§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1307201810162200
DOI 10.6846/TKU.2018.00346
論文名稱(中文) 高靈敏度微晶片電泳電化學偵測系統及食品新鮮度分析方法之開發
論文名稱(英文) Development of ultra-sensitive electrochemical detection system in microchip electrophoresis and the method in food freshness determination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系博士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 林雅婷
研究生(英文) Ya-Ting Lin
學號 801160010
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2018-06-14
論文頁數 244頁
口試委員 指導教授 - 林孟山
委員 - 蔡東湖
委員 - 傅明仁
委員 - 曾美郡
委員 - 陳志欣
委員 - 鄧金培
關鍵字(中) 微晶片電泳
電化學偵測系統
氫氧自由基
新鮮度
組織胺
多胺
關鍵字(英) Microchip
Electrophoresis
Electrochemical detection
Free radical
Freshness
Histamine
Polyamine
第三語言關鍵字
學科別分類
中文摘要
微晶片分析技術是檢測雲端服務的應用課題之一,優點在於極低樣品及試劑需求量,因此結合分離、偵測兩項功能的微晶片設計變成個人可攜式移動平台,樣品分析速度也較以往提升數十倍。由於微晶片分析的感測區域較以往分析技術縮小數十至數百倍,因此需要更高靈敏度的分析工具,本論文主旨在於開發高靈敏度的微晶片電泳電化學偵測系統,本研究提出低深寬比微流道結構來提高電極反應面積,藉由降低流道深度來換取微流道寬度的方式增加實際電極有效的反應面積,因微流道的實際截面積沒有太多的增加,所以實際電泳所需的電泳流並不會大幅提升。在最佳化後,使用寬度400 μm深度7.5 μm的微流道,多巴胺、鄰苯二酚與尿酸偵測極限(k=3)約在20nM左右,相較於使用寬度 50 μm深度15 μm 的微流道所得到的多巴胺與鄰苯二酚的靈敏度相較起來,其靈敏度提高4.7(高濃度6.6倍)與11.83倍,顯示低深寬比微流道結構確實可增加分析靈敏度。
    而使用低深寬比微流道搭配白金去耦合電極進行實驗時,發現進行電泳其間去耦合電極會產生自由基,此自由基對於低氧化電壓的干擾物可快速進行氧化反應,對高氧化電位的物種則反應性較差,因此可增加低深寬比微流道結構的選擇性,並以乙醯氨酚作為實際應用。使用分離流道長度2 cm搭配白金去耦合電極長度2.5 mm時,可將10 μM的多巴胺與4-胺基苯酚的電流訊號從38.21 nA降至0.242 nA,解析度由1.35提昇至2.11,乙醯胺酚的線性為0.5 μM-300 μM,且與尿酸達到完全分離的狀態,整體實驗可在50秒內對尿液,血清以及感冒成藥中的乙醯氨酚完成電泳檢驗。
    第二部分是開發檢測新鮮度的指標-組織胺及多胺的偵測方法。近年來食安問題愈來愈受大眾的重視,食材新鮮度未來可預測將是重要檢測指標之一,其中生物胺類分子如組織胺及多胺,由於分子安定性極高,目前較常用來作為新鮮度以及安全度的檢測指標,因此開發生物胺的快速檢測技術具有一定的重要性及商業應用性。
    發展組織胺偵測原理是藉由銅與組織胺之間的配位能力,使存在於銅金屬電極表面的氧化層溶解,在電壓輔助下,藉由銅層再生產生的氧化電流來量測分析物濃度,因此可在無酵素輔助下分析組織胺。經最佳化後,組織胺線性範圍為1-750 μM,最後搭配液相層析儀增加組織胺與其他物質的選擇性,組織胺在液相層析儀的分析線性為10-2500 μM,已符合實際分析所需的濃度範圍,最後以秋刀魚做為實際應用實例,檢測該食材在解凍時新鮮度的變化。
    而在多胺的量測機制上,多正電荷的多胺可以降低在低導電度的緩衝溶液中帶負電荷物質在電極表面進行電子轉移的阻抗,不僅降低負電分子過電壓且增加其電流值,藉由增加的電流值來測定多胺的濃度,最佳化後,腐胺與屍胺的線性範圍可達200 μM,亞精胺與精胺的線性範圍為可達25 μM。利用此方法的優點是不需在電極上修飾任何酵素即可進行偵測,且偵測電位低可大幅度降低常見的易氧化物質的干擾,實驗最後搭配液相層析儀增加多胺在生物胺上的選擇性。
英文摘要
Microchip analysis is one of the interesting topics in the current research due to its potential application in the field of internet of thing (IOT). The goal of this thesis focuses on developing a high sensitivity glass based microfluidic electrophoresis chip coupled with the electrochemical detection module. In order to reduce the cost of the whole detection system, in this research, the whole electrodes and their connecting circuits were fabricated by filling a filling conducted carbon ink into laser ablatedcavities on a glass substrate. The microchannels were also fabricated by casting PDMS prepolymer against a master and generating its replica, however, a screen printed technique (SPT) combing a wet etch process was also adapted to substitute the traditional MEMS process in the fabrication a glass mold. Thus, the width of the microchip can be defined in the process of SPT and the depth of the channel can be controlled based on the duration of the etching time.
	The next purpose of this thesis is increasing the sensitivity of the microchip electrophoretic system. Since the effective area of working electrode is limited by the width of the channel, a low-aspect ratio microchannel is proposed to increase the width of the channel and the effective reaction area of the working electrode. However, the depth of channel is reduced to minimize the electrophoretic current of whole electrophoretic system. After the optimization, a microchannel with 400 μm in width and 7.5 μm in depth was adopted. The detection limit of this system was estimated as 15.5, 13.55 and 26.5 nM (k=3) for dopamine, catechol, and uric acid, respectively. Compared to a traditional channel (50 μm in width, 15 μm in depth), the detection limit of this low-aspect ratio is improved by 6.6 to 11.83 folds, which proves the low-aspect ratio channel can increase the analytical sensitivity of microchip.
    In the second project, the performance of the decoupler electrode on the microchip was investigated. It is found that the maximum electric field of a carbon ink based decoupler electrode is restricted to below 175 V/cm due to the formation of the hydrogen gas in the higher electric field.The strategy of this study is modifying some oxygen sensitive materials in the decoupler electrode to enhance the electron transfer rate of oxygen. After investigation, the thionine, gold, platinum and palladium modified carbon electrode can increase the maximum electric field to 300, 346, 400, and 440 V/cm, respectively.
    Subsequently, a novel method to improve the selectivity of a microchip electrophoresis without alternating any separation condition was proposed. It is found that the modified decoupler electrode can produce free radicals during electrophoresis. This phenomenon makes the decoupler electrode possesses high selectivity to pre-oxidize the easily oxidized substances, but shows less influence to the compounds with high oxidative potential. Therefore, for a complicate sample, this system can eliminate the influence of antioxidants and increase the resolution of any electrochemical based microchip. By using this phenomenon, a novel method for rapid determination of acetaminophen was reported on a microchip with an effective separation length of 2 cm couple with the platinum decouple electrode. In the optimal condition, the signal of interferences such as dopamine and 4-aminophenol can be eliminated over than 99% and the resolution of acetaminophen with these interferences shows a dramatic increment from 1.35 to 2.11. Thus, this system can rapidly determine the acetaminophen within 50 seconds with the linearity from 0.5 to 300 μM. 
		The second part focuses on developing a reliable method to evaluate the freshness level of food. In this study, histamine and polyamine are used as the index to monitor the freshness of fish, and the histamine can be directly monitored on a bared copper electrode due to the strong chelate capability between the cupric (II) ion and histamine. After investigation, the operating potential and buffer were optimized as 200 mV and 100 mM phosphate buffer, pH 10.0, respectively. A suitable dynamic range from 1 to 750 μM for histamine determination with a sensitivity of 15 nA/μM (R= 0.999) was achieved on a typical FIA system. Although the linearity of this scheme after integrating with HPLC shows a significant decrement from 10 to 2500 μM (0.5-125 nmol per injection), it is still an adequate range for freshness quality definition of seafood. Finally, the feasibility of this scheme in real sample application was demonstrated by evaluating the histamine level in a fresh and defrost saury fish.
    In polyamine measurement mechanism, the role of polyamine can reduce the charge transfer resistance of negatively charged molecules such as ferricyanide that due to the multiple positive charges in the lower conductivity buffer solution. It not only reduces the overvoltage of the ferricyanide, but also increase the magnitude of the current. After optimization, the optimized condition of the buffer condition, operating potential and flow rate were optimized as pH 8, 50 mM borate buffer containing 1 mM ferricyanide, 0 mV, and 0.5 mL/min, respectively. The dynamic rage at the FIA system were estimated as 1-200 μM, 1-200 μM, 0.1-25 μM and 0.075-25 μM for putrescine cadaverine, spermidine and spermine, respectively. The advantage of this method for detecting polyamine were enzyme free detecting, and reduced the influence of antioxidants because of the low operating potential. Finally, the FIA system was integrated with HPLC in order to increase the selectivity of the polyamine from other biogenic amines.
第三語言摘要
論文目次
目  錄
目  錄	I
圖目錄	VIII
表目錄	XI
第一章緒論	1
前言	1
1-1電泳簡介	1
1-1-1電泳原理	1
1-1-2 電泳分離模式	3
1-1-3電滲流(Electroosmotic flow, EOF)	4
1-1-4分離效率及解析度	6
1-2微流道製作方法	7
1-2-1微影製作方法	8
1-2-2 乾蝕刻製作方法	10
1-2-3 高分子製作方法	11
1-2-3-1熱壓法	12
1-2-3-2射出成形法	13
1-2-3-3造模法	14
1-2-4 雷射燒除法	15
1-2-4-1 Nd-YAG雷射	15
1-2-4-2 準分子雷射(Excimer laser)	16
1-2-4-3 二氧化碳雷射(CO2 laser)	17
1-3 微晶片電泳的偵測方法	19
1-3-1 電化學偵測模式簡介	21
1-3-2 電化學偵測之工作電極製作	23
1-3-3 去耦合電極的介紹及製作	25
1-4 電化學量測法介紹	29
1-4-1 電化學直接量測法	30
1-4-2 電化學間接量測法	32
1-5 食材新鮮度指標	36
1-5-1 pH值	36
1-5-2 揮發性鹽基態氮 (Volatile basic nitrogen, VBN)	37
1-5-3 K值	39
1-5-4 組織胺	41
1-5-4-1 組織胺介紹	41
1-5-4-2 組織胺光化學偵測法	43
1-5-4-3 組織胺電化學偵測方法	47
1-5-5 多胺	49
1-5-5-2 多胺光化學偵測方法	52
1-5-5-3 多胺電化學偵測方法	53
1-6本實驗研究目的	57
第二章低深寬比微流道發開及其應用	60
2-1微全偵測系統簡介	60
2-1-1 目前微流道常見深寬比例	60
2-1-2目前寛流道製作方法	63
2-2本實驗目的	68
2-3 實驗部分	68
2-3-1 實驗藥品	69
2-3-2 儀器與設備	69
2-3-3流道製作流程	71
2-3-4電泳系統架設	72
2-4 結果與討論	74
2-4-1 流道形貌	74
2-4-2 低深寬比微流道的電泳行為探討	76
2-4-3蝕刻深度對電泳影響	79
2-4-4流道寬度對電滲流與訊號的影響	83
2-4-5去耦合電極的修飾	87
2-4-6分析特性	93
2-5結論	99
第三章 以電場誘導自由基生成效應發展微晶片電泳電化學干擾物消
除機制	100
3-1簡介	100
3-1-1 去除干擾物方法	101
3-1-2 乙醯胺酚介紹	104
3-2本實驗研究目的	107
3-3實驗部分	108
3-3-1藥品	108
3-3-2儀器與設備	109
3-3-3 流道製作流程	110
3-3-4去耦合電極修飾	110
3-3-5螢光實驗	111
3-3-6真實樣品製備	112
3-4結果與討論	113
3-4-1原理探討	119
3-4-2流道深度的影響	123
3-4-3去耦合電極長度的影響	128
3-4-4干擾物消除量測試	132
3-4-5乙醯胺酚分析特性	134
3-4-6真實樣品分析	136
3-5結論	138
第四章以鍍銅電極發展組織胺量測系統及新鮮度的應用	139
4-1簡介	139
4-1-1組織胺介紹	139
4-1-2 組織胺量測方法	140
4-2本實驗目的	144
4-3實驗部分	145
4-3-1藥品	145
4-3-2儀器	145
4-3-3電極製備與保存	146
4-3-4長時間電解與UV-Vis 量測	147
4-3-5 真實樣品製備與HPLC分析	147
4-4結果與討論	148
4-4-1分析機制的建立	148
4-4-2 最佳化條件	155
4-4-3 緩衝溶液條件最佳化	157
4-4-4分析特性	163
4-5 HPLC分析與真實樣品應用	169
4-6結論	173
第五章 發展電荷中和增加電子轉移速率的方法並應用於多胺分子的偵測	174
5-1簡介	174
5-2本實驗目的	178
5-3實驗部分	179
5-3-1藥品	179
5-3-2儀器	179
5-3-3 3,4-DHBA與ferricyanide中添加不同多胺濃度的阻抗分析量測	180
5-3-4 HPLC分離多胺實驗	181
5-4結果與討論	182
5-4-1 量測機制的建立	182
5-4-2 分析條件最佳化	192
5-4-2-1 溶液酸鹼值最佳化	192
5-4-2-2 緩衝溶液濃度最佳化探討	195
5-4-2-3偵測電位最佳化探討	197
5-4-2-4 Ferricyanide濃度最佳化探討	199
5-4-2-5流速最佳化	201
5-4-3分析特性	203
5-4-4 HPLC分析圖譜	207
5-5結論	209
第六章 結論	210
參考資料	214
圖目錄
圖1- 1微影流程圖	11
圖1-2微晶片電泳電化學方法偵測模式	21
圖2- 1 一般深寬比與低深寬比微流道示意圖	68
圖2- 2微流道製作示意圖	71
圖2-3 玻璃全平面電極及低深寬比流道模組	73
圖2- 4 400 μm流道印製在玻璃與濕蝕刻後的光學圖	75
圖2- 5流道寬度400 μm 蝕刻10分鐘真實電泳圖譜	78
圖2- 6螢光顯微鏡下所觀測的樣品遷移情形	78
圖2- 7蝕刻時間對鄰苯二酚電流與滯留時間的影響以及鄰苯二酚與尿酸真實電泳圖譜	82
圖2-8不同流道寬度對鄰苯二酚的滯留時間與訊號的影響及鄰苯二酚與尿酸真實電泳圖譜	86
圖2- 9碳墨電極、白金、鈀對不同濃度過氧化氫的循環伏安圖	92
圖2- 10多巴胺、鄰苯二酚以及尿酸的校正曲線圖	95
圖2-11多巴胺、鄰苯二酚及尿酸真實電泳圖譜	96
圖3- 1乙醯胺酚代謝途徑	106
圖3- 2乙醯胺酚、尿酸、多巴胺、4-胺基苯酚在玻璃碳電極上的循環伏安圖譜	117
圖3- 3不同去耦合電極材質對多巴胺、4-胺基苯酚、乙醯胺酚及尿酸電泳圖譜的影響	118
圖3- 4多巴胺、4-胺基苯酚、乙醯胺酚及尿酸的電泳電流值	121
圖3- 5螢光放射圖譜	122
圖3-6流道深度對分析物訊號的影響	125
圖3- 7物質在薄層電極下進行電化學反應的濃度曲線分佈	126
圖3- 8不同長度去耦合電極對分析物電流的影響	130
圖3- 9分析物在不同長度去耦合電極的真實電泳圖譜	131
圖3- 10乙醯胺酚校正曲線	135
圖3- 11乙醯胺酚應用在真實樣品量測	137
圖4- 1組織胺結構	148
圖4-2添加不同濃度組織胺在銅電極上的循環伏安圖	151
圖4- 3銅電極量測組織胺可能機制1	152
圖4- 4銅電極量測組織胺可能機制2	152
圖4- 5硫酸銅及銅與組織胺紫外光-可見光光譜圖	154
圖4- 6銅線長時間電解紫外光-可見光光譜圖	154
圖4- 7電位最佳化探討	156
圖4- 8緩衝溶液pH值最佳化探討	158
圖4- 9緩衝溶液濃度最佳化探討	160
圖4- 10醋酸根濃度最佳化探討	162
圖4- 11組織胺校正曲線	167
圖4- 12連續量測20次10 μM組織胺的訊號	168
圖4- 13魚樣品於HPLC上分離實際圖譜	171
圖4- 14使用標準添加法量測魚樣品中的組織胺濃度實際圖譜	172
圖5-1多胺分子與衍生物反應示意圖	176
圖5- 2多胺結構圖	186
圖5- 3 鄰苯二酚、多巴胺及3,4-二羥基苯甲酸連續添加精胺循環伏安圖譜	189
圖5- 4正腎上腺素、腎上腺素、3,4-二羥基苯甲酸、3,4-二羥苯丙氨酸以及鐵氰化鉀連續添加精胺循環伏安圖	190
圖5- 5多胺分子對鐵氰化鉀及3,4-二羥基苯甲酸EIS圖譜的影響	191
圖5- 6緩衝溶液pH值最佳化探討	194
圖5- 7緩衝溶液濃度最佳化探討	196
圖5- 8偵測電位最佳化探討	198
圖5- 9 Ferricyanide濃度最佳化探討	200
圖5- 10流速最佳化探討	202
圖5- 11腐胺校正曲線	205
圖5- 12 多胺分離圖譜	208
表目錄
表1- 1不同水產品在新鮮度變化中的pH值	37
表1- 2 BAI值與食品狀態相關性	51
表2- 1常用於電泳分析微流道寬度與深度	62
表2- 2蝕刻10分鐘流道平均寬度及深度	76
表2- 3不同蝕刻時間對鄰苯二酚與尿酸滯留時間與電流訊號	81
表2- 4不同寛度對鄰苯二酚與尿酸滯留時間與電流訊號	85
表2- 5不同修飾物的背景電流值與電場承受度	91
表2- 6多巴胺、鄰苯二酚及尿酸分析特性	97
表2- 7比較實驗室以往偵測多巴胺與鄰苯二酚的分析特性	97
表2- 8與其他文獻比較多巴胺與鄰苯二酚的分析特性	98
表3- 1不同去耦合電極材質對於分析物電流影響	114
表3- 2過去實驗室發展微流道偵測的分析物	124
表3- 3不同時間下 與電極距離的關係	127
表3- 4去耦合電極對於不同濃度分析消除比例	133
表4- 1其他方法量測組織胺	165
表4- 2各干擾物干擾程度	166
表5- 1精胺對不同電荷反應物氧化峰電流的影響	187
表5- 2不同生物胺對於3,4-DHBA/Ferricyanide氧化/還原訊號的影響	187
表5- 3 胺官能基數量對電流訊號的影響	188
表5- 4多胺分析特性	205
表5- 5 干擾物干擾程度	206
參考文獻
1.	Tiselius, A., A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc. 1937, 33 (0), 524-531.
2.	Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of instrumental analysis 5th.
3.	Bien, D. C. S.; Rainey, P. V.; Mitchell, S. J. N.; Gamble, H. S., Characterization of masking materials for deep glass micromachining. J. Micromech. Microeng. 2003, 13 (4), S34.
4.	Fan, Z. H.; Harrison, D. J., Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 1994, 66 (1), 177-184.
5.	Johirul, M.; Shiddiky, A.; Kim, R.-E.; Shim, Y.-B., Microchip capillary electrophoresis with a cellulose-DNA-modified screen-printed electrode for the analysis of neurotransmitters. Electrophoresis 2005, 26 (15), 3043-3052.
6.	Dolník, V.; Liu, S.; Jovanovich, S., Capillary electrophoresis on microchip. Electrophoresis 2000, 21 (1), 41-54.
7.	Becker, H.; Gärtner, C., Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 2000, 21 (1), 12-26.
8.	Becker, H.; Locascio, L. E., Polymer microfluidic devices. Talanta 2002, 56 (2), 267-287.
9.	Luo, Y.; Wang, X.-D.; Yang, F., Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip. J. Mater. Process. Technol. 2008, 208 (1–3), 63-69.
10.	McCormick, R. M.; Nelson, R. J.; Alonso-Amigo, M. G.; Benvegnu, D. J.; Hooper, H. H., Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates. Anal. Chem. 1997, 69 (14), 2626-2630.
11.	Ocvirk, G.; Munroe, M.; Tang, T.; Oleschuk, R.; Westra, K.; Harrison, D. J., Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 2000, 21 (1), 107-115.
12.	Rossier, J.; Reymond, F.; Michel, P. E., Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 2002, 23 (6), 858-867.
13.	張百齊., 劉., 遠東學報 十九期, 372-376.
14.	Dauer, S.; Ehlert, A.; Büttgenbach, S., Rapid prototyping of micromechanical devices using a Q-switched Nd:YAG laser with optional frequency doubling. Sens. Actuators, A 1999, 76 (1–3), 381-385.
15.	Lim, D.; Kamotani, Y.; Cho, B.; Mazumder, J.; Takayama, S., Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 2003, 3.
16.	Dyer, P. E., Excimer laser polymer ablation: twenty years on. Appl. Phys. A 2003, 77 (2), 167-173.
17.	Roberts, M. A.; Rossier, J. S.; Bercier, P.; Girault, H., UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. Anal. Chem. 1997, 69 (11), 2035-2042.
18.	劉海北, 雷射的原理與應用.
19.	Klank, H.; Kutter, J. P.; Geschke, O., CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2002, 2 (4), 242-246.
20.	Wang, S.-C.; Lee, C.-Y.; Chen, H.-P., Thermoplastic microchannel fabrication using carbon dioxide laser ablation. J. Chromatogr. A 2006, 1111 (2), 252-257.
21.	Qi, H.; Chen, T.; Yao, L.-Y.; Zuo, T.-C., Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt. Laser Eng. 2009, 47 (5), 594-598.
22.	Pfleging, W.; Kohler, R.; Schierjott, P.; Hoffmann, W., Laser patterning and packaging of CCD-CE-Chips made of PMMA. Sens. Actuators, B 2009, 138 (1), 336-343.
23.	Ma, B.; Zhou, X.-M.; Wang, G.; Huang, H.-Q.; Dai, Z.-P.; Qin, J.-H.; Lin, B.-C., Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids. Electrophoresis 2006, 27 (24), 4904-4909.
24.	Götz, S.; Karst, U., Recent developments in optical detection methods for microchip separations. Anal. Bioanal. Chem. 2007, 387 (1), 183-192.
25.	Sikanen, T.; Franssila, S.; Kauppila, T. J.; Kostiainen, R.; Kotiaho, T.; Ketola, R. A., Microchip technology in mass spectrometry. Mass Spectrom. Rev. 2010, 29 (3), 351-391.
26.	Mark, J. J. P.; Scholz, R.; Matysik, F. M., Electrochemical methods in conjunction with capillary and microchip electrophoresis. J. Chromatogr. A 2012, 1267, 45-64.
27.	Coltro, W. K. T.; Lima, R. S.; Segato, T. P.; Carrilho, E.; de Jesus, D. P.; do Lago, C. L.; da Silva, J. A. F., Capacitively coupled contactless conductivity detection on microfluidic systems-ten years of development. Anal. Methods 2012, 4 (1), 25-33.
28.	Ghanim, M. H.; Abdullah, M. Z., Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: Recent developments. Talanta 2011, 85 (1), 28-34.
29.	Xu, J.-J.; Wang, A.-J.; Chen, H.-Y., Electrochemical detection modes for microchip capillary electrophoresis. TrAC, Trends Anal. Chem. 2007, 26 (2), 125-132.
30.	Dou, Y. H.; Bao, N.; Xu, J. J.; Chen, H. Y., A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis. Electrophoresis 2002, 23 (20), 3558-3566.
31.	Wang, J.; Tian, B.; Sahlin, E., Micromachined Electrophoresis Chips with Thick-Film Electrochemical Detectors. Anal. Chem. 1999, 71, 5436-5440.
32.	Zeng, Y.; Chen, H.; Pang, D.-W.; Wang, Z.-L.; Cheng, J.-K., Microchip Capillary Electrophoresis with Electrochemical Detection. Anal. Chem. 2002, 74  2441–2445.
33.	Baldwin, R. P.; Roussel, T. J.; Crain, M. M.; Bathlagunda, V.; Jackson, D. J.; Gullapalli, J.; Conklin, J. A.; Pai, R.; Naber, J. F.; Walsh, K. M.; Keynton, R. S., Fully Integrated On-Chip Electrochemical Detection for Capillary Electrophoresis in a Microfabricated Device. Anal. Chem. 2002, 74 (15), 3690-3697.
34.	Chen, D.-C.; Hsu, F.-L.; Zhan, D.-Z.; Chen, C.-H., Palladium Film Decoupler for Amperometric Detection in Electrophoresis Chips. Anal. Chem. 2001, 73 (4), 758-762.
35.	Yan, J.-L.; Du, Y.; Liu, J.-F.; Cao, W.-D.; Sun, X.-H.; Zhou, W.-H.; Yang, X.-R.; Wang, E.-K., Fabrication of Integrated Microelectrodes for Electrochemical Detection on Electrophoresis Microchip by Electroless Deposition and Micromolding in Capillary Technique. Anal. Chem. 2003, 75 (20), 5406-5412.
36.	Kong, Y.; Chen, H.-W.; Wang, Y.-R.; Soper, S. A., Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating. Electrophoresis 2006, 27 (14), 2940-2950.
37.	Hebert, N. E.; Snyder, B.; McCreery, R. L.; Kuhr, W. G.; Brazill, S. A., Performance of Pyrolyzed Photoresist Carbon Films in a Microchip Capillary Electrophoresis Device with Sinusoidal Voltammetric Detection. Anal. Chem. 2003, 75, 4265-4271.
38.	Vickers, J. A.; Dressen, B. M.; Weston, M. C.; Boonsong, K.; Chailapakul, O.; Cropek, D. M.; Henry, C. S., Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry. Electrophoresis 2007, 28 (7), 1123-1129.
39.	Martin, R. S.; Ratzlaff, K. L.; Huynh, B. H.; Lunte, S. M., In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat. Anal. Chem. 2002, 74 (5), 1136-1143.
40.	Ding, Y.-S.; Ayon, A.; García, C. D., Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis. Anal. Chim. Acta 2007, 584 (2), 244-251.
41.	Kovarik, M. L.; Li, M. W.; Martin, R. S., Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry. Electrophoresis 2005, 26 (1), 202-210.
42.	Rossier, J. S.; Ferrigno, R.; Girault, H. H., Electrophoresis with electrochemical detection in a polymer microdevice. J. Electroanal. Chem. 2000, 492 (1), 15-22.
43.	Selimovic, A.; Johnson, A. S.; Kiss, I. Z.; Martin, R. S., Use of epoxy‐embedded electrodes to integrate electrochemical detection with microchip‐based analysis systems. Electrophoresis 2011, 32 (8), 822-831.
44.	Pentecost, A. M.; Martin, R. S., Fabrication and characterization of all-polystyrene microfluidic devices with integrated electrodes and tubing. Anal. Methods 2015, 7 (7), 2968-2976.
45.	Chen, C.-H.; Lin, Y.-T.; Lin, M.-S., Fabrication of a totally renewable off-channel amperometric platform for microchip electrophoresis. Anal. Chim. Acta 2015, 874, 33-39.
46.	Erkal, J. L.; Selimovic, A.; Gross, B. C.; Lockwood, S. Y.; Walton, E. L.; McNamara, S.; Martin, R. S.; Spence, D. M., 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 2014, 14 (12), 2023-2032.
47.	Munshi, A. S.; Martin, R. S., Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device. Analyst 2016, 141 (3), 862-869.
48.	Wallingford, R. A.; Ewing, A. G., Capillary zone electrophoresis with electrochemical detection. Anal. Chem. 1987, 59 (14), 1762-1766.
49.	Qian, J.-H.; Wu, Y.-Q.; Yang, H.; Michael, A. C., An Integrated Decoupler for Capillary Electrophoresis with Electrochemical Detection:  Application to Analysis of Brain Microdialysate. Anal. Chem. 1999, 71 (20), 4486-4492.
50.	Osbourn , D. M.; Lunte, C. E., On-Column Electrochemical Detection for Microchip Capillary Electrophoresis. Anal. Chem. 2003, 75, 2710-2714.
51.	Nagai, H.; Matsubara, M.; Chayama, K.; Urakawa, J.; Shibutani, Y.; Tanaka, Y.; Takeda, S.; Wakida, S., Fabrication of Electrophoretic PDMS/PDMS Lab-on-a-chip Integrated with Au Thin-Film Based Amperometric Detection for Phenolic Chemicals. In Atmospheric and Biological Environmental Monitoring, Kim, Y. J.; Platt, U.; Gu, M. B.; Iwahashi, H., Eds. Springer Netherlands: Dordrecht, 2009; pp 275-284.
52.	Kok, W. T.; Sahin, Y., Solid-state field decoupler for off-column detection in capillary electrophoresis. Anal. Chem. 1993, 65 (18), 2497-2501.
53.	Lu, W.; Cassidy, R. M., Background noise in capillary electrophoretic amperometric detection. Anal. Chem. 1994, 66 (2), 200-204.
54.	Wu, C.-C.; Wu, R.-G.; Huang, J.-G.; Lin, Y.-C.; Chang, H.-C., Three-Electrode Electrochemical Detector and Platinum Film Decoupler Integrated with a Capillary Electrophoresis Microchip for Amperometric Detection. Anal. Chem. 2003, 75, 947-952.
55.	Lacher, N. A.; Lunte, S. M.; Martin, R. S., Development of a Microfabricated Palladium Decoupler/Electrochemical Detector for Microchip Capillary Electrophoresis Using a Hybrid Glass/Poly(dimethylsiloxane) Device. Anal. Chem. 2004, 76 (9), 2482-2491.
56.	Kim, J.-H.; Kang, C.-J.; Jeon, D.; Kim, Y.-S., A disposable capillary electrophoresis microchip with an indium tin oxide decoupler/amperometric detector. Microelectron. Eng. 2005, 78–79, 563-570.
57.	Vickers, J. A.; Henry, C. S., Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection. Electrophoresis 2005, 26 (24), 4641-4647.
58.	Lin, K.-W.; Huang, Y.-K.; Su, H.-L.; Hsieh, Y.-Z., In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis. Anal. Chim. Acta 2008, 619 (1), 115-121.
59.	Johnson, A. S.; Selimovic, A.; Martin, R. S., Integration of microchip electrophoresis with electrochemical detection using an epoxy‐based molding method to embed multiple electrode materials. Electrophoresis 2011, 32 (22), 3121-3128.
60.	Tanyanyiwa, J.; Leuthardt, S.; Hauser, P. C., Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis. Electrophoresis 2002, 23 (21), 3659-3666.
61.	Mayrhofer, K.; Zemann, A. J.; Schnell, E.; Bonn, G. K., Capillary Electrophoresis and Contactless Conductivity Detection of Ions in Narrow Inner Diameter Capillaries. Anal. Chem. 1999, 71 (17), 3828-3833.
62.	Fracassi da Silva, J. A.; do Lago, C. L., An Oscillometric Detector for Capillary Electrophoresis. Anal. Chem. 1998, 70 (20), 4339-4343.
63.	Polta, J. A.; Johnson, D. C., Pulsed amperometric detection of electroinactive adsorbates at platinum electrodes in a flow injection system. Anal. Chem. 1985, 57 (7), 1373-1376.
64.	Altunata, S.; Earley, R. L.; Mossman, D. M.; Welch, L. E., Pulsed electrochemical detection of penicillins using three and four step waveforms. Talanta 1995, 42 (1), 17-25.
65.	Olson, M. P.; Keating, L. R.; LaCourse, W. R., Indirect pulsed electrochemical detection of amino acids and proteins following high performance liquid chromatography. Anal. Chim. Acta 2009, 652 (1–2), 198-204.
66.	Keating, L. R.; LaCourse, W. R., Indirect pulsed electrochemical detection of aliphatic carboxylate-containing analytes following high performance anion-exchange chromatography. Talanta 2016, 146, 594-602.
67.	Baumann, E. W.; Wallace, R. M., Cupric-selective electrode with copper(II)-EDTA for end point detection in chelometric titrations of metal ions. Anal. Chem. 1969, 41 (14), 2072-2074.
68.	Olin, Å.; Wallién, B., Determination of citrate by potentiometric titration with copper(II) and a copper ion-selective electrode. Anal. Chim. Acta 1983, 151, 65-75.
69.	Loscombe, C. R.; Cox, G. B.; Dalziel, J. A. W., Application of a copper electrode as a detector for high-peformance liquid chromatography. J. Chromatogr. A 1978, 166 (2), 403-410.
70.	El-Taras, M. F.; Pungor, E.; Nagy, G., The influence of some organic complexing agents on the potential of copper(II) - selective electrodes. application of the silicone rubber-based electrode to the determination of citrate ion and 8-hydroxyquinoline. Anal. Chim. Acta 1976, 82 (2), 285-292.
71.	Alexander, P. W.; Maitra, C., Continuous-flow potentiometric monitoring of .alpha.-amino acids with copper wire and tubular electrodes. Anal. Chem. 1981, 53 (11), 1590-1594.
72.	Kok, W. T.; Hanekamp, H. B.; Bos, P.; Frei, R. W., Amperometric detection of amino acids with a passivated copper electrode. Anal. Chim. Acta 1982, 142, 31-45.
73.	Huang, T.-K.; Lin, K.-W.; Tung, S.-P.; Cheng, T.-M.; Chang, I.-C.; Hsieh, Y.-Z.; Lee, C.-Y.; Chiu, H.-T., Glucose sensing by electrochemically grown copper nanobelt electrode. J. Electroanal. Chem. 2009, 636 (1–2), 123-127.
74.	Mei, L.; Zhang, P.-C.; Chen, J.-Y.; Chen, D.-D.; Quan, Y.; Gu, N.; Zhang, G.-H.; Cui, R.-J., Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim. Acta 2016, 183 (4), 1359-1365.
75.	Felix, S.; Kollu, P.; Raghupathy, B. P. C.; Jeong, S. K.; Grace, A. N., Electrocatalytic activity of Cu2O nanocubes based electrode for glucose oxidation. J. Chem. Sci. 2014, 126 (1), 25-32.
76.	Choudhry, N. A.; Kampouris, D. K.; Kadara, R. O.; Jenkinson, N.; Banks, C. E., Next generation screen printed electrochemical platforms: Non-enzymatic sensing of carbohydrates using copper(ii) oxide screen printed electrodes. Anal. Methods 2009, 1 (3), 183-187.
77.	Watabe, S.; Kamal, M.; Hashimoto, K., Postmortem Changes in ATP, Creatine Phosphate, and Lactate in Sardine Muscle. J. Food Sci. 1991, 56, 151-153.
78.	林怡伶, 一夜干水產品品質與化學組成特性及貯藏期間之變化. 中華民國102年6月.
79.	Olafsdóttir, G.; Martinsdóttir, E.; Oehlenschläger, J.; Dalgaard, P.; Jensen, B.; Undeland, I.; Mackie, I. M.; Henehan, G.; Nielsen, J.; Nilsen, H., Methods to evaluate fish freshness in research and industry. Trends Food Sci. Technol. 1997, 8 (8), 258-265.
80.	衛生署。1998。冷凍食品類衛生標準,衛署食字第87032655號公告.
81.	Baixas-Nogueras , S.; Bover-Cid , S.; Vidal-Carou , M. C.; Veciana-Nogués , M. T.; Mariné-Font, A., Trimethylamine and Total Volatile Basic Nitrogen Determination by Flow Injection/Gas Diffusion in Mediterranean Hake (Merluccius merluccius). J. Agric. Food Chem. 2001, 49, 1681-1686.
82.	Ashraf, P. M.; Lalitha, K. V.; Edwin, L., Synthesis of polyaniline hybrid composite: A new and efficient sensor for the detection of total volatile basic nitrogen molecules. Sens. Actuators, B 2015, 208, 369-378.
83.	Luong, J. H. T.; Male, K. B.; Masson , C.; Nguyen, A. L., Hypoxanthine Ratio Determination in Fish Extract Using Capillary Electrophoresis and Immobilized Enzymes. J. Food Sci. 1992, 57, 77-81.
84.	Saito, T.; Arai, K.; Matsuyoshi, M., A  new  method  for  estimating the  freshness  of  fish. Bull. Jpn. Soc. Sci. Fish. 1959, 24, 749-750.
85.	Karube, I.; Matsuoka, H.; Suzuki, S.; Watanabe, E.; K., T., Determination of Fish Freshness with an Enzyme Sensor System J. Agric. Food Chem. 1984, 32, 314-319.
86.	Ryder, J. M., Determination of adenosine triphosphate and its breakdown products in fish muscle by high-performance liquid chromatography. J. Agric. Food Chem. 1985, 33, 678-680.
87.	Okuma, H.; Watanabe, E., Flow system for fish freshness determination based on double multi-enzyme reactor electrodes. Biosens Bioelectron. 2002, 17 (5), 367-372.
88.	Watanabe, E.; Tamada, Y.; Hamada-Sato, N., Development of quality evaluation sensor for fish freshness control based on KI value. Biosens Bioelectron. 2005, 21 (3), 534-538.
89.	蔡文榮, 市售秋刀魚之組織胺相關衛生品質及其貯藏試驗探討. 民國103年2月.
90.	Leurs, R.; Hough, L. B.; Blandina, P.; Haas, H. L., Chapter 16 - Histamine A2 - Brady, Scott T. In Basic Neurochemistry (Eighth Edition), Siegel, G. J.; Albers, R. W.; Price, D. L., Eds. Academic Press: New York, 2012; pp 323-341.
91.	FDA (2001)Scombrotoxin  (histamine)  formation.  Ch.7.  In  Fish  and  Fishery  Products  Hazards  and  Controls Guidance.  3rd  ed.,  p.  83-102.  Food  and  Drug  Administration,  Center  for  Safety  and  Applied  Nutrition, Office of Seafood, Washington, DC.
92.	Frattini, V.; Lionetti, C., Histamine and histidine determination in tuna fish samples using high-performance liquid chromatography: Derivatization with o-phthalaldehyde and fluorescence detection or UV detection of “free” species. J. Chromatogr. A 1998, 809 (1–2), 241-245.
93.	Kutlán, D.; Presits, P.; Molnár-Perl, I., Behavior and characteristics of amine derivatives obtained with o-phthaldialdehyde/3-mercaptopropionic acid and with o-phthaldialdehyde/N-acetyl-l-cysteine reagents. J. Chromatogr. A 2002, 949 (1–2), 235-248.
94.	Lange, J.; Thomas, K.; Wittmann, C., Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. J. Chromatogr. B 2002, 779 (2), 229-239.
95.	Oguri, S.; Enami, M.; Soga, N., Selective analysis of histamine in food by means of solid-phase extraction cleanup and chromatographic separation. J. Chromatogr. A 2007, 1139 (1), 70-74.
96.	Fischer, J. E.; Snyder, S. H.; James, J. H.; Baldessarini, R., Histamine and serotonin metabolism following massive small bowel resection. Ann. Surg. 1972, 175 (2), 260-267.
97.	Wang, Z.-P.; Wu, J.-L.; Wu, S.-H.; Bao, A.-M., High-performance liquid chromatographic determination of histamine in biological samples: The cerebrospinal fluid challenge – A review. Anal. Chim. Acta 2013, 774, 1-10.
98.	Peng, J.-F.; Fang, K.-T.; Xie, D.-H.; Ding, B.; Yin, J.-Y.; Cui, X.-M.; Zhang, Y.; Liu, J.-F., Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography–fluorescence detection. J. Chromatogr. A 2008, 1209 (1–2), 70-75.
99.	Yoshitake, T.; Ichinose, F.; Yoshida, H.; Todoroki, K. I.; Kehr, J.; Inoue, O.; Nohta, H.; Yamaguchi, M., A sensitive and selective determination method of histamine by HPLC with intramolecular excimer‐forming derivatization and fluorescence detection. Biomed. Chromatogr. 2003, 17 (8), 509-516.
100.	Zhang, L.-Y.; Sun, M.-X., Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection. J. Chromatogr. A 2004, 1040 (1), 133-140.
101.	Liu, X.; Yang, L.-X.; Lu, Y.-T., Determination of biogenic amines by 3-(2-furoyl)quinoline-2-carboxaldehyde and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A 2003, 998 (1–2), 213-219.
102.	Singh, G.; Mangat, S. S.; Sharma, H.; Singh, J.; Arora, A.; Singh Pannu, A. P.; Singh, N., Design and syntheses of novel fluorescent organosilicon-based chemosensors through click silylation: detection of biogenic amines. RSC Adv. 2014, 4 (69), 36834-36844.
103.	Kielland, N.; Vendrell, M.; Lavilla, R.; Chang, Y.-T., Imaging histamine in live basophils and macrophages with a fluorescent mesoionic acid fluoride. Chem. Commun. 2012, 48 (59), 7401-7403.
104.	Seong, D. Y.; Choi, M.-S.; Kim, Y.-J., Fluorescent chemosensor for the detection of histamine based on dendritic porphyrin-incorporated nanofibers. Eur. Polym. J. 2012, 48 (12), 1988-1996.
105.	Gustiananda, M.; Andreoni, A.; Tabares, L. C.; Tepper, A. W. J. W.; Fortunato, L.; Aartsma, T. J.; Canters, G. W., Sensitive detection of histamine using fluorescently labeled oxido-reductases. Biosens Bioelectron. 2012, 31 (1), 419-425.
106.	El-Nour, K. M. A.; Salam, E. T. A.; Soliman, H. M.; Orabi, A. S., Gold Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of Biogenic Amines. Nanoscale Res. Lett. 2017, 12 (1), 231.
107.	Gao, F.; Grant, E.; Lu, X.-N., Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy. Anal. Chim. Acta 2015, 901, 68-75.
108.	Weng, Q.-F.; Xia, F.-Q.; Jin, W.-R., Determination of Histamine by Capillary Zone Electrophoresis with End‐Column Amperometric Detection at a Carbon Fiber Microdisk Array Electrode. Electroanalysis 2001, 13 (17), 1459-1461.
109.	Manica, D. P.; Mitsumori, Y.; Ewing, A. G., Characterization of Electrode Fouling and Surface Regeneration for a Platinum Electrode on an Electrophoresis Microchip. Anal. Chem. 2003, 75 (17), 4572-4577.
110.	吳佳儀, 可供組織胺檢測的毛細管電泳電化學晶片之研發. 2005.
111.	Švarc‐Gajić, J.; Stojanović, Z., Electrocatalytic Determination of Histamine on a Nickel-Film Glassy Carbon Electrode. Electroanalysis 2010, 22 (24), 2931-2939.
112.	Sarada, B. V.; Rao, T. N.; Tryk, D. A.; Fujishima, A., Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Anal. Chem. 2000, 72 (7), 1632-1638.
113.	Degefu, H.; Amare, M.; Tessema, M.; Admassie, S., Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples. Electrochim. Acta 2014, 121, 307-314.
114.	Geto, A.; Tessema, M.; Admassie, S., Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode. Synth. Met. 2014, 191, 135-140.
115.	陳正慧, 還原態氧化石墨烯與雙胺氧化酵素固定化網版印刷碳電極於食品組織胺之檢測. 2014.
116.	Alonso-Lomillo, M. A.; Dominguez-Renedo, O.; Matos, P.; Arcos-Martinez, M. J., Disposable biosensors for determination of biogenic amines. Anal. Chim. Acta 2010, 665.
117.	Zeng, K.; Tachikawa, H.; Zhu, Z.; Davidson, V. L., Amperometric Detection of Histamine with a Methylamine Dehydrogenase Polypyrrole-Based Sensor. Anal. Chem. 2000, 72 (10), 2211-2215.
118.	Takagi, K.; Shikata, S., Flow injection determination of histamine with a histamine dehydrogenase-based electrode. Anal. Chim. Acta 2004, 505 (2), 189-193.
119.	Yang, M.-H.; Zhang, J.-L.; Chen, X., Competitive electrochemical immunosensor for the detection of histamine based on horseradish peroxidase initiated deposition of insulating film. J. Electroanal. Chem. 2015, 736, 88-92.
120.	Feuerstein, B. G.; Pattabiraman, N.; Marton, L. J., Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res. 1990, 18 (5), 1271-1282.
121.	Halász, A.; Baráth, Á.; Simon-Sarkadi, L.; Holzapfel, W., Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 1994, 5 (2), 42-49.
122.	Kalac̆, P.; Krausová, P., A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90 (1–2), 219-230.
123.	Warthesen, J. J.; Scanlan, R. A.; Bills, D. D.; Libbey, L. M., Formation of heterocyclic N-nitrosamines from the reaction of nitrite and selected primary diamines and amino acids. J. Agric. Food Chem. 1975, 23 (5), 898-902.
124.	Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M. T.; Mariné-Font, A.; Vidal-Carou, M. C., Biogenic Amine and Polyamine Contents in Meat and Meat Products. J. Agric. Food Chem. 1997, 45 (6), 2098-2102.
125.	Larqué, E.; Sabater-Molina, M.; Zamora, S., Biological significance of dietary polyamines. Nutrition 2007, 23 (1), 87-95.
126.	Mietz, J. L.; Karmas, E., Chemical quality index of canned tuna as determined by high-pressure liquid chromatography. J. Food Sci. 1977, 42 (1), 155-158.
127.	Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M. T.; Vidal-Carou, M. C., Biogenic Amine Sources in Cooked Cured Shoulder Pork. J. Agric. Food Chem. 1996, 44, 3097-3101.
128.	Khuhawar, M. Y.; Qureshi, G. A., Polyamines as cancer markers: applicable separation methods. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 764 (1–2), 385-407.
129.	Mohammed, G. I.; Bashammakh, A. S.; Alsibaai, A. A.; Alwael, H.; El-Shahawi, M. S., A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs. TrAC, Trends Anal. Chem. 2016, 78, 84-94.
130.	Löser, C.; Wunderlich, U.; Fölsch, U. R., Reversed-phase liquid chromatographic separation and simultaneous fluorimetric detection of polyamines and their monoacetyl derivatives in human and animal urine, serum and tissue samples: An improved, rapid and sensitive method for routine application. J. Chromatogr. B: Biomed. Sci. Appl. 1988, 430, 249-262.
131.	Latorre-Moratalla, M. L.; Bosch-Fusté, J.; Lavizzari, T.; Bover-Cid, S.; Veciana-Nogués, M. T.; Vidal-Carou, M. C., Validation of an ultra high pressure liquid chromatographic method for the determination of biologically active amines in food. J. Chromatogr. A 2009, 1216 (45), 7715-7720.
132.	Preti, R.; Antonelli, M. L.; Bernacchia, R.; Vinci, G., Fast determination of biogenic amines in beverages by a core–shell particle column. Food Chem. 2015, 187, 555-562.
133.	Wu, Q.-H.; Su, Y.-Q.; Yang, L. H.; Li, J.-C.; Ma, J.-J.; Wang, C.; Li, Z.-P., Determination of polyamines by high-performance liquid chromatography with chemiluminescence detection. Microchim. Acta 2007, 159 (3), 319-324.
134.	Liu, J.-F.; Yang, X.-R.; Wang, E.-K., Direct tris(2,2'‐bipyridyl)ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis. Electrophoresis 2003, 24 (18), 3131-3138.
135.	Dobberpuhl, D. A.; Hoekstra, J. C.; Johnson, D. C., Pulsed electrochemical detection at gold electrodes applied to monoamines and diamines following their chromatographic separation. Anal. Chim. Acta 1996, 322 (1), 55-62.
136.	Hoekstra, J. C.; Johnson, D. C., Waveform optimization for integrated square-wave detection of biogenic amines following their liquid chromatographic separation. Anal. Chim. Acta 1999, 390 (1–3), 45-54.
137.	Koppang, M. D.; Witek, M.; Blau, J.; Swain, G. M., Electrochemical Oxidation of Polyamines at Diamond Thin-Film Electrodes. Anal. Chem. 1999, 71 (6), 1181-1195.
138.	Morier-teissier, E.; Drieu, K.; Rips, R., Determination of Polyamines by Pre-Column Derivatization and Electrochemical Detection. J. Liq. Chromatogr. 1988, 11 (8), 1627-1650.
139.	Maruta, K.; Teradaira, R.; Watanabe, N.; Nagatsu, T.; Asano, M.; Yamamoto, K.; Matsumoto, T.; Shionoya, Y.; Fujita, K., Simple, sensitive assay of polyamines by high-performance liquid chromatography with electrochemical detection after post-column reaction with immobilized polyamine oxidase. Clin. Chem. 1989, 35 (8), 1694.
140.	Esti , M.; Volpe , G.; Massignan , L.; Compagnone , D.; Notte , E. L.; G., P., Determination of Amines in Fresh and Modified Atmosphere Packaged Fruits Using Electrochemical Biosensors. J. Agric. Food Chem. 1998, 46, 4233-4237.
141.	Carelli, D.; Centonze, D.; Palermo, C.; Quinto, M.; Rotunno, T., An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens Bioelectron. 2007, 23 (5), 640-647.
142.	Compagnone, D.; Isoldi, G.; Moscone, D.; Palleschi, G., Amperometric detection of biogenic amines in cheese using immobilized diamine oxidase. Anal. Lett. 2001, 34 (6), 841-854.
143.	Henao-Escobar, W.; Domínguez-Renedo, O.; Asunción Alonso-Lomillo, M.; Julia Arcos-Martínez, M., Simultaneous determination of cadaverine and putrescine using a disposable monoamine oxidase based biosensor. Talanta 2013, 117, 405-411.
144.	Wimmerová, M.; Macholán, L., Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. Biosens Bioelectron. 1999, 14 (8–9), 695-702.
145.	Bóka, B.; Adányi, N.; Virág, D.; Sebela, M.; Kiss, A., Spoilage Detection with Biogenic Amine Biosensors, Comparison of Different Enzyme Electrodes. Electroanalysis 2012, 24 (1), 181-186.
146.	Rochette, J. F.; Sacher, E.; Meunier, M.; Luong, J. H. T., A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal. Biochem. 2005, 336 (2), 305-311.
147.	Manz, A.; Graber, N.; Widmer, H. M., Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators, B 1990, 1 (1), 244-248.
148.	Le Roux, D.; Root, B. E.; Reedy, C. R.; Hickey, J. A.; Scott, O. N.; Bienvenue, J. M.; Landers, J. P.; Chassagne, L.; de Mazancourt, P., DNA Analysis Using an Integrated Microchip for Multiplex PCR Amplification and Electrophoresis for Reference Samples. Anal. Chem. 2014, 86 (16), 8192-8199.
149.	Han, J.; Singh, A. K., Rapid protein separations in ultra-short microchannels: microchip sodium dodecyl sulfate–polyacrylamide gel electrophoresis and isoelectric focusing. J. Chromatogr. A 2004, 1049 (1–2), 205-209.
150.	Zhang, Y.; Zhang, Y.; Wang, G.; Chen, W.-J.; Li, Y.; Zhang, Y.-T.; He, P.; Wang, Q.-J., Sensitive determination of neurotransmitters in urine by microchip electrophoresis with multiple-concentration approaches combining field-amplified and reversed-field stacking. J. Chromatogr. B 2016, 1025, 33-39.
151.	Wang, J.; Chen, G.; Muck Jr, A.; Chatrathi, M. P.; Mulchandani, A.; Chen, W., Microchip enzymatic assay of organophosphate nerve agents. Anal. Chim. Acta 2004, 505 (2), 183-187.
152.	Bao, N.; Xu, J.-J.; Dou, Y.-H.; Cai, Y.; Chen, H.-Y.; Xia, X.-H., Electrochemical detector for microchip electrophoresis of poly(dimethylsiloxane) with a three-dimensional adjustor. J. Chromatogr. A 2004, 1041 (1–2), 245-248.
153.	Ding, Y.-S.; Garcia, C.-D., Application of microchip‐CE electrophoresis to follow the degradation of phenolic acids by aquatic plants. Electrophoresis 2006, 27 (24), 5119-5127.
154.	Chen, Z.-F.; Gao, Y.-H.; Lin, J.-M.; Su, R.-G.; Xie, Y., Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template. J. Chromatogr. A 2004, 1038 (1–2), 239-245.
155.	Muck, A. J.; Wang, J.; Jacobs, M.; Chen, G.; Chatrathi, M. P.; Jurka, V.; Výborný, Z.; Spillman, S. D.; Sridharan, G.; Schöning, M. J., Fabrication of Poly(methyl methacrylate) Microfluidic Chips by Atmospheric Molding. Anal. Chem. 2004, 76, 2290–2297.
156.	Lai, C.-C.; Chen, C.-H.; Ko, F.-H., In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler. J. Chromatogr. A 2004, 1023 (1), 143-150.
157.	Hebert , N. E.; Kuhr , W. G.; Brazill, S. A., A Microchip Electrophoresis Device with Integrated Electrochemical Detection:  A Direct Comparison of Constant Potential Amperometry and Sinusoidal Voltammetry. Anal. Chem. 2003, 75, 3301-3307.
158.	Wilke, R.; Büttgenbach, S., A Micromachined Capillary Electrophoresis Chip With Fully Integrated Electrodes for Separation and Electrochemical Detection. Biosens Bioelectron. 2003, 19, 149-153.
159.	Joseph Wang, M. P. C., Microfabricated Electrophoresis Chip for Bioassay of Renal Markers. Anal. Chem. 2003, 75, 525–529.
160.	Wang, J.; Chen, G.; Pumera, M., Microchip Separation and Electrochemical Detection of Amino Acids and Peptides Following Precolumn Derivatization with Naphthalene‐2,3‐dicarboxyaldehyde. Electroanalysis 2003, 15 (10), 862-865.
161.	Chen, G.; Wang, J., Fast and simple sample introduction for capillary electrophoresis microsystems. Analyst 2004, 129 (6), 507-511.
162.	do Lago, C. L.; da Silva, H. D. T.; Neves, C. A.; Brito-Neto, J. G. A., A Dry Process for Production of Microfluidic Devices Based on the Lamination of Laser-Printed Polyester Films. Anal. Chem. 2003, 75, 3853-3858.
163.	Coltro, W. K. T.; Piccin, E.; Fracassi da Silva, J. A.; Lucio do Lago, C.; Carrilho, E., A toner-mediated lithographic technology for rapid prototyping of glass microchannels. Lab Chip 2007, 7 (7), 931-934.
164.	Abdelgawad, M.; Watson, M. W. L.; Young, E. W. K.; Mudrik, J. M.; Ungrin, M. D.; Wheeler, A. R., Soft lithography: masters on demand. Lab Chip 2008, 8 (8), 1379-1385.
165.	Gabriel, E. F. M.; do Lago, C. L.; Gobbi, Â. L.; Carrilho, E.; Coltro, W. K. T., Characterization of microchip electrophoresis devices fabricated by direct‐printing process with colored toner. Electrophoresis 2013, 34 (15), 2169-2176.
166.	Vullev, V. I.; Wan, J.; Heinrich, V.; Landsman, P.; Bower, P. E.; Xia, B.; Millare, B.; Jones, G., Nonlithographic Fabrication of Microfluidic Devices. J. Am. Chem. Soc. 2006, 128 (50), 16062–16072.
167.	Jesus, D. P. d.; Blanes, L.; do Lago, C. L., Microchip free‐flow electrophoresis on glass substrate using laser‐printing toner as structural material. Electrophoresis 2006, 27 (24), 4935-4942.
168.	Lu, Y.; Hu, Y.-L.; Xia, X.-H., Effect of surface microstructures on the separation efficiency of neurotransmitters on a direct-printed capillary electrophoresis microchip. Talanta 2009, 79 (5), 1270-1275.
169.	Yu, H.; He, F.-Y.; Lu, Y.; Hu, Y.-L.; Zhong, H.-Y.; Xia, X.-H., Improved separation efficiency of neurotransmitters on a native printed capillary electrophoresis microchip simply by manipulating electroosmotic flow. Talanta 2008, 75 (1), 43-48.
170.	Stephan, K.; Pittet, P.; Renaud, L.; Kleimann, P.; Morin, P.; Ouaini, N.; Ferrigno, R., Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J. Micromech. Microeng. 2007, 17 (10), N69.
171.	Wang, W.; Fu, F. F. u.; Xu, X.-Q.; Lin, J. M.; Chen, G.-N., Filmy channel microchip with amperometric detection. Electrophoresis 2009, 30 (22), 3932-3938.
172.	Grimes, A.; Breslauer, D. N.; Long, M.; Pegan, J.; Lee, L. P.; Khine, M., Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. Lab Chip 2008, 8 (1), 170-172.
173.	Song, S.-H.; Lee, C.-K.; Kim, T.-J.; Shin, I.-C.; Jun, S.-C.; Jung, H.-I., A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process. Microfluid. Nanofluid. 2010, 9 (2), 533-540.
174.	McDonald, J. C.; Chabinyc, M. L.; Metallo, S. J.; Anderson, J. R.; Stroock, A. D.; Whitesides, G. M., Prototyping of Microfluidic Devices in Poly(dimethylsiloxane) Using Solid-Object Printing. Anal. Chem. 2002, 74, 1537-1545.
175.	Hon, K. K. B.; Li, L.; Hutchings, I. M., Direct writing technology—Advances and developments. CIRP Ann. 2008, 57 (2), 601-620.
176.	Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C., 3D printed microfluidic devices: enablers and barriers. Lab Chip 2016, 16 (11), 1993-2013.
177.	Roberts , M. A.; Rossier , J. S.; Bercier , P.; Girault, H., UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. Anal. Chem. 1997, 69, 2035-2042.
178.	Spehar, A. M.; Koster, S.; Linder, V.; Kulmala, S.; de Rooij, N. F.; Verpoorte, E.; Sigrist, H.; Thormann, W., Electrokinetic characterization of poly(dimethylsiloxane) microchannels. Electrophoresis 2003, 24 (21), 3674-3678.
179.	Chen, C.-H.; Lin, M.-S., Amperometric determination of electroosmotic flow in microchip electrophoresis with a self-generated marker. Electrochimica Acta 2015, 174, 601-607.
180.	K., A. A., Prussian Blue and Its Analogues: Electrochemistry and Analytical Application. Electroanalysis 2001, 13, 813-819.
181.	Xiao, Y.; Ju, H. X.; Chen, H. Y., A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Anal. Chim. Acta 1999, 391 (3), 299-306.
182.	陳信良, 微型整合分析系統結合電化學偵測左旋多巴、多巴胺及多巴克. 民國97年6月.
183.	陳繼浩, 以新穎性電化學安培法發展不具電化學活性分子之量測技術以及微晶片電泳電化學偵測平台的開發. 101年6月.
184.	Chen, Z.-F.; Gao, Y.-H.; Wang, L.; Chu, X.-G., Construction and evaluation of a novel end-column amperometric detection system for electrophoresis microchips. Sci. China: Chem. 2010, 53 (1), 250-256.
185.	Johnson, A. S.; Selimovic, A.; Martin, R. S., Integration of microchip electrophoresis with electrochemical detection using an epoxy-based molding method to embed multiple electrode materials. Electrophoresis 2011, 32 (22), 3121-3128.
186.	He, F.-Y.; Liu, A.-L.; Yuan, J.-H.; Coltro, W. K. T.; Carrilho, E.; Xia, X.-H., Electrokinetic control of fluid in plastified laser-printed poly(ethylene terephthalate)-toner microchips. Anal. Bioanal. Chem. 2005, 382 (1), 192-197.
187.	Chen, S.-M.; Yang, W.-H.; Chen, X., Highly Sensitive and Selective Determination of Dopamine Based on Graphite Nanosheet-Nafion Composite Film Modified Electrode. Electrochim. Acta 2010, 22 (9), 908-911.
188.	Kumar, M. K.; Prataap, R. K. V.; Mohan, S.; Jha, S. K., Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine. Microchim. Acta 2016, 183 (5), 1759-1768.
189.	Rocha, L. S.; Pinheiro, J. P.; Carapuça, H. M., Ion-Exchange Voltammetry with Nafion/Poly(sodium 4-styrenesulfonate) Mixed Coatings on Mercury Film Electrodes:  Characterization Studies and Application to the Determination of Trace Metals. Langmuir 2006, 22 (19), 8241-8247.
190.	Matysik, F. M.; Matysik, S.; Brett, A. M. O.; Brett, C. M. A., Ultrasound-Enhanced Anodic Stripping Voltammetry Using Perfluorosulfonated Ionomer-Coated Mercury Thin-Film Electrodes. Anal. Chem. 1997, 69 (8), 1651-1656.
191.	Wang, J.; Chen, S.-P.; Lin, M.-S., Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films. J. Electroanal. Chem. Interfacial Electrochem. 1989, 273 (1), 231-242.
192.	Saha, S.; Sarkar, P.; Turner, A. P. F., Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles. Electroanalysis 2014, 26 (10), 2197-2206.
193.	Njagi, J.; Erlichman, J. S.; Aston, J. W.; Leiter, J. C.; Andreescu, S., A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices. Sens. Actuators, B 2010, 143 (2), 673-680.
194.	Sasso, S. V.; Pierce, R. J.; Walla, R.; Yacynych, A. M., Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal. Chem. 1990, 62 (11), 1111-1117.
195.	Njagi, J. I.; Kagwanja, S. M., The Interface in Biosensing: Improving Selectivity and Sensitivity. In Interfaces and Interphases in Analytical Chemistry, American Chemical Society: 2011; Vol. 1062, pp 225-247.
196.	Wang, J.-S.; Chen, P.-Y.; Huang, T.-T.; Lin, M.-S., Enzymeless Flow Injection Analysis of 2,4,6-Trichlorophenol Based on Preoxidation by Ammonium Cerium (IV) Nitrate. Int. J. Electrochem. Sci. 2012, 7, 9113-9121.
197.	Cui, G.; Kim, S.-J.; Choi, S.-H.; Nam, H.; Cha, G.-S.; Paeng, K.-J., A Disposable Amperometric Sensor Screen Printed on a Nitrocellulose Strip:  A Glucose Biosensor Employing Lead Oxide as an Interference-Removing Agent. Anal. Chem. 2000, 72 (8), 1925-1929.
198.	Shin, J.-H.; Choi, Y.-S.; Lee, H.-J.; Choi, S.-H.; Ha, J.-H.; Yoon, I.-J.; Nam, H.-Y.; Cha, G.-S., A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences. Anal. Chem. 2001, 73 (24), 5965-5971.
199.	Lin, M.-S.; Jan, B.-I.; Chen, P.-Y.; Cheng, W.-C.; Chen, C.-H., New Determination Scheme of p-Aminophenol by MnO2 Modified Electrode Coupled with Flow Injection Analysis. Electroanalysis 2010, 22 (12), 1278-1281.
200.	Choi, S.-H.; Lee, S.-D.; Shin, J. H.; Ha, J.-H.; Nam, H.-Y.; Cha, G.-S., Amperometric biosensors employing an insoluble oxidant as an interference-removing agent. Anal. Chim. Acta 2002, 461 (2), 251-260.
201.	Leu, H.-J.; Lin, M.-S., A LiMn2O4 Based Electrochemical Scheme for Selective Measurement of Dopamine. Electroanalysis 2006, 18 (3), 307-310.
202.	Jia, W.-Z.; Wang, K.; Xia, X.-H., Elimination of electrochemical interferences in glucose biosensors. TrAC, Trends Anal. Chem. 2010, 29 (4), 306-318.
203.	Chen, C.-H.; Chen, Y.-C.; Lin, M.-S., Amperometric determination of NADH with Co3O4 nanosheet modifiedelectrode. Biosens Bioelectron. 2013, 42, 379-384.
204.	Lancaster, E. M.; Hiatt, J. R.; Zarrinpar, A., Acetaminophen hepatotoxicity: an updated review. Arch. Toxicol. 2015, 89 (2), 193-199.
205.	Blakely, P.; McDonald, B. R., Acute renal failure due to acetaminophen ingestion: a case report and review of the literature. J. Am. Soc. Nephrol. 1995, 6 (1), 48-53.
206.	Hodgman, M. J.; Garrard, A. R., A Review of Acetaminophen Poisoning. Crit. Care Clin. 2012, 28 (4), 499-516.
207.	Manassra, A.; Khamis, M.; el-Dakiky, M.; Abdel-Qader, Z.; Al-Rimawi, F., Simultaneous HPLC analysis of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid dosage forms. J. Pharm. Biomed. Anal. 2010, 51 (4), 991-993.
208.	Ayora Cañada, M. J.; Pascual Reguera, M. I.; Ruiz Medina, A.; Fernández de Córdova, M. L.; Molina Dı́az, A., Fast determination of paracetamol by using a very simple photometric flow-through sensing device. J. Pharm. Biomed. Anal. 2000, 22 (1), 59-66.
209.	Knochen, M.; Giglio, J.; Reis, B. F., Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions. J. Pharm. Biomed. Anal. 2003, 33 (2), 191-197.
210.	Tomečková, V.; Gajová, A.; Veliká, B.; Saxunová, L.; Hertelyová, Z., Prooxidative and fluorescence properties of paracetamol during interactions with mitochondria. Spectroscopy 2011, 25 (1), 45-51.
211.	Gicquel, T.; Aubert, J.; Lepage, S.; Fromenty, B.; Morel, I., Quantitative Analysis of Acetaminophen and its Primary Metabolites in Small Plasma Volumes by Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2013, 37 (2), 110-116.
212.	Ramos, M. L.; Tyson, J. F.; Curran, D. J., Determination of acetaminophen by flow injection with on-line chemical derivatization: Investigations using visible and FTIR spectrophotometry. Anal. Chim. Acta 1998, 364 (1–3), 107-116.
213.	Babaei, A.; Yousefi, A.; Afrasiabi, M.; Shabanian, M., A sensitive simultaneous determination of dopamine, acetaminophen and indomethacin on a glassy carbon electrode coated with a new composite of MCM-41 molecular sieve/nickel hydroxide nanoparticles/multiwalled carbon nanotubes. J. Electroanal. Chem. 2015, 740, 28-36.
214.	Lee, S.-H.; Lee, J.-H.; Tran, V.-K.; Ko, E.; Park, C.-H.; Chung, W.-S.; Seong, G.-H., Determination of acetaminophen using functional paper-based electrochemical devices. Sens. Actuators, B 2016, 232, 514-522.
215.	Chen, X.-L.; Zhang, G.-W.; Shi, L.; Pan, S.-Q.; Liu, W.; Pan, H.-B., Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Mater. Sci. Eng., C 2016, 65, 80-89.
216.	Afrasiabi, M.; Kianipour, S.; Babaei, A.; Nasimi, A. A.; Shabanian, M., A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. J. Saudi Chem. Soc. 2016, 20, Supplement 1, S480-S487.
217.	Song, C.-J.; Zhang, J.-J., Electrocatalytic Oxygen Reduction Reaction. In PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Zhang, J., Ed. Springer London: London, 2008; 89-134.
218.	Ishibashi, K.-I.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol., A 2000, 134 (1–2), 139-142.
219.	蘇晟文, 微晶片電泳結合電化學偵測乙醯胺酚及其水解物對苯胺酚之研究. 96年6月.
220.	Allen J. Bard; Faulkner, L. R., Electrochemical methods Fundamentals and applications  2nd, P453-455.
221.	Passani, M. B.; Blandina, P., Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci. 2011, 32 (4), 242-249.
222.	Benetti, F.; Izquierdo, I., Histamine infused into basolateral amygdala enhances memory consolidation of inhibitory avoidance. Int. J. Neuropsychopharmacol. 2013, 16 (7), 1539-1545.
223.	O’Mahony, L.; Akdis, M.; Akdis, C. A., Regulation of the immune response and inflammation by histamine and histamine receptors. J. Allergy Clin. Immunol. 2011, 128 (6), 1153-1162.
224.	Maintz, L.; Novak, N., Histamine and histamine intolerance. Am. J. Clin. Nutr. 2007, 85, 1185-1196.
225.	 FDA. Compliance Policy Guide, . 1996, 7108 525-540.
226.	Oguri, S.; Okuya, Y.; Yanase, Y.; Suzuki, S., Post-column derivatization capillary electrochromatography for detection of biogenic amines in tuna-meat. J. Chromatogr. A 2008, 1202 (1), 96-101.
227.	Kawanishi, H.; Toyo’oka, T.; Ito, K.; Maeda, M.; Hamada, T.; Fukushima, T.; Kato, M.; Inagaki, S., Rapid determination of histamine and its metabolites in mice hair by ultra-performance liquid chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2006, 1132 (1–2), 148-156.
228.	Fiechter, G.; Sivec, G.; Mayer, H. K., Application of UHPLC for the simultaneous analysis of free amino acids and biogenic amines in ripened acid-curd cheeses. J. Chromatogr. B 2013, 927, 191-200.
229.	Tong, A.-J.; Dong, H.; Li, L.-D., Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer. Anal. Chim. Acta 2002, 466 (1), 31-37.
230.	Sagratini, G.; Fernández-Franzón, M.; De Berardinis, F.; Font, G.; Vittori, S.; Mañes, J., Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography–tandem mass spectrometry. Food Chem. 2012, 132 (1), 537-543.
231.	Kirby, A. E.; Jebrail, M. J.; Yang, H.; Wheeler, A. R., Folded emitters for nanoelectrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24 (23), 3425-3431.
232.	Carralero, V.; González‐Cortés, A.; Yáñez‐Sedeño, P.; Pingarrón, J. M., Pulsed Amperometric Detection of Histamine at Glassy Carbon Electrodes Modified with Gold Nanoparticles. Electroanalysis 2005, 17 (4), 289-297.
233.	Švarc‐Gajić, J.; Stojanović, Z., Electrocatalytic Determination of Histamine on a Nickel‐Film Glassy Carbon Electrode. Electroanalysis 2010, 22 (24), 2931-2939.
234.	Chemnitius, G. C.; Bilitewski, U., Development of screen-printed enzyme electrodes for the estimation of fish quality. Sens. Actuators, B 1996, 32 (2), 107-113.
235.	Telsnig, D.; Terzic, A.; Krenn, T.; Kassarnig, V.; Kalcher, K.; Ortner, A., Development of a Voltammetric Amine Oxidase-Modified Biosensor for the Determination of Biogenic Amines in Food. Int. J. Electrochem. Sci. 2012, 7, 6893-6903.
236.	Gumpu, M. B.; Nesakumar, N.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B., Development of electrochemical biosensor with ceria–PANI core–shell nano-interface for the detection of histamine. Sens. Actuators, B 2014, 199, 330-338.
237.	de Jesus, D. S.; Couto, C. M. C. M.; Araújo, A. N.; Montenegro, M. C. B. S. M., Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol–gel film for benzydamine determination in pharmaceuticals. J. Pharm. Biomed. Anal. 2003, 33 (5), 983-990.
238.	Male, K. B.; Bouvrette, P.; Luong, J. H. T.; Gibbs, B. F., Amperometric Biosensor for Total Histamine, Putrescine and Cadaverine using Diamine Oxidase. J. Food Sci. 1996, 61, 1012-1016.
239.	Veseli, A.; Vasjari, M.; Arbneshi, T.; Hajrizi, A.; Švorc, Ľ.; Samphao, A.; Kalcher, K., Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(IV) oxide. Sens. Actuators, B 2016, 228, 774-781.
240.	Lin, M.-S.; Chen, C.-H.; Chen, Z., Development of structure-specific electrochemical sensor and its application for polyamines determination. Electrochim. Acta 2011, 56 (3), 1069-1075.
241.	Chen, C.-H.; Lin, M.-S., A novel structural specific creatinine sensing scheme for the determination of the urine creatinine. Biosens Bioelectron. 2012, 31 (1), 90-94.
242.	Chen, C.-H.; Wang, J.-S.; Lin, Y.-T.; Lin, M.-S., New strategy for amperometric determination of nabam pesticide by using potential assisted surface oxide regeneration method. Sens. Actuators, B 2012, 173, 197-202.
243.	Chen, C.-H.; Lin, Y.-T.; Lin, M.-S., Low-potential amperometric determination of purine derivatives through surface oxide regeneration method. Anal. Chim. Acta 2013, 796, 42-47.
244.	Zhang, L.-Y.; Huang, W.-H.; Wang, Z.-L.; Cheng, J.-K., Determination of Histamine by Capillary Zone Electrophoresis With Amperometric Detection. Anal. Sci. 2002, 18, 1117-1120.
245.	Strehblow, H. H.; Titze, B., The investigation of the passive behaviour of copper in weakly acid and alkaline solutions and the examination of the passive film by esca and ISS. Electrochim. Acta 1980, 25 (6), 839-850.
246.	Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vilà, N., Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir 2004, 20, 8243-8253.
247.	Saghatforoush, L.; Hasanzadeh, M.; Shadjou, N., Polystyrene–graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine. Chin. Chem. Lett. 2014, 25 (4), 655-658.
248.	Telsnig, D.; Kalcher, K.; Leitner, A.; Ortner, A., Design of an Amperometric Biosensor for the Determination of Biogenic Amines Using Screen Printed Carbon Working Electrodes. Electroanalysis 2013, 25 (1), 47-50.
249.	An, D.; Chen, Z.-Q.; Zheng, J.-H.; Chen, S.-Y.; Wang, L.; Huang, Z.-Y.; Weng, L., Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem. 2015, 168, 1-6.
250.	Keow, C. M.; Baker, F. A.; Salleh, A. B.; H., L. Y.-.; Wangiran, R.; Siddiquee, S., Screen-printed Histamine Biosensors Fabricated from the  Entrapment of Diamine Oxidase in a Photocured Poly(HEMA) Film Int. J. Electrochem. Sci. 2012, 7, 4702-4715.
251.	Keow, C. M.; Abu Bakar, F.; Salleh, A. B.; Heng, L. Y.; Wagiran, R.; Bean, L. S., Keow, C.M., Abu Bakar, F., Salleh, A.B., Heng, L.Y., Wagiran, R., Bean, L.S. Food Chem. 2007, 105 (4), 1636-1641.
252.	Linares, D. M.; Martín, M.; Ladero, V.; Alvarez, M. A.; Fernández, M., Biogenic Amines in Dairy Products. Crit. Rev. Food. Sci. Nutr. 2011, 51 (7), 691-703.
253.	M., H. R., My favourite molecule: Polyamines, chromatin structure and transcription. BioEssays 1993, 15 (8), 561-566.
254.	Ha, H. C.; Sirisoma, N. S.; Kuppusamy, P.; Zweier, J. L.; Woster, P. M.; Casero, R. A., The natural polyamine spermine functions directly as a free radical scavenger. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (19), 11140-11145.
255.	Pegg, A. E., Toxicity of Polyamines and Their Metabolic Products. Chem. Res. Toxicol. 2013, 26 (12), 1782-1800.
256.	Kvasnicka, F.; Voldrich, M., Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. J. Chromatogr. A 2006, 1103.
257.	Niculescu, M.; Nistor, C.; Frébort, I.; Peč, P.; Mattiasson, B.; Csöregi, E., Redox Hydrogel-Based Amperometric Bienzyme Electrodes for Fish Freshness Monitoring. Anal. Chem. 2000, 72 (7), 1591-1597.
258.	Mureşan, L.; Ronda Valera, R.; Frébort, I.; Popescu, L. C.; Csöregi, E.; Nistor, M., Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amines determination. Microchim. Acta 2008, 163 (3), 219-225.
259.	White, P. C.; Lawrence, N. S.; Davis, J.; Compton, R. G., Electrochemically initiated 1,4 additions: a versatile route to the determination of thiols. Anal. Chim. Acta 2001, 447 (1), 1-10.
260.	Lawrence, N. S.; Davis, J.; Compton, R. G., Electrochemical detection of thiols in biological media. Talanta 2001, 53 (5), 1089-1094.
261.	Hugo Seymour, E.; Lawrence, N. S.; Beckett, E. L.; Davis, J.; Compton, R. G., Electrochemical detection of aniline: an electrochemically initiated reaction pathway. Talanta 2002, 57 (2), 233-242.
262.	Jovancicevic, V.; Zelenay, P.; Scharifker, B. R., The transport properties of oxygen in aqueous borate solutions. Electrochim. Acta 1987, 32 (11), 1553-1555.
263.	Henao‐Escobar, W.; Domínguez‐Renedo, O.; Alonso‐Lomillo, M. A.; Cascalheira, J. F.; Dias‐Cabral, A. C.; Arcos‐Martínez, M. J., Characterization of a Disposable Electrochemical Biosensor Based on Putrescine Oxidase from Micrococcus rubens for the Determination of Putrescine. Electroanalysis 2015, 27 (2), 368-377.
264.	Leonardo, S.; Campàs, M., Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Microchimica Acta 2016, 183 (6), 1881-1890.
265.	Önal, A., A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem. 2007, 103 (4), 1475-1486.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信