§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1307201611415300
DOI 10.6846/TKU.2016.00343
論文名稱(中文) Bacillus mycoides TKU038所生產之幾丁聚醣酶之純化、定性與應用
論文名稱(英文) Purification, characterization, and application of a chitosanase from Bacillus mycoides TKU038
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 陳威廷
研究生(英文) Wei-Ting Chen
學號 603160192
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-07
論文頁數 130頁
口試委員 指導教授 - 王三郎
委員 - 郭曜豪
委員 - 梁慈雯
關鍵字(中) Bacillus mycoides
烏賊軟骨
幾丁聚醣酶
幾丁寡醣
抗發炎
關鍵字(英) Bacillus mycoides
squid pen
chitosanase
chitooligomers
anti-inflammatory
第三語言關鍵字
學科別分類
中文摘要
本篇研究目的在工業和廢棄處理當中來生產新穎幾丁聚醣酶。將幾丁殼素之廢棄物轉換成生物活性幾丁寡醣 (COS) ,幾丁聚醣酶是最具有潛力的應用之一。
    幾丁聚醣酶生產菌株篩選於台灣土壤,以0.5%烏賊軟骨粉為唯一碳/氮源,經鑑定為Bacillus mycoides。酵素從培養上清液經管住層析等步驟分離。胞外幾丁聚醣酶純化倍率為130倍與活性回收率35 %,測得分子量約為48 kDa。純化之幾丁聚醣酶最適反應溫度為50 °C,pH為6、10,熱安定性為30-50 °C,pH安定性為4-10。幾丁聚醣酶活性受到Cu2+, Ba2+, Zn2+, Fe2+, Mn2+, EDTA 及PMSF所抑制,其Km 及 Vmax分別為0.098 mg/mL 及 1.336 U/mL。
    HPLC及MALDI-TOF MS之組合結果分析,酵素水解水溶性幾丁聚醣所獲得之幾丁寡醣,其TKU038包括具有多種聚合度 (DP) ,範圍3-9。TKU038之發酵上清液與幾丁寡醣混合物具有DPPH·自由基清除活性。高聚合度之幾丁寡醣 DPPH·自由基清除活性較低聚合度之幾丁寡醣強。而幾丁寡醣也有抗發炎之活性與促進L. paracasei TKU010 及L. paracasei TKU012之生長。TKU038對於幾丁寡醣之生產在SPP廢棄處理與工業上有潛在的應用。
英文摘要
The objectives of this investigation were to produce a novel chitosanase for application in industries and waste treatment. The conversion of chitinous biowaste into bioactive chitooligomers (COS) is one of the most promising applications of chitosanase. 
A chitosanase-producing strain was isolated form Taiwan soil and identified as Bacillus mycoides. The chitosanase was produced using 0.5% (w/v) squid pen powder (SPP) as the sole carbon/nitrogen source, and these enzymes was purified from the culture supernatant by column chromatography. Extracellular chitosanase was purified to 130-fold with a 35% yield, and its molecular mass was approximately 48 kDa. The purified chitosanase exhibited optimum activity at 50 °C, pH 6, 10 and was stable at 30-50 °C, pH 4-10. The chitosanase was significantly inhibited by Cu2+, Ba2+, Zn2+, Fe2+, Mn2+, EDTA and PMSF. The value of Km and Vmax for chitosanase were 0.098 mg/mL and 1.336 U/mL, respectively. 
A combination of the HPLC and MALDI-TOF MS results showed that the chitosan oligosaccharides obtained from the hydrolysis of water-soluble chitosan by TKU038 comprise oligomers with various degrees of polymerization (DP), ranging from 3 to 9. The TKU038 culture supernatant and COS mixture exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH·) scavenging activities. The COS with high DP exhibited enhanced DPPH· radical scavenging compared with COS with low DP. The COS also had anti-inflammatory activity and enhanced the growth of L. paracasei TKU010 and L. paracasei TKU012. TKU038 has potential applications in SPP waste treatment and industries for COS production as a medical prebiotic.
第三語言摘要
論文目次
目錄

授權書
簽名頁
誌謝
中文摘要........................... Ⅰ
英文摘要........................... Ⅱ
目錄........................... Ⅲ
圖目錄........................... IX
表目錄........................... XII
第一章 緒論........................... 1
第二章 文獻回顧........................... 3
  2.1 Bacillus mycoides之簡介........................... 3
  2.2幾丁質 (Chitin) 與幾丁聚醣 (Chitosan)........................... 3
    2.2.1幾丁質與幾丁聚醣之結構...........................	3
    2.2.2幾丁質與幾丁聚醣之製備...........................	6
  2.3幾丁質與幾丁聚醣之應用........................... 8
  2.4幾丁聚醣酶 (Chitosanase)........................... 10
    2.4.1 還原醣測定法........................... 12
  2.5 N-乙醯幾丁寡醣及幾丁寡醣...........................	12
  2.6 抗氧化........................... 16
    2.6.1 DPPH自由基清除能力........................... 18
第三章 材料與方法........................... 19
  3.1實驗菌株........................... 19
  3.2實驗材料........................... 19
  3.3實驗儀器........................... 20
  3.4菌株之篩選、分離、保存........................... 20
  3.5菌株之鑑定........................... 21
    3.5.1革蘭氏染色 (Gram staining)........................... 21
    3.5.2革蘭氏陽性菌DNA之萃取........................... 22
    3.5.3 16S rDNA 之定序分析........................... 23
    3.5.4 API (Analytical Profile Index) 之鑑定........................... 24
  3.6幾丁聚醣酶活性測定........................... 24
  3.7幾丁聚醣酶最適條件探討........................... 25
3.7.1 碳/氮源之選擇........................... 25
    3.7.2不同碳源濃度...........................	25
    3.7.3不同培養體積...........................	26
    3.7.4通氣量之探討...........................	26
    3.7.5不同溫度........................... 26
  3.8 幾丁聚醣酶之分離與純化........................... 27
    3.8.1粗酵素液之製備........................... 27
    3.8.2陰離子交換樹脂層析(一)........................... 27
    3.8.3陰離子交換樹脂層析(二)...........................  28
  3.9 幾丁聚醣酶分子量測定與鑑定........................... 28
    3.9.1蛋白質電泳分析 (SDS-PAGE)........................... 28
    3.9.2幾丁聚醣酶胜肽譜鑑定........................... 29
  3.10 幾丁聚醣酶之特性分析........................... 29
    3.10.1酵素最適反應溫度........................... 29
    3.10.2酵素熱安定性........................... 30
    3.10.3酵素最適pH值........................... 30
    3.10.4酵素pH安定性........................... 30
    3.10.5金屬離子與化學藥品對酵素活性作用之影響........................... 31
    3.10.6界面活性劑對酵素活性作用之影響........................... 31
    3.10.7酵素之基質特異性...........................	32
    3.10.8酵素動力學 (Enzyme kinetic)........................... 32
  3.11 幾丁聚醣酶水解基質及幾丁寡醣分析........................... 33
    3.11.1基質水解........................... 33
    3.11.2還原醣量之測定........................... 33
    3.11.3總醣量之測定........................... 34
    3.11.4幾丁寡醣之製備........................... 34
    3.11.5 HPLC進行幾丁寡醣組成分析........................... 34
    3.11.6 MALDI-TOF-MS進行幾丁寡醣組成分析........................... 35
  3.12抗氧化活性測定...........................	35
    3.12.1 DPPH自由基清除能力之測定........................... 35
  3.13抗菌之測試........................... 36
  3.14抗黴菌之測試........................... 37
  3.15促進乳酸菌之生長........................... 37
第四章 結果與討論........................... 39
  4.1幾丁聚醣酶生產菌株之篩選與鑑定........................... 39
  4.2幾丁聚醣酶較適生產條件探討........................... 43
4.2.1碳/氮源之選擇........................... 43
    4.2.2不同碳源濃度........................... 44
    4.2.3不同培養體積...........................	45
    4.2.4通氣量之探討...........................	46
    4.2.5不同溫度........................... 47
    4.2.6較適培養條件綜合結果與其他文獻比較........................... 48
4.3 幾丁聚醣酶之分離純化........................... 53
    4.3.1 粗酵素液之製備........................... 54
    4.3.2 陰離子交換樹脂層析 (一)...........................54
    4.3.3 陰離子交換樹脂層析 (二)........................... 56
    4.3.4 純化與分離之綜合結果........................... 58
  4.4 幾丁聚醣酶分子量之測定與鑑定........................... 59
    4.4.1 蛋白質電泳分析 (SDS-PAGE)........................... 59
    4.4.2 幾丁聚醣酶胜肽質譜鑑定........................... 62
  4.5 幾丁聚醣酶之特性分析........................... 63
    4.5.1酵素最適反應溫度及熱安定性........................... 63
    4.5.2酵素最適pH及pH安定性........................... 65
    4.5.3金屬離子與化學藥品對酵素活性作用之影響........................... 67
    4.5.4界面活性劑對酵素活性作用之影響........................... 69
    4.5.5酵素之基質特異性........................... 71
    4.5.6酵素動力學 (Enzyme kinetic)........................... 74
  4.6 幾丁聚醣酶水解基質及幾丁寡醣分析........................... 79
    4.6.1還原醣及總醣含量之分析........................... 79
    4.6.2 HPLC分析幾丁寡醣........................... 82
    4.6.3 MALDI-TOF-MS進行幾丁寡醣組成分析........................... 89
  4.7 抗氧化活性測定........................... 96
    4.7.1 DPPH自由基清除能力之測定...........................	96
  4.8抗腫瘤之測試........................... 100
  4.9抗發炎之測試........................... 104
  4.10抗菌之測試........................... 106
  4.11抗黴菌之測試........................... 109
  4.12促進乳酸菌之生長........................... 113
第五章 結論........................... 116
第六章 參考文獻........................... 117
附錄........................... 130
 
圖目錄

圖2.1纖維素、幾丁質與幾丁聚醣之結構...........................	5
圖2.2幾丁質製備之流程........................... 7
圖2.3幾丁聚醣酶的種類和切割位置...........................	11
圖2.4幾丁聚醣酶的作用模式...........................	12
圖2.6幾丁聚醣合成幾丁寡醣...........................	14
圖4.1 Bacillus mycoides TKU038之顯微鏡照片...........................	40
圖4.2 Bacillus mycoides TKU038所生產之DNA片段...........................	41
圖4.3 Bacillus mycoides TKU038之16S rDNA部分鹼基序列.......................	42
圖4.4不同碳/氮源對B. mycoides TKU038幾丁聚醣酶生產之影響.........................	43
圖4.5 SPP濃度對B. mycoides TKU038幾丁聚醣酶生產之影響...........................	44
圖4.6培養體積對B. mycoides TKU038幾丁聚醣酶生產之影響.........................	45
圖4.7通氣量對B. mycoides TKU038幾丁聚醣酶生產之影響...........................	46
圖4.8溫度對B. mycoides TKU038幾丁聚醣酶生產之影響...........................	47
圖4.9幾丁聚醣酶之純化流程圖...........................	53
圖4.10 B.mycoides TKU038幾丁聚醣酶之DEAE-Sepharose CL-6B層析圖譜...........................	55
圖4.11 B.mycoides TKU038幾丁聚醣酶之Macro-PrepRDEAECartridge層析圖譜...........................	57
圖4.12 B. mycoides TKU038幾丁聚醣酶之純化SDS-PAGE之分子量分析...........................	61
圖4.13幾丁聚醣酶之最適反應溫度及熱安定性...........................	64
圖4.14幾丁聚醣酶之最適反應pH及pH安定性...........................	66
圖4.15 (A)幾丁聚醣酶水解反應之Michaelis-Menten圖型 (B)幾丁聚醣酶動力參數之Lineweaver-Burk圖型...........................	75
圖4.16水溶性幾丁聚醣經B.mycoides TKU038所生產之粗酵素液水解不同時間所得還原醣及總醣含量...........................	80
圖4.17蝦殼粉經B.mycoides TKU038所生產之粗酵素液水解不同時間所得還原醣及總醣含量...........................	81
圖4.18 WSC經B.mycoides TKU038粗酵素液水解不同時間所得幾丁寡醣之HPLC分析圖 (a) 標準品 (b) 水解8小時。...........................	84
圖4.19 WSC經B.mycoides TKU038粗酵素液水解不同時間所得幾丁寡醣之HPLC分析圖 (a) 水解1天 (b) 水解2天。...........................	85
圖4.20 WSC經B.mycoides TKU038粗酵素液水解不同時間所得幾丁寡醣之HPLC分析圖 (a) 水解3天 (b) 水解4天。...........................	86
圖4.21 WSC經B.mycoides TKU038粗酵素液水解不同時間所得幾丁寡醣之HPLC分析圖 (a) 水解5天 (b) 水解6天。...........................	87
圖4.22 WSC經B.mycoides TKU038粗酵素液水解不同時間所得不同聚合度之幾丁寡醣之HPLC分析圖 (a) DP<8 (b) 8<DP<16。...........................	88
圖4.23水溶性幾丁聚醣經B.mycoides TKU038粗酵素液水解8小時及1天所得之MALDI-TOF-MS之分析圖...........................	91
圖4.24水溶性幾丁聚醣經B.mycoides TKU038粗酵素液水解2天及3天所得之MALDI-TOF-MS之分析圖...........................	92
圖4.25水溶性幾丁聚醣經B.mycoides TKU038粗酵素液水解4天及5天所得之MALDI-TOF-MS之分析圖...........................	93
圖4.26水溶性幾丁聚醣經B.mycoides TKU038粗酵素液水解6天所得之MALDI-TOF-MS之分析圖...........................	94
圖4.27發酵上清液及水解上清液之DPPH自由基清除活性...........................	98
圖4.28幾丁寡醣之DPPH自由基清除活性...........................	99
圖4.29幾丁寡醣對RAW 264.7抗發炎之影響...........................	105
圖4.30上清液、DP<8、8< DP<16及WSC對Aspergillus fumigates生長影響.......................	111
圖4.31上清液、DP<8、8< DP<16及WSC對Fusarium oxysporum
生長影響...........................	112
圖4.32 B.mycoides TKU038所生產之幾丁寡醣對於Lactobacillus paracasei TKU010生長影響...........................	114
圖4.33 B.mycoides TKU038所生產之幾丁寡醣對於Lactobacillus paracasei TKU012生長影響...........................115

表目錄

表2.1幾丁質與幾丁聚醣之應用...........................	9
表2.2幾丁寡醣之製備...........................	15
表2.3幾丁寡醣之應用...........................	16
表3.1緩衝溶液之種類...........................	31
表3.2 DNS試劑之組成...........................	33
表4.1 API鑑定分析結果...........................	42
表4.2 B. mycoides TKU038所生產幾丁聚醣酶活性之較適條件.......................	48
表4.3 以含幾丁質水產廢棄物為唯一碳/氮源之幾丁聚醣酶生產菌之  較適培養條件比較...........................	49
表4.4 B. mycoides TKU038幾丁聚醣酶之純化總表...........................	58
表4.5 B. mycoides TKU038幾丁聚醣酶胜肽質譜鑑定結果...........................	62
表4.6金屬離子與化學藥品對B. mycoides TKU038所生產之幾丁聚醣酶之影響.......................	68
表4.7界面活性劑對B. mycoides TKU038所生產之幾丁聚醣酶之影響.......................	70
表4.8 B. mycoides TKU038所生產之幾丁聚醣酶基質特異性........................	72
表4.9基質特異性之比較...........................	73
表4.10微生物來源之幾丁聚醣酶之特性比較...........................	76
表4.11水溶性幾丁聚醣水解不同時間對幾丁寡醣含量之影響...........................	83
表4.12水溶性幾丁聚醣經B.mycoides TKU038粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析...........................	95
表4.13利用MTT測試對Hep G2、HEp-2、WiDr 及 A549 細胞增生的影響.........................	102
表4.14 COS對不同腫瘤之生長比較...........................	103
表4.15幾丁寡醣對RAW 264.7抗發炎之影響...........................	105
表4.16上清液、DP<8、8< DP<16及WSC對Staphylococcus aureus、Bacillus subtilis TKU007、Escherichia coli 及 Pseudomonas aeruginosa K187生長影響...........................	108
表4.17上清液、DP<8、8< DP<16及WSC對Aspergillus fumigates及Fusarium oxysporum生長影響...........................	110
參考文獻
Aiba, S. (1994) Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydrate Research, 256:323-328. 

Chung, Y. C., Su, Y. P., Chen, C. C., Jia, G., Wang, H. L., Wu, J. C., Lin, J. G. (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacological Sinica, 25:932-936. 

Choi, Y.J., Kim, E.J., Piao, Z., Yun, Y.C., Shin, Y.C. (2004) Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Applied and Environmental Microbiology, 70:4522-4531.

Chang, W.T., Chen, Y.C., Jao, C.L. (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology, 98:1224-1230.

Chiang, C.L., Chang, C.T., Sung, H.Y. (2003) Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1. Enzyme and Microbial Technology, 32:260-267.

Claus, D., Berkeley, R. C. W. (1986) Genus Bacilllus Cohn&nbsp;(1872) ,In. Sneath, P. H A. (ed.)Bergey's Manual of Systematic Bacteriology, Vol. 2. Wllliams and Wilkins, Baltimore, 174:1105 1139.

Cabrera, J.C., Custem, P.V. (2005) Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal, 25:165-172.

Carmia, B. (1997) Antioxidant and cancer. International Journal of Medical Sciences, 9:21-61.

Du, Y.J., Zhao, Y.Q., Dai, S.C., Yang, B. (2009) Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innovative Food Science and Emerging Technologies, 10:103-107.

Eklund, P.C., Langvik, O.K., Warna, J.P., Salmi, T.O., Willfor, S.M., Sjoholm, R.E. (2005) Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Organic and Bimolecular Chemistry. 21:3336-3347.

Franca, E.F., Lins, R.D., Freitas, L.C., Straatsma, T.P. (2008) Characterization of chitin and chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation, 4:2141-2149

Gao, X.A., Ju, W.T., Jung, W.J., Park, R.D. (2008) Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydrate Polymers, 72:513-520.

Gibson, T., Gordon, K.E. (1974) In:Buchanan, R E., Glbbons, N E. (eds.) Bergey's manual of systematic bactenology, 8th edn. Williams & Wilkins, Baltimore, 174:529-550.

Goo, B.G., Park, J.K. (2014) Characterization of an alkalophilic extracellular chitosanase from Bacillus cereus GU-02. Journal of Bioscience and Bioengineering, 6:684-689.

Ge ,L., Zhang, H., Chen, K., Ma, L., Xu, Z. (2010) Effect of chitin on the antagonistic activity of Rhodotorula glutinis against Botrytis cinerea in strawberries and the possible mechanisms involved. Food Chemistry, 120:490-495.

Giustina, A., Ventura, P. (1995) Weight-reducing regimens in obese subjects: Effects of a new dietary fiber integrator. Acta Toxicological Therapeutics, 16:199-214.

Gutteridge, J.M.C. (1993) Free radicals in disease process: A complication of cause and&nbsp;consequance.&nbsp;Free Radical Research Communication,&nbsp;19:141-158.

Hackman, R.H. (1954) Studies on chitin I. Enzymic degradation of chitin and chitin esters. Australian Journal of Biological Sciences, 7:168-178.

Harish Prashanth, K.V., Tharanathan, R.N. (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science & Technology, 18:117-131

Halliwell, B., Gutteridge, J.M.C. (1989) Free radicals in biology and medicine.Clarendon Press, 8:484-487.

Hayashi, K.I., Suzuki, K., Kawaguchi, M., Nakajima, T., Suzuki, T., Numata, M.,Nakamura, T. (1995) Isolation of an antioxidation from Penicillium roqueforti IFO 5956. Bioscience, Biotechnology, and Biochemistry. 59:319-320.

Hsu, C.H., Nguyen, A.D., Chen, Y.W., Wang, S.L. (2014) Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source. Research on Chemical Intermediates, 6:2249-2258.

Huang, Z., Wu, H. (2001) Effect of yiqitongyanghuatan recipe on experimental&nbsp;atherosclerosis in rabbits. Journal of Tongji Medical Univsity. 21:326-328.

Izume, M., Nagae, S., Kawagishu, H., Mitsutomi, M., Ohtakara, A. (1992) Action pattern of Bacillus sp. No. 7-M chitosanase on partially N-acetylated chitosan. Bioscience, Biotechnology, and Biochemistry, 56:448-453.

Imoto, T., Yagishita, K. (1971) A simple activity measurement by lysozyme. Agricultural and Biological Chemistry, 35:1154-1156

Jeon, Y.J., Kim, S.K. (2002) Antiumor activity of chitosan oligosaccharides produced in an ultra filtration membrane reactor system. Journal of Microbiology and Biotechnology, 12:203-507.

Kim, P.I., Kang, T.H., Chung, K.J., Kim, I.S., Chung, K.C. (2004) Purification of a constitutive chtiosanase produced by Bacillus sp. MET1299 with cloning and expression of the gene. FEMS Microbiology Letters, 240:31–39.

Kong, M., Chen, X.G., Xing, K., Park, H.J. (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144:51-63.

Kong, C.S, Kim, J.A, Ahn, B., Byun, H.G., Kim, S.K. (2010) Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochemistry, 45:179-186

Kim, S.K., Rajapakse, N. (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers, 62:357-368.

Kittur, F., Kumar, A.B.V., Gowda, L.R., Tharanathan, R.N. (2003) Chitosanolysis by a pectinase isozyme of Aspergillus niger—a non-specific activity.Carbohydrate Polymer, 53:191-196.

Kehrer, J.P. (1993) Free radicals as mediators of tissue injury and disease.&nbsp;Critical Reviews in Toxicology,&nbsp;23:21-48.

Kang, S.Y., Seeram, N.P., Nair, M.G., Bourquin, L.D. (2003) Tart cherry anthocyanins inhibit tumor development in ApcMin&nbsp;mice and reduce proliferation of colon cancer cell. Cancer Letter, 194:13-19.

Kumar, A.B.V., Varadaraj, R.G., Lalitha, R.G., Tharanathan, R.N. (2004) Low molecular weight chitosans: preparation with the aid of papain and characterization, Biochimica et Biophysica Acta (BBA)-General Subjects, 1670: 137-146

Kendra, DF, Hadwiger, C.A. (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology, 8:276-284

Kurita, K. (2006) Chitin and chitosan: Functional biopolymers from marine crustaceans. Marine Biotechnology, 8:203-226

Kumar, R., Majeti, N.V. (2000) A review of chitin and chitosan applications. Reactive and Functional Polymer, 46:1-27

Lee, S.H., Senevirathne, M., Anh, C.B., Kim, S.K., Je, J.Y. (2009) Facters affecting anti-inflammatory effect of chitooligosaccharides in lipopolysaccharides-induced RAW264.7 macrophage cells. Bioorganic & Medicinal Chemistry Letters, 19:6655-6658.

Liang, T.W., Chen, Y.J., Yen, Y.H., Wang, S.L. (2007) The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochemistry, 42:527–534.

Liang, T.W., Chen, Y.Y., Pan, P.S., Wang, S.L. (2014) Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. International Journal of Biological Macromolecules, 63:8-14

Liang, T.W., Liu, C.P., Wu, C.H., Wang, S.L. (2013) Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydrate Polymers, 92:2141-2148

Liang, T.W., Hsieh, J.L., Wang, S.L. (2012) Production and purification of a protease, a chitosanase, and chitinoligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydrate Research, 362:38-46.

Liang, T.W., Lo, B.C., Wang, S.L. (2015a) Chitinolytic bacteria-assisted conversion of squid pen and its effect on dyes and pigments adsorption.Marine Drugs, 13:4576-4593.

Liang, T.W., Huang, C.T., Nguyen, A.D., Wang, S.L. (2015b) Squid pen chitin chitooligomers as food colorants absorbers. Marine Drugs, 13:681-696.

Lee, Y.S, Park, I.H, Yoo, J.S., Chung, S.Y., Lee, Y.C., Cho, Y.S., Ahn, S.C., Kim, C.M., Choi, Y.L. (2007) Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresource Technology, 98:2734-2741.

Lee, H.W., Park, Y.S., Choi, J.W., Yi, S.Y., Shin, W.S. (2003). Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent&nbsp;diabetes mellitus in rats. Biologlical Pharmaceutical Bulletin, 26:1100-1103.

Li, H., Fei, Z., Gong, J.S., Yang, T., Xu, Z.H., Shi, J.S. (2015)  Screening and characterization of a highly active chitosanase based on metagenomic technology. Journal of Molecular Catalysis B: Enzymatic, 111:29-35.

Lee, S.H., Suh, J.S., Kim, H.S., Lee, J.D., Song, J.S., Lee, S.K. (2003) MR evaluation of radiation synovectomy of the knee by means of intra- articular injection of holmium-166-chitosan complex in patients with rheumatoid arthritis: Results at 4-month follow-up. Korean Journal of Radiology, 4:170-178.

Lu, S.J., Song, X.F., Cao, D.Y., Chen, Y.P., Yao, K.D. (2004) Preparation of water-soluble chitosan. Journal of Applied Polymer Science, 6:3497-3503.

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680-685.

Mourya, V.K., Inamdar, N.N. (2008) Chitosan-modifications and applications: Opportunities galore. Reactive & Functional polymers, 68:1013-1051.

Macchi, G. (1996) A new approach to the treatment of obesity: Chitosan’s effects on body weight reduction and plasma cholesterol levels. Acta Toxicological Therapeutics, 27:303-320.

No, H.K., Meyers, S.P., Prinyawiwatkul, W., Xujfsr, Z. (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of Food Science, 72:87-100.

Nishimura, K., Nishimura, S., Nishi, N., Saiki, I., Tokura, S., Azuma, I. (1984) Immunological activity of chitin and its derivatives. Vaccine, 2:93-99.

Nidheesh, T., Pal, G.K., Suresh, P.V. (2015) Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate. Carbohydrate Polymers, 121:1-9.

Ohtakara, A., Ogata, H., Taketomi, Y., Mitsutomi, M. (1984) Purification and characterization of chitosanase from Streptomyces griseus. Chitin, Chitosan and Related Enzymes, 20:147-59.

Ohtakara, A., Izume, M. (1987) Preparation of D-glucosamine oilgosaccharide by enzymatic hydrolysis of chitosan.Agriculture and Biological Chemistry, 52:1189-1191


Pan, Y.M., Wang, K, Huang, S.Q., Wang, H.S., Mu, X.M., He, C.H., Ji, X.W., Zhang, J., Huang, F.J. (2008) Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel, Food chemistry. 106: 1264-1270.

Patil, N.S., Waghmare S.R., Jadhav J.P. (2013) Purification and characterization of an extracellular antifungal chitinase from Penicillium ochrochloron MTCC 517 and its application in protoplast formation. Process Biochemistry, 48:176-183

Pelletier, A., Sygusch, J. (1990) Purification and characterization of three chtiosanase activities from Bacillus megaterium P1. Applied and Environmental Microbiology, 56:844-848

Xu, Q., Chao, Y.L., Wan, Q.B. (2009) Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77: 435-441

Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X. (2005) Antoxidation activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Cholrophyta) in vitro. Internation Journal of Biological Macromolecules. 37:195-199.

Raafat, D., von Bargen.K., Haas, A., Sahl, H.G. (2008) Insights into the mode of action of chitosan as an antibacterial compound. Applied&nbsp;Environment Microbiology, 74:3764-3773.

Roby, K., Gadella, A., Domszy, J.G. (1987) Chitin oligosaccharides as elicitors of chitinase activity in melon plants.Biochemical and Biophysical Research Communications, 143:885-890.

Robards, K., Prenxler, P.D., Tucker, G., Swatsitang, P.& Glover, W. (1999) Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66:401-436.

Sini, T.K.,Santhosh, S., Mathew, P.T. (2007) Study on the production of chitin and chitosan from shrimp shell by using&nbsp;Bacillus subtilis&nbsp;fermentation.&nbsp;Carbohydrate Research, 342:2423-2429.

Shimahara,&nbsp;K., Takiguchi,&nbsp;Y., Ohkouchi,&nbsp;K., Kitamura,&nbsp;K., Okada,&nbsp;O.  (1984) Chemical composition and some properties of custacean chitin prepared by use of proteolytic activity of Pseudomonas maltophilia LC102Zikakis,&nbsp;JP eds. Chitin, Chitosan, and Related EnzymesAcademic PressOrlando, 20:239-255

Suzuki, K., Midami, T., Okawa, Y., Tokoro, A., Suzuki, S., Suzuki, M. (1986) Antitumor effect of hexa-N-acetychitohexaose and chitohexaose. Carbohydrate Research, 151:403-408.

Somashekar, D., Joseph, R. (1996) Chitosanases-properties and applications: A review. Bioresource Technology, 55:35-45.

Sun, Y.Y., Han, B.Q., Liu, W.S., Zhang, J.Q., Gao, X.H. (2007). Substrate induction and statistical optimization for the production of chitosanase from Microbacterium sp. OU01. Bioresource Technology, 98:1548-1553.

Sharma, O.P., Bhat, T.K. (2009) DPPH antioxidation assay revisited.Food Chemistry, 113, 1202-1205.

Thadathil, N., Velappan, S.P. (2014) Recent developments in chitosanase research and its biotechnological applications: A review. Food Chemistry, 150:392-399.

Tokoro, A., Tatewki, N., Suzuki, K., Mikami, T., Suzuki, S., Suzuki, M. (1988) Growth-inhibitory effect of hexa-N-acetychitohexaose and chitohexaose against Meth-A solid tumor. Chemical and Pharmaceutical Bulletin, 36:787-790.

Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K, Chen, YH.  (2006) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme and Microbial Technology, 39: 724-731.

Wang, S.L., Peng, J.H., Liang, T.W., Liu, K.C. (2008a) Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydrate Research, 343:1316-1323.

Wang, S.L., Huang, T.Y, Wang, C.Y., Liang, T.W., Yen, Y.H., Sakata, Y. (2008b) Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers.Bioresource Technology, 99:5436-5443.

Wang, S.L., Wang C.Y., Huang, T.Y. (2008c) Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp paracasei TKU012.Bioresource Technology, 99:3411-3417.

Wang, S.L., Yeh, P.Y. (2008d) Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochemistry, 43: 132-138.

Wang, S.L, Chen, S.J, Wang, C.L. (2008e) Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydrate Research, 343:1171-1179.

Wang, S.L., Wu, P.C., Liang, T.W. (2009a) Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydrate Research, 344:979-984.

Wang, S.L., Chao, C.H., Liang, T.W., Chen, C.C. (2009b) Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology, 11:334-344.

Wang, S.L., Chen, T.R., Liang, T.W., Wu, P.C. (2009c) Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochemical Engineering Journal, 48:111-117.

Wang, S.L., Liou, J.Y., Liang, T.W., Liu, K.C. (2009d) Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochemistry, 44:854-861.

Wang, S.L., Liu, K.C., Liang T.W., Kuo, Y.H.,Wang, C.Y. (2010a) In vitro antioxidant activity of liquor and semi-purified fractions from fermented squid pen biowaste by Serratia ureilytica TKU013. Food Chemistry, 119:1380-1385.

Wang, S.L., Hsu, W.H, Liang, T.W. (2010b) Conversion of squid pen by Pseudomonas aeruginosa K187 frementation for the production of N-acetyl chitooligosaccharides and biofertilizers. Carbohydrate Research, 345:880-885.

Wang, S.L., Chang, T.J., Liang, T.W. (2010c).Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation, 21:321-333.

Wang, S.L., Liu, C.P., Liang, T.W. (2012) Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydrate Polymers, 90: 1305-1313.

Wang, C.L., Su, J.W., Liang, T.W., Nguyen, A.D., Wang, S.L. (2014) Production, purification and characterisation of a chitosanase from Bacillus cereus.Research on Chemical Intermediates, 40:2237-2248.

Wang, J., Zhou, W., Yuan, H., Wang, Y. (2008) Characterization of a novel fungal chitosanase Csn2 from Gongronella sp. JG. Carbohydrate Research, 343:2583-2588.

Wu, S.J., Pan, S.K., Wang, H.B., Wu, J.H. (2013) Preparation of chitooligosaccharides from cicada slough and their antibacterial activity. Internation Journal of Biological Macromolecules, 62:348-351.

Wee, Y.J., Reddy, L.V.A., Chung, K.C., Ryu, H.W. (2009)  Optimization of chitosanase production from Bacillus sp. RKY3 using statistical exper- imental designs. Journal of Chemical Technology and Biotechnology, 84:1356-1363.

Yabuki, M., Uchiyama, A., Suzuki, A., Ando, A., Fuji, T. (1988). Purification and properties of chitosanase from Bacillus circulans MH-Kl. Journal of General and Applied Microbiology, 34:255-270.

Yoon, H.J., Moon, M.E., Park, H. S., Kim, H.W., Im, S.Y., Lee, J.H., Kim, Y. H. (2008) Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo. Food and Chemical Toxicology, 46 :710-716.

Younes, I., Rinaudo, M. (2015) Chitin and chitosan preparationfrom marine source.structure, properties and applications. Marine Drugs, 13:1133-1174.

Zhang, H., Li, R., Liu, W. (2011) Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. International Journal of Molecular Sciences, 12:917-934.

Zhang, J.P., Cao, H.L., Li, S.G., Zhao, Y., Wang, W.X., Xu, Q.S., DU, Y.G., Yin, H. (2015) Characterization of a new family 75 chitosanase from Aspergillus sp. W-2. International Journal of Biological Macromolecules, 81:362-369.

Zhang, H., Neau, S.H. (2001) In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation.Biomaterials, 22:1653-1658.

Zhang, C.M., Yu, S.H., Zhang, L.S., Zhao, Z.Y., Dong, L.L. (2014)  Effects of several acetylated chitooligosaccharides on antioxidation, antiglycation and NO generation in erythrocyte.&nbsp;Bioorganic & Medical Chemistry Letters, 24:4053-4057
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信