淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1307200923301300
中文論文名稱 PDMS應用至圓盤式直接甲醇燃料電池組件之設計與製作
英文論文名稱 PDMS Applied on the Design and Fabrication of the Disc Type DMFC Component
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 林祐瑋
研究生英文姓名 Yu-Wei Lin
學號 696430056
學位類別 碩士
語文別 中文
口試日期 2009-06-12
論文頁數 100頁
口試委員 指導教授-李世鳴
委員-管衍德
委員-陳增源
中文關鍵字 直接甲醇燃料電池  圓盤式  堆疊  二甲基矽氧烷 
英文關鍵字 DMFC  Disc Type  stack  PDMS 
學科別分類 學科別應用科學航空太空
中文摘要 本論文主要探討聚二甲基矽氧烷(PDMS)應用於圓盤式直接甲醇燃料電池(DMFC),論文分為兩部份;第一部份為利用PDMS取代原有的材質,並製成防水墊片及流道版,比較以PDMS為材質製成的DMFC,與以鐵氟龍防水墊片及壓克力流道板所製成的DMFC的效能,並探討表面處理對陽極及陰極流道板的影響。
本論文的第二部份為將PDMS應用於圓盤式DMFC的設計與製作,在組裝DMFC之前,先將集電片與圓型PDMS薄膜鍵合,接著將陽極與陰極流道板與具集電片之PDMS薄膜組合,完成一包含三個MEA之單層圓盤式DMFC的設計與製作。量測個別電池與整體DMFC模組的效能,並探討鎖合力的影響。接著完成雙層圓盤式DMFC的設計與製作,其每層包含了三個MEA,並量測個別電池與DMFC模組的效能。在論文的最後,開發出以雙層DMFC,結合液體馬達,空氣馬達及直流對直流變壓器所完成的小型攜帶式充電器。
英文摘要 The main objective of this paper is to apply the polydimethylsiloxane(PDMS) on a disc type direct methanol fuel cell(DMFC).There are two parts of this paper, the first part is to adopt the PDMS on a substitute material of the gasket and flow board. The performance of the DMFC with PDMS materials are compared with the DMFC which contains Teflon(PTFE) gaskets and acrylic flow boards. The effect of the surface treatment on the anode and cathode flow boards is also studied.
The second part of this paper is to apply the PDMS materials on the design and fabrication of the disc type DMFC .The current collectors are bounded with a circular PDMS thin film before the DMFC assembly. Then the anode and cathode flow boards and the PDMS thin film with current collectors are assembled together. A single layer disc type DMFC with 3 MEAs is designed and fabricated first. The performances of the individual cell and overall DMFC module are measured. The effect of the screw torque is also discussed. Furthermore, a double-layer disc type DMFC with 3 MEAs at each layer is designed and fabricated. The performances of individual cell as well as overall DMFC module are also measured. At the end of this thesis, the developed double–layers DMFC is combined with one liquid pump, one air pump, and a DC-DC converter to accomplish as a small portable charger.
論文目次 摘要
誌謝
目錄.....................................................I

表目錄...................................................IV
圖目錄...................................................V
符號索引.................................................IX
第一章 緒論
1.1 前言.................................................1
1.2 問題討論.............................................2
1.3 研究目的與方法.......................................3
第二章 背景與文獻回顧
2.1 燃料電池發展與介紹.......................................................6
2.2 直接甲醇燃料電池運作原理.............................11
2.3 電池性能特性曲線分析.................................12
2.4 微機電系統介紹.......................................16
2.5 PDMS特性與應.........................................18
第三章 實驗設備與與製程
3.1 PDMS製程............................................20
3.1.1 PDMS之翻模實驗.....................................20
3.2 CNC模具加工..........................................22
3.2.1 製作基底模具程序...................................22
3.3實驗量測方法..........................................24
3.4實驗測試平台設備介紹..................................27
第四章PDMS防水墊片與流道板性能測試
4.1 設計與製作過程.......................................30
4.2 實驗規劃與量測方法...................................39
4.3實驗結果討論..........................................41
第五章 PDMS疏水性與親水性流道板探討
5.1 設計與製作過程.......................................48
5.2 實驗規劃與量測方法...................................51
5.3實驗結果討論..........................................53
第六章 PDMS應用於圓盤燃料電池開發與應用
6.1 圓盤DMFC的設計.......................................57
6.2集電片模組製作........................................62
6.3圓盤式燃料電池組裝與測試方法…........................65
6.4升壓電路介紹..........................................72
6.5 結果與討論...........................................75
第七章 結果與討論
7.1 結論.................................................82
參考文獻.................................................85
附件

附件一PDMS取代傳統PTFE防水墊片與傳統流道板開發與性能分析.89
附件二直接甲醇燃料電池之混合槽設計與分析.................95

表目錄
表2.1 燃料電池基本特性比較表.................................................. 10
表4.1 實驗所使用之防水墊片厚度表........................................... 31
表4.2 PDMS薄膜厚度參數表...................................................... 35
表4.3 操作電位在0.2V時電池功率輸出表................................... 44
表4.4 操作電位在0.3V 時電池功率輸出表.................................. 44
表6.1 MAX1896 參數說明........................................................... 72
表6.2 LM2621E參數說明............................................................ 74
表6.3 圓盤式直接甲醇燃料電池透過5V 微型變壓器輸出效能. 77
表6.4 圓盤式直接甲醇燃料電池透過3V 微型變壓器輸出效能. 77

圖目錄
圖1.1 研究流程圖.......................................................................... 5
圖2.1 直接甲醇燃料電池之反應機制.......................................... 11
圖2.2 燃料電池性能曲線圖.......................................................... 15
圖2.3 功率密度隨電流密度之變化曲線...................................... 15
圖3.1 PDMS 實驗平台................................................................... 26
圖3.2 直流負載機........................................................................... 27
圖3.3 恆溫水槽.............................................................................. 28
圖3.4 蠕動式幫泵......................................................................... 28
圖3.5 微歐姆計............................................................................... 29
圖4.1 防水墊片壓克力治具.......................................................... 31
圖4.2 防水墊片設計圖.................................................................. 32
圖4.3 旋轉塗佈機.......................................................................... 33
圖4.4 真空烘箱............................................................................... 34
圖4.5 陰陽極蛇形流道模具.......................................................... 36
圖4.6 陰陽極蛇形流道設計圖..................................................... 36
圖4.7 旋轉塗佈機........................................................................... 37
圖4.8 真空烘箱............................................................................... 38
圖4.9 實驗架構圖.......................................................................... 40
圖4.10 具PDMS 流道之DMFC 測試治具.................................... 44
圖4.11 測試治具............................................................................. 45
圖4.12 PDMS 流道之DMFC組裝示意圖...................................... 45
圖4.13 單電池量測實驗結果.......................................................... 46
圖4.14 電池裝至PDMS 流道的實驗結果................................... 46
圖4.15 電池組裝至不同設計之PDMS防水墊片......................... 47
圖5.1 壓克力蛇行流道.................................................................... 48
圖5.2 旋轉塗佈機............................................................................ 49
圖5.3 不同材質蛇形流道................................................................ 50
圖5.4 實驗流程圖............................................................................ 52
圖5.5 甲醇流量15 ㏄ min-1不同材質電池性能曲線圖............... 55
圖5.6 甲醇流量15 ㏄ min-1改變陽極電池性能曲線圖............... 55
圖5.7 甲醇流量15 ㏄ min-1改變陰極電池性能曲線圖............... 56
圖6.1 (a)圓盤燃料電池使用的陽極流道板實體照片................... 59
圖6.2 (b)圓盤DMFC 陽極流道板之幾何與尺寸圖..................... 59
圖6.3(a)圓盤燃料電池使用的陰極實體照片流道板流道板........ 60
圖6.4 (b)圓盤DMFC 陰極流道板加工之幾何與尺寸圖............. 60
圖6.5 CNC 雕刻機刻製流道........................................................... 61
圖6.6 集電片鍵合與立體式流道模具示意圖.............................. 63
圖6.7 集電片鍵合與立體式流道壓克力模組.............................. 63
圖6.8 電模組鍵合流程.................................................................. 64
圖6.9 燃料電池甲醇與立體流道板鍵合流程.............................. 64
圖6.10 圓盤式直接甲醇燃料電池疊層設計示意圖.................... 66
圖6.11 圓盤PDMS 流道之DMFC 組裝示意圖............................ 66
圖6.12 圓盤PDMS 流道之DMFC 組裝立體圖............................ 67
圖6.13 堆疊式圓盤直接甲醇燃料電池.......................................... 67
圖6.14 PDMS 陰極甲醇流道模組.................................................. 68
圖6.15 陰極端壓克力空氣導流板................................................ 68
圖6.16 PDMS 陰極甲醇流道模組............................................... 69
圖6.17 PDMS 陰極空氣流道模組.................................................. 69
圖6.18 PDMS 陰極空氣流道模組.................................................. 70
圖6.19 陽極甲醇流向示意圖........................................................ 70
圖6.20 陰極空氣流向示意圖........................................................ 71
圖6.21 MAXA1896 電路圖.......................................................... 73
圖6.22 LM2621 電路圖................................................................ 74
圖6.23 壓克力頂Pin 改善壓縮量.................................................. 77
圖6.24 壓克力陰陽極流道搭配壓克力頂Pin 改善壓縮量.......... 78
圖6.25 PDMS 流道於MEA區域突起1.8mm 之效能曲線圖........ 78
圖6.26 堆疊式圓盤式直接甲醇燃料電池效能曲線圖.................. 78
圖6.27 圓盤式燃料電池甲醇流向示意圖.................................... 79
圖6.28 圓盤燃料電池更改管路設計之實體圖............................ 79
圖6.29 圓盤燃料電池個別單電池效能........................................ 80
圖6.30 6 顆電池串聯後效能........................................................... 80
圖6.31 堆疊式圓盤式直接甲醇燃料電池實體組裝圖................ 81
參考文獻 [1] FUEL CELL Handbook, 5th Edition, EG&G Services, Parson Inc., Science Applications International Corporation, 2000.
[2] Xic, C., “Direct Methanol Fuel Cell (DMFC) System for Portable Communication Applications: Prospects and Challenges,” Proceedings of 2003 Taipei Power Forum, Taipei, Taiwan, December1-3, F7-1_7-8, 2003.
[3] Maynard, J.P. et al., “Design Considerations for Miniaturized PEM Fuel Cells,” Journal of Power Sources, Vol.109, pp.79-88, 2002.
[4] Hsieh, S.S. et al., “A Novel Design and Microfabrication for a Micro PEMFC,” Microsystem Technology, Vol.10, pp.121-126, 2004.
[5] Foley, D., “NEC Unveil Notebook PC with Built-in Fuel Cell,” NEC Press Contacts in Japan, 2003.
[6] Narayanan, S.R. et al., “Recent Advances in PEM Liquid-Feed Direct Methanol Fuel Cell,” Battery Conference on Applications and Advances, Eleventh Annual, pp.113-122, 1996.
[7] Cruickshank, J. et al., “The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell,” Journal of Power Sources, Vol.70, pp.40-47, 1998.
[8] Argyroupoulos, P. et al., “One-Dimensional Thermal Model for Direct ethanol Fuel Cell Stack Part.1 Model Development,” Journal Power ources, Vol.79, pp.169-183, 1999.
[9] Arcoc, A.S. et al., “Influence of Flow Field Design on the erformance of a Direct Methanol Fuel Cell,” Journal of Power ources, Vol.91, pp.202-209, 2000.
[10] Ren, S.G., “Electro Osmotic Drag of water in poly Membranes,” Journal of The Electrochemical Society, Vol.148, pp.87-93, 2001.
[11] Robert, C.M. et al., “Use of Stainless Steel for Cost Competitive Bipolar Plates in the SPFC,” Journal of Power Sources, Vol.86, No.1-2, pp.274-282, 2000.
[12] Ganburzev et al., “Recent Progress in Performance Improvement of the Proton Exchange Membrane Fuel Cell (PEMFC),” Journal of Power Sources, Vol.107, pp.5-12, 2002.
[13] Wind, J. et al., “Metallic Bipolar Plates for PEM Fuel Cell,” Journal of Power Sources, Vol.105, No.2, pp.252-260, 2002.
[14] Naymik, D., “Silicon Mosaic for Integrated Devices,” Solid-State Circuits Conference. Digest of Technical Papers. IEEE International, Vol. 7, pp. 52 -53, Feb 1964.
[15] Stockard, R. and Wortman, J., “Silicon Needle Transducer,”Solid-State Circuits Conference. Digest of Technical Papers. IEEE International, Vol. 9, pp. 60 -61, Feb 1966.
[16] Melen, R. and Meindl, J., “A Transparent-Electrode CCD Image Sensor,” Solid-State Circuits Conference. Digest of Technical Papers. IEEE International, Vol. 16, pp. 130 -131, Feb 1973.
[17] Borky, J. and Wise, K., “Integrated Signal Conditioning for Diaphragm Pressure Sensors,” Solid-State Circuits Conference. Digest of Technical Papers. IEEE International, Vol. 22, pp. 196-197, Feb 1979.
[18] G.Q. Lu, C.Y. Wang, T.J. Yen, X. Zhang, “Development and characterization of a silicon-based micro direct methanol fuel cell”, Electrochimica Acta, vol. 49, pp. 821-828, 2004
[19] Y. Zhang, J. Lu, S. Shimano, H. Zhou, R. Maeda, “Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology”, Electrochemistry Communications, vol. 9, pp. 1365-1368, 2007
[20] H.-Y. Cha, H.-G. Choi, J.-D. Nam, Y. Lea, S. M. Cho, E.-S. Lee, J.-K. Lee, C.-H. Chung, “Fabrication of all-polymer micro-DMFCs using UV-sensitive photoresist”, Electrochimica Acta, vol. 50, pp. 795-799, 2004
[21] C.-Y. Lee, R.-D. Huang, C.-W. Chuang, “Novel integration approach for in situ monitoring of temperature in micro-direct methanol fuel cell”, Japanese journal of applied physics, vol. 46, pp. 6911-6914, 2007
[22]. S.W. Park, K.S. Kim, and J.B. Lee, ”Polydimethylsiloxane(PDMS) Elastomer for Polymer and Metallic High Aspect Ratio Microstructures,” University of Taxas, 2001.
[23]. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood and D. J. Beebe,"Three-dimensional micro-channel fabrication in Polydimethylsiloxane (PDMS) elastomer," Journal of Microelectromechanical Systems, Vol. 9, No. 1, pp. 76-81, 2000.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信