§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1308200623073600
DOI 10.6846/TKU.2006.00344
論文名稱(中文) 以掺合-溶洗法製備聚偏二氟乙烯及其共聚物之多孔型薄膜與薄膜之物性分析
論文名稱(英文) Preparation and characterization of porous PVDF and PVDF copolymer membranes by using blending-leaching method
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 姚良欽
研究生(英文) Liang-Chin Yao
學號 693361312
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-07-13
論文頁數 81頁
口試委員 指導教授 - 鄭廖平
委員 - 林達鎔
委員 - 楊台鴻
關鍵字(中) 聚偏二氟乙烯
共聚物
多孔型薄膜
高分子摻合
關鍵字(英) poly(vinylidene fluoride)
porous membrane
copolymers
polymer blend
第三語言關鍵字
學科別分類
中文摘要
本研究利用高分子摻合技術配合溶劑移除法,製備PVDF或其共聚物之多孔型薄膜,並分析薄膜物性與孔隙結構以評估其應用性。首先將三種氟系高分子:(1)聚偏二氟乙烯(Kynar 740, Elf Ato Chem),(2)偏二氟乙烯-六氟丙烯共聚物(Kynar 2750),(3)偏二氟乙烯-四氟乙烯-六氟丙烯三聚物(Kynar 9301)以溶液摻合法,兩兩成對予以混摻,製成複合膜,探討各組成比例對複合膜之相容性,熱性質、結晶性等物性之影響。然後利用適當溶劑與溫度,溶洗出其中之ㄧ成分,以製備多孔型薄膜。藉由混摻比例的不同,預期可製作出不同孔隙結構之對稱或非對稱型薄膜,並以SEM、XRD、Contact Angle等來作膜材物性與結構分析。同時利用水通量與截留分子量之測試來判定薄膜之適用分離程序。
英文摘要
In this research, polymer blending technique will be incorporated with the solvent leaching method to prepare porous membranes of PVDF or its copolymer. The physical properties of the formed membranes will be characterized and their porous structures be analyzed, such as to find out their suited areas of applications. Firstly, three polymer pairs being chosen from the three fluoro-polymers: (1) poly(vinylidene fluoride) (Kymnar 740, Elf Ato Chem), (2) copolymer of vinylidene fluoride and hexafluoro propylene (Kynar 2750, Elf Ato Chem), (3) terpolymer of vinylidene fluoride, tetrafluoro ethylene, and hexafluoro propylene (Kynar 9301, Elf Ato Chem), will be solution blended to prepare composite membranes. The effect of composition of the blends on the compatibility, level of phase separation, thermo behavior, crystallinity, and mechanical strength of the membranes will be investigated. Thereafter, a suitable solvent will be adopted to extract one polymer component out of the composite at an appropriate temperature to yield a porous membrane. By varying the compositions of the blends, symmetric or asymmetric membranes of a wide spectrum of porous morphology are expected to be produced. SEM, DSC, XRD, DMA, and Contact Angle analyses will be carried out on the formed membranes to obtain the physical and morphological data of the membranes. In addition, water fluxes and molecular weight cut off (MWCO) of the membranes will be determined to judge their applicability in various separation processes.
第三語言摘要
論文目次
目錄
論文提要內容	I
Abstract	II
目錄	III
表目錄	VI
圖目錄	VIII
第一章 序論	1
1-1 前 言	1
1-2 研究動機	3
1-3 研究目的	5
第二章 基礎理論	6
2-1 高分子摻合	6
2-1-1 定義	6
2-1-2 摻合體的製備方法	6
2-1-3 高分子摻合之相容性	7
2-2 高分子薄膜	10
2-2-1 薄膜之定義	10
2-2-2 薄膜的製備方法	11
2-2-3 摻合-溶出法製備多孔型薄膜	13
第三章 實驗方法	16
3-1 藥品	16
3-2 實驗儀器	18
3-3實驗方法與步驟	21
3-3-1 薄膜的製備	21
3-3-2 孔型薄膜的製備	22
3-3-3 移除效率 	22
3-3-4 薄膜結構與物性分析	23
第四章 結果與討論	26
4-1 掺合膜之相容性與物性分析	26
4-1-1 掺合膜相容性分析	26
4-1-1-1 動態機械分析(DMA)	27
4-1-1-2 微差熱卡計(DSC)	33
4-1-2 掺合膜結晶行為	34
4-1-2-1 廣角X光繞射儀(WAXD)	34
4-1-2-2 微差熱卡計(DSC)	40
4-2 多孔型薄膜之製備與物性分析	45
4-2-1 溶洗條件與移除效率	45
4-2-2 薄膜SEM結構分析	50
4-2-3 薄膜孔隙度之量測	61
4-2-4 接觸角測試	63
4-2-5 拉伸測試	64
4-2-6 水通量檢測	66
4-2-7 截留率測試	68
第五章 結論	70
參考文獻	71
附錄 A	76

表目錄
表1-1 不同以壓力為驅動力的薄膜分離程序的通量與壓力範圍	2
表1-2 薄膜分離程序與其對應的驅動力	2
表3.1 不同掺合系統之製膜溫度	21
表4-1 Kynar 740 / Kynar 9301摻合體的玻璃轉移溫度	30
表4-2 Kynar 2750 / Kynar 9301摻合體的玻璃轉移溫度	31
表4-3 PVDF結晶型態	35
表4-4 PVDF其不同結晶型態於FTIR的吸收峰	37
表4-5 各比例Kynar 740 / Kynar 9301掺合膜之熔點與結晶度	42
表4-6 各比例Kynar 2750 / Kynar 9301掺合膜之熔點與結晶度	43
表4-7 以丙酮在35oC下,對於740 / 9301掺合膜的移除效率	46
表4-8 以90%丙酮水溶液在25oC下,對2750 / 9301掺合膜的移除效率	47
表4-9 以88%丙酮水溶液在25oC下,對2750 / 9301掺合膜的移除效率	48
表4-10 以85%丙酮水溶液在25oC,對2750 / 9301掺合膜的移除效率	48
表4-11 以90%丙酮水溶液在5oC下,對2750 / 9301掺合膜的移除效率	49
表4-12 各比例之多孔型薄膜的孔隙度	61
表4-13 各比例多孔型薄膜的抗張強度與其伸長量	64

圖目錄
圖2-1 DSC測量玻璃轉移溫度對相容性的關係示意圖	9
圖2-2 不同類型薄膜橫截面示意圖2	11
圖4-1 偏二氟乙烯(Kynar 740)的動態機械分析	28
圖4-2聚偏二氟乙烯共聚物(Kynar 2750)的動態機械分析	28
圖4-3 三成份含氟共聚物(Kynar 9301)的動態機械分析	29
圖4-4 Kynar 740 / Kynar 9301系統之tan δ和溫度關係圖	30
圖4-5 Kynar 2750 / Kynar 9301系統之tan δ和溫度關係圖	32
圖4-6 Kynar 2750 / Kynar 9301系統之DSC圖	33
圖4-7 各比例Kynar 740 / Kynar 9301掺合膜之XRD圖	35
圖4-8 各比例Kynar 2750 / Kynar 9301掺合膜之XRD圖	36
圖4-9 Kynar 740(PVDF)之紅外線光譜圖	38
圖4-10 Kynar 2750之紅外線光譜圖	38
圖4-11 Kynar 9301之紅外線光譜圖	39
圖4-12 各比例Kynar 740 / Kynar 9301掺合膜之DSC圖(Ⅰ)	41
圖4-13 各比例Kynar 740 / Kynar 9301掺合膜之DSC圖(Ⅱ)	41
圖4-14 各比例Kynar 2750 / Kynar 9301掺合膜之DSC圖(Ⅰ)	43
圖4-15 各比例Kynar 2750 / Kynar 9301掺合膜之DSC圖(Ⅱ)	44
圖4-16 Kynar 740:9301比例為80:20掺合膜溶洗後之SEM圖	51
圖4-17 Kynar 740:9301比例為70:30掺合膜溶洗後之SEM圖	52
圖4-18 Kynar 740:9301比例為60:40掺合膜溶洗後之SEM圖	53
圖4-19 Kynar 740:9301比例為50:50掺合膜溶洗後之SEM圖	54
圖4-20 Kynar 2750:9301比例為80:20掺合膜溶洗後之SEM圖	57
圖4-21 Kynar 2750:9301比例為70:30掺合膜溶洗後之SEM圖	58
圖4-22 Kynar 2750:9301比例為60:40掺合膜溶洗後之SEM圖	59
圖4-23 Kynar 2750:9301比例為50:50掺合膜溶洗後之SEM圖	60
圖4-24各比例多孔型薄膜之厚度	62
圖4-25各比例多孔型薄膜之孔隙度	62
圖4-26各比例多孔型薄膜的接觸角	63
圖4-27各比例多孔型薄膜的抗張強度	65
圖4-28各比例多孔型薄膜的伸長量	65
圖4-29各比例多孔型薄膜的水通量	67
圖4-30各比例多孔型薄膜的的透過性質	67
圖4-31各混摻比例薄膜之不同分子量對R%之關係圖	69
圖A-1 分子量200萬之葡聚糖 (a)折射率變化圖;(b)檢量線	77
圖A-2 分子量40至50萬之葡聚糖 (a)折射率變化圖;(b)檢量線	78
圖A-3 分子量64000~76000之葡聚糖 (a)折射率變化圖;(b)檢量線	79
圖A-4 分子量35000~45000之葡聚糖 (a)折射率變化圖;(b)檢量線	80
圖A-5 分子量8500~11500之葡聚糖 (a)折射率變化圖;(b)檢量線	81
參考文獻
參考文獻
1.	鄭領英、王學松,膜的高科技應用,五南圖書出版有限公司,(2003)
2.	M. Mulder, “Basic principles of membrane technology”, Kluwer Academic, Dordrecht/Boston/London (1991)
3.	A. J. Lovinger, “Development in crystalline polymers, vol. 1”, Applied Science, London (1982)
4.	郭文正,曾添文,薄膜分離,高力圖書公司,台北,(1988)
5.	何曼君、陳維孝,高分子物理,復旦大學出版社,(2000).
6.	邱方遒、丁銘煌,化工技術,第三期第11卷,(2004)
7.	D. R. Paul, C. B. Bucknall, “Polymer Blends”, Academic Press, New York (2000)
8.	N. G.  Gaylord, “Compatibilizing agents:structure and function in polymers”, J. Macromol. Sci. Chem., A26(8), 1211 (1989).
9.	J. Brandrup, E. H. Immergut, “Polymer Handbook vol.1”, Wiley, New York, 1996.
10.	 Peixiang Xing, Xin Ai, Lisong Dong, Zhiliu Feng , “Miscibility and Crystallization of Poly(β-hydroxybutyrate) / Poly(vinyl acetate-co-vinyl alcohol) Blends”, Macromolecules, 31 , 6898 (1998)
11.	 J. N. Hay , L. Sharma , “Crystallisation of Poly (3-hydroxybutyrate) / Polyvinyl acetate blends”, Polymer, 41, 5749. (2000)
12.	 T. Nishi, T. T. Wang, “Melting point depression and kinetic effects
of cooling on crystallization in Poly(viny1idene fluoride)-Poly (methyl methacrylate) mixtures” , Macromolecules, 8, 909 (1975).
13.	 J. Mijovic, J. W. Sy, T. K. Kwei, “Reorientational dynamics of dipoles in Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blends by dielectric Spectroscopy”, Macromolecules, 30, 3042 (1997).
14.	 L. Zeman, T. Fraser, “Formation of air-cast cellulose acetate membranes Part I. study of macrovoid formation” , J. Membr. Sci., 84, 93 (1993).
15.	 L. Zeman, T. Fraser, “Formation of air-cast cellulose acetate membranes P art II. Kinetics of demixing and microvoid growth”, J. Membr. Sci., 87, 267 (1994).
16.	 L. R. Douglas, K. S. Sung, K. E. Kevin, “Microporous membrane formation via thermallyinduced phase separation. II. Liquid-liquid phase se paration” , J. Membr. Sci., 64, 1 (1991).
17.	 F. J. Tsai, J. M. Torkelson, “Roles of Phase Separation Mechanism and Coarsening in the Formation of Poly(methy1 methacrylate) Asymmetric Membranes”, Macromolecules, 23, 775 (1990).
18.	 A. Bottino, G. Camera-Roda, G. Capannelli, S. Munari, “The formation of microporous polyvinylidene difluoride m embranes by phase separation”, J. Membr. Sci., 57, 1 (1991).
19.	 T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, “Characterization of PVDF membranes by vibrational spectroscopy”, J. Membr. Sci., 210, 315 (2002).
20.	A. Bottino, G. Capannelli, O. Monticelli, P. Piaggio, “Poly(vinylidene fluoride) with improved functionalization for membrane production”, J. Membr. Sci., 166, 23 (2000).
21.	 A. Bottino, G. Capannelli, V. D’Asti, P. Piaggio,“Preparation and properties of novel organic–inorganic porous membranes”,Separation and Purification Technology, 22, 269 (2001).
22.	 A. Bottino, G. Capannelli, S. Munari, “Effect of coagulation medium on properties of sulfonated polyvinylidene fluoride membranes”, J. Appl. Polym. Sci., 30, 3009 (1985).
23.	 L.P. Cheng, D.J. Lin, C.H. Shih, A.H. Dwan, C. C. Gryte, “PVDF Membrane Formation by Diffusion-Induced Phase Separation -Morphology Prediction Based on Phase Behavior and Mass Transfer Modeling”, J. Polym. Sci., Part B:Polym. Phys., 37, 2079 (1999).
24.	 J. Lin, C.L. Chang, T.C. Chen, L.P. Cheng,“Fine Structure of Poly (vinylidene fluoride) Membranes Prepared by Phase Inversion from a Water/N-Methyl-2-pyrollidone/Poly(vinylidene fluoride) System” , J. Polym. Sci., Part B:Polym. Phys., 42, 830 (2004).
25.	 A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao and R. Langer, “Preparation and characterization of poly(L-lactic acid) foams”, Polymer, 35, 1068 (1994).
26.	 W. J. Lin, C. H. Lu, “Characterization and permeation of microporous poly(ε-caprolactone) films” , J. Membr. Sci., 198, 109 (2002).
27.	 R. Gregorio JR., M. R. Chaud, W. N. D. Santos, J. B. Baldo, “Miscibility and Morphology of Poly(vinylidene fluoride) / Poly[(vinylidene fluoride)-ran-trifluorethylene] Blends”, J. Appl. Polym. Sci., 85, 1362 (2002).
28.	 Z. H. Liu, P. Maréchal, R. Jérôme, “Melting and crystallization of poly (vinylidene fluoride) blended with polyamide 6”, Polymer, 38, 5149 (1997).
29.	 Z. H. Liu; P. Maréchal, R. Jérôme, “Blends of poly(vinylidene fluoride) with polyamide 6: interfacial adhesion, morphology and mechanical properties”, Polymer, 39, 1779 (1998).
30.	 D. Jouannet, T. N. Pham, S. Pimbert and G. Levesque , “Calorimetric study of fluorinated methacrylic and vinyl polymer blends: 1. Binary systems: determination of miscibility domains and correlation of glass transition temperatures with blends composition— application to plastic optical fibre cladding”, Polymer, 38, 5137(1997).
31.	 黃郁馨,私立淡江大學化學工程與材料工程學系碩士論文(2004).
32.	 N. Alves, C.X. Cardoso, A.E. Job, J. A. Giacometti, “Effects of thermal treatment on phase transitions and on the mechanical in poly(vinylidene fluoride) ”, IEEE press,263 (2002).
33.	 Nafaa Mekhilef, “Viscoelastic and Pressure–Volume–Temperature Properties of Poly(vinylidene fluoride) and Poly(vinylidene fluoride)– Hexafluoropropylene Copolymers”, J. Appl. Polym. Sci., 80, 230 (2001)
34.	 T. G. Fox, “Influence of diluent and of copolymer composition on the glass temperature of a polymer system, Bull. Am. Phys. Soc. ”, 1, 123(1956)
35.	 S. Weinhold, M. H. Litt, and J. B. Lando, “The Crystal Structure of the γPhase of Poly(viny1idene fluoride) ”, Macromolecules, 13, 1178 (1980)
36.	 G. T. Davis, J. E. Mckinney, M. G. Broadhurst, S. C. Roth, “Electric-field-induced phase changes in Poly(vinylidene fluoride)”, J. Appl. Phys., 49, 4998 (1978)
37.	 D. Naegele, D. Y. Yoon, M. G. Broadhurst, S. C. Roth, “Formation of a New Crystal Form (αp) of Poly(vinylidene fluoride) under Electric Field”, Macromolecular, 11, 1297 (1978)
38.	 S.L. Hsu, F. J. Lu, “Study of the crystallization behavior of poly(vinylidene fluoride) from melt under the effect of an electric field”, Macromolecular, 19, 326 (1986)
39.	 E. Benedetti, S. Catanorchi, A. D’Alessio, P. Vergamini, F. Ciardelli, M. Pracella, “FTIR Microspectroscopy and DSC Analysis of Blends of Poly(vinylidene fluoride) with Isotactic and Syndiotactic Poly(methyl methacrylate) ”, Polym. Int. 45, 373(1998)
40.	 A. Eshuis, E. Roerdink and G. Challa, “Multiple melting in blends of poly(vinylidene fluoride) with isotactic poly(ethyl methacrylate) ”, Polymer, 23, 735(1982)
41.	 G. Teyssedre, A. Bernes, C. Lacabanne, “Influence of the crystalline phase on the molecular mobility of PVDF”, J. Polym. Sci.: Part B: Polym. Phys., 31, 2027 (1993)
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信