淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1308200918061300
中文論文名稱 聯吡啶硫醇修飾金奈米粒子的研究:金屬離子感測及自我組裝
英文論文名稱 Bipyridinyl-alkyl-thiol capped gold nanoparticles : metal ion sensing and self-assemble properties
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 97
學期 2
出版年 98
研究生中文姓名 高志瑋
研究生英文姓名 Chi-Wei Kao
學號 696160588
學位類別 碩士
語文別 中文
口試日期 2009-07-16
論文頁數 67頁
口試委員 指導教授-王文竹
委員-林志彪
委員-賴重光
中文關鍵字 金奈米粒子  離子感測  自我組裝 
英文關鍵字 Gold nanoparticles  metal sensing  self-assemble 
學科別分類 學科別自然科學化學
中文摘要 本研究以含聯吡啶的單硫醇和雙硫醇分子,修飾金奈米粒子,進行離子感測及自我組裝的研究。金奈米粒子的製備,是將含檸檬酸鈉 ( sodium citrate )的金氯酸 ( HAuCl4 )水溶液,以硼氫化鈉( NaBH4 )還原,得到粒徑為3 nm的金奈米粒子。另以1,10-二氮雜菲( 1,10-phenanthroline )為起始物,成功合成出含聯吡啶的單硫醇( HSC12MEBiox )和雙硫醇( HSC12EBiox )。接著將合成的單硫醇和雙硫醇分別與1-己硫醇( 1-hexanethiol, C6SH )及1-癸硫醇( 1-decanethiol, C10SH ),以不同的莫耳比例混合,修飾在3 nm的金奈米粒子上。我們將各種金屬離子( Ba2+、Mn2+、Co2+、Ni2+、Cu2+、Ag+、Zn2+、Cd2+、Hg2+、Pb2+ ) ,分別加入此一具有特殊官能基的金奈米粒子水溶液,偵測其變化,根據UV-vis吸收光譜及穿透電子顯微鏡( TEM )的結果,發現此系統對Hg2+離子有專一選擇性。並且發現,在加入汞離子後,金奈米粒子呈現球狀聚集,且HSC12MEBiox-AuNPs的球狀聚集會隨著汞離子濃度增加而增大,或 HSC12EBiox-AuNPs的球狀聚集會串聯起來呈線形排列。
英文摘要 Gold nanoparticles solution was prepared by sodium borohydride method. Particle size of 3 nm was characterized by electronic absorption spectra and transmission electron microscopy. A di-thiol compound, bis(12-mercaptododecyl)2,2’-bipyridie-3,3’-dicarboxylate(HSC12EBiox), and a mono-thiol compound, (Methyl)[12-mercaptododecyl]2,2’-bipyridine-3,3’-dicarboxylate (HSC12MEBiox), was synthesized. Functionalized AuNPs containing these agent with/without co-capping agents was prepared and used for metal ion sensing. The co-capping agent is decanethiol or hexanethiol. The AuNPs(3 nm) employed as chromophores were capped with agent through Au–S bonds. If their aggregation were to be driven by the recognition and binding of heavy-metal ions, the color change would allow visual sensing of the ions.
Treating of these solutions with Ba2+、Mn2+、Co2+、Ni2+、Cu2+、Ag+、Zn2+、Cd2+、Pb2+ and Hg2+ ion, we found that 3(1-decanethiol)/HSC12EBiox-AuNPs and 1-hexanethiol/ HSC12MEBiox-AuNPs system could successfully detect mercury ion and have high selectivity. The TEM experimental results revealed that the 3DT/HSC12EBiox-AuNPs self-assembly aggregate into soluble 1-D chains in addition of Hg2+. The HT/HSC12MEBiox-AuNPs self-assembly aggregate into soluble larger spherical particles of 100 nm.
We unveiled a new homogeneous assay-using bipyridinyl-alkyl-thiol modified AuNPs which has highly selective and sensitive detection of Hg2+ was synthesized.
In this study, we took advantage of the aggregation-induced color changes of HSC12EBiox and HSC12MEBiox-functionalized AuNPs in aqueous solutions to develop a highly selective optical sensor for Hg2+.
論文目次 目錄

第 一 章 緒論 1
1-1 金奈米粒子的製備方法 1
1-1-1化學還原法 1
1-2 奈米粒子光學性質 3
1-3 多種奈米粒子形狀 4
1-4 金奈米粒子的表面修飾 5
1-5 金奈米粒子的自我組裝 6
1-6 金奈米粒子的離子偵測 7
1-7 金奈米粒子的汞離子選擇性偵測及自我組裝 8
1-8 實驗設計 11
第 二 章 實驗部分 12
2-1 試劑 12
2-2 物理鑑定儀器 12
2-3 合成步驟 14
2-4 HSC12MEBiox理論計算 21
2-5 金奈米粒子的製備及計算 21
2-5-1 Gold nanoparticles functionalized with sodium citrate 21
2-5-2 Analysis of AuNPs particle size and size distribution 21
2-5-3 Calculation of the concentration of AuNPs 22
2-5-4 Calculation of surface Au atom number 22
2-6 HSC12EBiox-AuNPs的製備 23

第 三 章 結果與討論 25
3-1 HSC12EBiox之合成與鑑定 25
3-2 HSC12MEBiox之合成與鑑定 26
3-3 金奈米粒子之合成與鑑定 29
3-4 硫醇修飾金奈米粒子 31
3-4-1 HSC12EBiox修飾金奈米粒子 32
3-4-2 AuNPs溶液的HSC12Ebiox與HSC10滴定 32
3-4-3 3DT/HSC12EBiox-AuNPs標準液之配製與鑑定 33
3-5 3DT/HSC12EBiox-AuNPs之金屬離子感測 35
3-5-1推測反應機構 39
3-6 HSC12MEBiox-AuNPs修飾金奈米粒子的製備 40
3-7 HSC12MEBiox-AuNPs標準液的鑑定 41
3-8 HSC12MEBiox-AuNPs之感測應用 43
3-9 金屬離子感測實驗的結果 53
3-9-1 HT/HSC12MEBiox-AuNPs對Hg2+的感測 55
3-10 HSC12MEBiox-AuNPs離子感測的討論 59
3-10-1推測反應機構 63
第 四 章 結論 65
第 五 章 參考文獻 66





圖目錄

Figure 1-1. Synthetic method for preparing Au particles………………………….......................2
Figure 1-2. UV-Vis absorption spectra of gold seeds and nanoparticles in solutions A, B, C, and D. Numbers in the brackets for each sample are the band maximum and the value of absorbance.
…………………………………………………………………………………………………….3
Figure 1-3. Left: UV-vis absorption spectrum of a gold nanorod sample with an average aspect ratio of 23. The band at 520 nm is referred to as the transverse plasmon resonance, while the one centered at 920 nm is called the longitudinal plasmon absorption. Right: TEM image of the same solution……………………………………………………………………………………………4
Figure 1-4. Left: High-resolution TEM image of a hexagonalshaped gold nanoparticle. Right: TEM images of branched gold nanocrystals……………………………………………………...5
Figure 1-5. Surface atom ratio of different nanoparticle size…………………………………….6
Figure 1-6. Illustration of the Two-Step Modification…………………………………………...6
Figure 1-7. Pictorial representation of the aggregation/deaggregation processes occurring to the gold nanoparticles upon addition of the thiol blend (a) hydrazine (b) and thiol 2 again (c)……...7
Figure 1-8. Schematic representation of the aggregation had been driven by heavy-metal ion recognition and binding………………………..………………………………………………….7
Figure 1-9. TEM micrographs of 13 nm PAA-DDT-AuNPs before and after addition of metallic cations 38 μM……………………………………………………………………………………..8
Figure 1-10. Left: Schematic representation of the aggregation had been driven by Hg2+ recognition. Right: TEM image of peptide-AuNPs after addition of 20 ppm Hg2+ ion…………..9
Figure 1-11. Absorption ratio (A620nm/520 nm) of MPA/AMP-capped AuNPs in the presence of different concentrations of metal ions( inset shows TEM images of MPA/AMP-capped AuNPs in the presence of 10.0 μM Hg2+ )……………………………………………………………….10

Figure 3-1. 1H-NMR spectrum of HSC12MEBiox in CDCl3……………………………………27
Figure 3-2. ESI-MS spectrum of HSC12MEBiox in MeOH…………………………………….28
Figure 3-3. The calculated isotope pattern (red) and the experimental isotope for HSC12MEBiox determined by positive ion mode ESI-MS in MeOH……………………………………………29
Figure 3-4. Absorption spectrum of 3 nm AuNPs in H2O………………………………………30
Figure 3-5. TEM image of 3 nm AuNPs and corresponding size distribution histogram………31
Figure 3-6. Absorption spectrum changes in DDW of 3 nm AuNPs ([AuNPs] =0.11 nM) and upon addition of 3DT/HSC12EBiox ([3DT/SHC12EBiox] = 5 mM in MeOH/CH2Cl2)…...…….33
Figure 3-7. Comparing with HSC12EBiox、citrate-AuNPs and 3DT/HSC12EBiox-AuNPs……34
Figure 3-8. TEM image of 3DT/HSC12EBiox-AuNPs………………………………………….35
Figure 3-9. Absorption spectrum of 3DT/HSC12EBiox-AuNPs in H2O upon addition of Hg2+.
…………………………………………………………………………………………………...36
Figure 3-10. Plot of (a)ΔA650 (b)ΔA700 (c)ΔA800 of 3DT/HSC12EBiox-AuNPs as a function of the [ Hg2+ ] 68 μM………………………………………………………………………………..37
Figure 3-11. TEM images of 3 nm 3DT/HSC12EBiox-AuNPs under various conditions
(a) before addition of Hg2+;after addition of Hg2+ (b) 1 (c) 7 (d) 22.6 (e) 45.6 (f) 45.6 μM……38 Figure 3-12. Proposed scheme for the 3DT/HSC12EBiox-AuNPs after addition of Hg2+………39
Figure 3-13. Absorption spectrum of HSC12MEBiox、citrate-AuNPs with
(a) HSC12MEBiox- AuNPs (b) DT/HSC12MEBiox-AuNPs. (c) 3DT/HSC12MEBiox-AuNPs
(d) HT/HSC12MEBiox-AuNPs…………………………………………………………………..41
Figure 3-14. TEM image of (a) HSC12MEBiox-AuNPs (b) DT/HSC12MEBiox-AuNPs
(c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs………………………………..42
Figure 3-15. Absorbance spectrum of Mn2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...44
Figure 3-16. Absorbance spectrum of Co2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...45

Figure 3-17. Absorbance spectrum of Ni2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...46
Figure 3-18. Absorbance spectrum of Cu2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...47
Figure 3-19. Absorbance spectrum of Zn2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs
…………………………………………………………………………………………………...48
Figure 3-20. Absorbance spectrum of Ag+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...49
Figure 3-21. Absorbance spectrum of Cd2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...50
Figure 3-22. Absorbance spectrum of Pb2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...51
Figure 3-23. Absorbance spectrum of Ba2+ addition into (a) HSC12MEBiox-AuNPs (b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...52
Figure 3-24. Absorbance spectrum of Hg2+ addition into (a) HSC12MEBiox-AuNPs
(b) DT/HSC12MEBiox-AuNPs (c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs.
…………………………………………………………………………………………………...53
Figure 3-25. Plot of A800 of (a) HSC12MEBiox-AuNPs (b) DT/HSC12MEBiox-AuNPs
(c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs as a function of the metal concentration [ μM ] where the metal ions are Ba2+、Mn2+、Co2+、Ni2+、Cu2+、Ag+、Zn2+、Cd2+、Hg2+、Pb2+.……………………………………………………………………………….54
Figure 3-26. Absorbance spectra of Hg2+ addition into HT/HSC12MEBiox-AuNPs……………55
Figure 3-27. Plot of (a) ΔA518 (b) ΔA600 (c) ΔA700 (d) ΔA800 of HT/HSC12MEBiox-AuNPs as a function of the [ Hg2+ ] ( μM )…………………………………………………………………...56
Figure 3-28. TEM image of 3 nm HT/HSC12MEBiox-AuNPs upon addition of Hg2+ (a) 0 (b) 1 (c) 1.45 (d) 4.6 (e) 10.33 (f) 24.66 μM…………………………………………………………..57
Figure 3-29. The particle size distribution of HT/HSC12MEBiox-AuNPs addition of Hg2+ (a) 0 (b) 10.33 μM……………………………………………………………………………………..58
Figure 3-30. The zeta potential of HT/HSC12MEBiox-AuNPs addition of Hg2+ (a) 0 (b) 10.33 μM………………………………………………………………………………………………..59
Figure 3-31. The HSC12MEBiox structure by MOPAC PM3 and inset is bipyridine dihedral angle……………………………………………………………………………………………..60
Figure 3-32. Proposing structure for the HSC12MEBiox-ANPs before and after addition of metal ion………………………………………………………………………………………………..61
Figure 3-33. Proposing structure for the DT/HSC12MEBiox-AuNPs before and after addition of metal ion…………………………………………………………………………………………62
Figure 3-34. Proposing structure for the 3DT/HSC12MEBiox-AuNPs before and after addition of metal ion…………………………………………………………………………………………63
Figure 3-35. Proposing structure for the HT/HSC12MEBiox-AuNPs before and after addition of metal ion…………………………………………………………………………………………63
Figure 3-36. Scheme of for the (a) HSC12MEBiox-ANPs (b) DT/HSC12MEBiox-AuNPs
(c) 3DT/HSC12MEBiox-AuNPs (d) HT/HSC12MEBiox-AuNPs before and after addition of metal ion…………………………………………………………………………………………64
參考文獻 (1) Yatsuya, S.; Kasukabe, S.; Uyeda, R. Jpn. J. Appl. Phys. 1973, 12, 1675.
(2) Takeuchi, Y.; Ida, T.; Kimura, K. J. Phys. Chem. 1997, 101, 1322.
(3) Fojtik, A.; Bunsenges, B.; Henglein, A. J. Phys. Chem. 1993, 97, 252.
(4) 劉吉平, 郝向陽,’’奈米科學與技術’’,世茂出版社 (2003).
(5) Turkevitch, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55-75.
(6) Mirkin, C. A. Inorg. Chem. 2000, 39, 2258.
(7) Brown, R.; Walter, G.; Natan, J. Chem. Mater. 2000, 12, 306-313.
(8) Cheng, J. Y.; Tseng, W. L. Langmuir. 2008, 24, 12717-12722.
(9) 張仕欣與王崇人, 化學 56, 209 ( 1998 ).
(10) Kuo, C. H.; Chiang, T. F.; Chen, L. J.; Huang, M. H. Langmuir. 2004, 20,
7820-7824
(11) Wu, H. Y.; Chu, H. C.; Kuo, T. J.; Kuo, C. L.; Huang, M. H. Chem. Mater.
2005, 17, 6447.
(12) Kuo, C. H.; Chiang, T. F.; Chen, L. J.; Huang, M. H. Langmuir. 2004, 20, 7820.
(13) Kuo, C. H.; Huang, M. H. Langmuir. 2005, 21, 2012.
(14) 王崇人,’’神奇的奈米科學’’, 科學發展, 354期, 2002年6月
(15) Lin, S. Y.; Tsai, Y. T.; Chen, C. C.; Lin, C. M.; Chen, C. H. J. Phys. Chem. B 2004, 108, 2134-2139.
(16) Khosraviani, M.; Pavlov, A. R.; Flowers, G. C.; Blake, D. A.
Environ. Sci. Technol. 1998, 32, 137-142.
(17) Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C. J. J. Am.Chem. Soc. 2002, 124, 4958.
(18) Storhoff, J. J.; Mirkin, C. A. Chem. Rev. 1999, 99, 1849.
(19) Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2002, 124, 5019.
(20) Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2000, 122, 734.
(21) Hussain, I.; Wang, Z.; Cooper, I.; Brust, M. Langmuir. 2006, 22, 2938-2941.
(22) Wang, G. ; Murray, R. W. Nano. Lett. 2004, 4, 95-101.
(23) Fullam, S.; Rensmo, H.; Rao, S. N.; Fitzmaurice, D. Chem. Mater. 2002, 14, 3643-3650.
(24) Hall, S. R.; Shenton, W.; Engelhardt, H.; Mann, S. Chem. Phys. Chem. 2001, 2, 184-186.
(25) Li, L. S.; Stupp, S. I. Angew. Chem., Int. Ed. 2005, 44, 1833-1836.
(26) Guarise, C.; Pasquato, L.; Scrimin, P. Langmuir. 2005, 21,5537-5541.
(27) Si, S.; Mandal, K. Langmuir. 2007, 23, 190-195.
(28) Kim, Y.; Johnson, R. C.; Hupp, J. T. Nano Letter 2001, 1, 165-167.
(29) Zhu, L.; Xue, D.; Wang, Z. Langmuir. 2008, 24, 11385-11389.
(30) Si, S.; Kotal, A.; Mandal, K. J. Phys. Chem. C 2007, 111, 1248-1255.
(31) Cheng, J. Y.; Tseng, W. L. Langmuir. 2008, 24, 12717-12722.
(32) Wallace, O. B.; Springer, D. M. Tetrahedron Lett. 1998, 39, 2693-2694.
(33) Niwayama, S. J. Org. Chem. 2000, 65, 5834-5836.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-08-25公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信