19,” J. Alloys Compd., 486, 809–814 (2009).
37.	K. Sheikhi Moghaddam, A. Ataie, “Role of intermediate milling in the processing of nano-size particles of barium hexaferrite via co-precipitation method,” J. Alloys Compd., 426, 415–419 (2006).
38.	汪建民主編,材料分析,中國材料科學學會,(1998)。
39.	邱承美編著,陶金華校訂,儀器分析原理(修訂三版),科文出版社,(1987)。
40.	楊永盛、楊宗慶,電子顯微鏡原理與應用,文京圖書有限公司,(1975)。
41.	陳季南,穿透式電子顯微鏡在半導體製程之應用,電子月刊第三卷第三期,(1997)。
42.	D. Dollimore, “Thermal Analysis,” Anal. Chem., 60, 274R-279R (1988).
43.	楊鴻昌,科儀新知,行政院國家科學委員會精密儀器發展中心出版第十二卷第六期,(1991)。
44.	G. Socrates, “Infrared and Raman Characteristic Group Frequencies Table and Charts,” 3rd ed., Wiley, Chichester, UK, (2001).
45.	J. T. Kummer, “Thermal Decomposition of Ammonium Nitrate,” J. Am. Chem. Soc., 69 (10), 2559–2559 (1947).
46.	L. K. Battisha, H. H. Afify, M. Ibrahim, “Synthesis of Fe2O3 concentrations and sintering temperature on FTIR and magnetic susceptibility measured from 4 to 300 K of monmlith silica gel prepared by sol-gel technique,” J. Magn. Magn. Mater., 306(2), 211-217 (2006).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信