§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1307200915025800
DOI 10.6846/TKU.2009.00393
論文名稱(中文) 利用新型吸附劑去除重金屬鎘之研究
論文名稱(英文) Prepareation a new adsorbent for cadmium removal
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 徐規傑
研究生(英文) Gui-Jie Xu
學號 696480960
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-06-11
論文頁數 88頁
口試委員 指導教授 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 陳孝行
委員 - 李柏青
關鍵字(中) 氧化鐵
吸附

HIOPs
氫氧化鐵
關鍵字(英) Iron oxide
Adsorption
Cadmium
HIOPs
Ferric Hydroxide.
第三語言關鍵字
學科別分類
中文摘要
本研究以不同組合之新型吸附劑來去除鎘金屬,分別探討不同控制變因對於去除效率之影響,實驗進行在不同pH值及溫度下,並且模擬等溫、動力吸附模式,最後進行SEM及BET分析來印證新型吸附劑表面孔洞大小及多寡對於鎘去除效率之影響。
其中影響鎘金屬吸附之因素:(1) pH值(2)溫度(3)官能基(4)零電位點等,而實驗結果顯示本研究最佳吸附pH值及溫度分別為7及35℃,吸附最佳之新型吸附劑比例為Fe(OH) 3:PSF:CH2Cl2=1:1.5:18。在相同的含鐵量下,在吸附20 ppm 鎘溶液100 mL 3小時後,其去除率可達100 %。動力吸附模式模擬結果顯示四種新型吸附劑皆以擬二階反應模式最符合,其線性回歸R2值皆大於0.995以上。經由SEM儀器(掃描式電子顯微鏡)分析得知,當增加二氯甲烷比例之新型吸附劑,所照射出了孔洞較深也較大,當增加PSF(聚碸)之新型吸附劑,其孔洞較為淺也較少。使用BET儀器(比表面積分析儀)分析得知,新型吸附劑比例為Fe(OH) 3:PSF:CH2Cl2=1:1.5:18,其BET值為18.1822 m2/g,HIOPs之BET值為3.2 m2/g,兩者相比之下,新型吸附劑之BET值為HIOPs的 6倍。
在本研究中,BET值越高,其去除效率越好。在相同含鐵量下,增加二氯甲烷比例,可以增加新型吸附劑之孔洞多寡,對於去除效率具有正面的影響。
英文摘要
In this study, several new adsorbents prepared with different iron oxides/foaming agent /dichloromethane ratios, iron sources (HIOPs and ferrihydrate), and foaming agents (PS versus PSF) were employed to remove cadmium. Adsorption test were conducted under different pH and temperatures, and sorption results were modeled with various adsorption isotherms and kinetic models. Finally, SEM and BET analysis were used to confirm the size and new adsorbent surface morphology which might affect the removal efficiency of cadmium.
  
The results of this study show that the best pH and temperature for cadmium adsorption were 7 and 35 oC, respectively. The new adsorbent (dosage = 1.5g) prepared with Fe(OH)3: PSF: CH2Cl2 ratio of 1:1.5:18 exhibits the best performance, achieving completely removal of cadmium with initial concentration of 20 ppm at 3 hours of reaction time. Kinetic modeling reveals that adsorption of the four new adsorbents for cadmium follows pseudo- second-order rate model with linear regression R2 values of greater than 0.995. SEM analysis reveals that new adsorbent has bigger and deeper pores with increasing dichloromethane ratio. When the ratio of foaming agent in the new adsorbent is increased, the pore becomes smaller and shallower. The new adsorbent prepared with Fe(OH)3: PSF: CH2Cl2 ratio of 1:1.5:18 has BET surface area of 18.1822 m2/g which is six times high than HIOPs (of 3.2 m2/g). Increasing dichloromethane ratio will increase pore number of the new adsorbent and BET value resulting in better cadmium removal efficiency.
第三語言摘要
論文目次
目錄
目錄	I
表目錄	V
圖目錄	VI
第一章 前言	1
1-1研究緣起	1
1-2研究目的	2
1-3研究內容	3
第二章 文獻回顧	4
2-1氧化鐵之介紹	4
2-2發泡材料之介紹	5
2-3實驗使用之塑膠發泡材料介紹	6
2-4新型吸附劑發泡原理	6
2-5新型吸附劑製作構思	7
2-6鐵氧化物吸附機制	9
2-7吸附理論	10
2-8 影響鎘金屬吸附之因素	12
2-8-1  pH值的影響	13
2-8-2  溫度的影響	14
2-8-3  溶液中錯合反應之影響	14
2-8-4  零電位點(Point of zero charge)之影響	15
2-9吸附動力模式	17
2-9-1  擬一階動力吸附模式(Pseudo first-order model)	17
2-9-2  擬二階動力吸附模式(Pseudo second-order model)	18
2-10等溫吸附模式	19
2 -10-1 Langmuir Equation	19
2 -10-2 Freundlich Equation	20
第三章 方法與材料	22
3-1實驗方法與材料	22
3-1-1 實驗材料	22
3-1-1 -1 鐵污泥粉末	22
3-1-1 -2 實驗藥劑	23
3-1-1 -3 重金屬廢水	25
3-1-2 實驗設備	25
3-1-2 -1 新型吸附劑製造模組	25
3-1-2 -2 實驗反應槽	26
3-1-2 -3 其他實驗設備與材料	27
3-2實驗步驟	29
3-2-1 新型吸附劑之製造	29
3-2-1-1製作發泡材料	29
3-2-1-2測試不同溶劑(Solvent)與發泡材料之可溶性	29
3-2-1-3測試溶解發泡材料	29
3-2-1-4新型吸附劑原料製造	30
3-2-1-5新型吸附劑製造	31
3-2-1-6製作新型吸附劑之溫度測試	32
3-2-2吸附鎘金屬	32
3-2-2-1稀釋鎘溶液之步驟	32
3-2-2-2吸附測試	33
3-2-2-3  HIOPs及Fe(OH)3之含鐵量	33
3-2-2-4  pH值	34
3-2-2-5 溫度	34
3-2-2-6 不同比例之新型吸附劑	34
3-2-2-7 動力吸附實驗	35
3-2-2-8 等溫吸附實驗	35
3-3實驗分析方法	35
3-3-1重金屬分析---鎘	35
3-3-2掃描式電子顯微鏡 (SEM)分析	36
3-3-3比表面積(BET)分析	36
第四章 結果與討論	37
4-1 PS及PSF新型吸附劑	37
4 -1 -1 新型吸附劑包覆HIOPs及Fe (OH)3之探討	37
4-1 -1-1改變溶劑(Solvent)比例	37
4-1 -1-2改變塑膠發泡材料((Foamed plastics))比例	39
4 -1 -2 流速與新型吸附劑粒徑之數據分析	42
4 -1 -3 溫度與管內流速對於新型吸附劑成形之影響	43
4 -1 -4  PS及PSF新型吸附劑密度之探討	47
4-2吸附鎘金屬之影響	48
4-2-1不同PS比例對於HIOPs新型吸附劑吸附重金屬鎘之影響	48
4-2-2  HIOPs、Fe(OH)3含鐵量	50
4-2-3吸附反應時間	52
4-2-4不同粒徑對於FH新型吸附劑吸附重金屬鎘之影響	53
4-2-5  pH值對於吸附鎘金屬之影響	55
4-2-6不同內容物(HIOPs及Fe(OH)3)對於吸附鎘金屬之影響	57
4-2-7溫度對於吸附鎘金屬之影響	59
4-2-8不同包覆物(PS 及PSF)對於吸附鎘金屬之影響	62
4-2-9不同比例之新型吸附劑原料對於吸附鎘實驗之影響探討	63
4-2-10動力吸附模式	65
4-3  等溫吸附模式	72
4-4  SEM(掃描式電子顯微鏡)分析	74
4-5  BET(比表面積)分析	80
第五章 結論與建議	84
5-1結論	84
5-2建議	85
參考文獻	86

表目錄
Table 1. Each type of iron oxides.	4
Table 2. Table of physical adsorption and chemical adsorption.	12
Table 3. PZC of iron oxides.	17
Table 4. Reagents used in this study.	24
Table 5. Dissolution of foamed plastics under various solvents .Reaction time = 15 min.	30
Table 6. Temperature test of new adsorbent makes.	46
Table 7. Temperature test for different ratio of new adsorbent makes.	47
Table 8. Density test for different ratio of new adsorbent makes.	48
Table 9. Iron % by new adsorbent and iron oxides.	52
Table 10. Pseudo-second order parameter.	70
Table 11. Langmuir and Freundlich isotherms parameter.	74
Table 12. BET data of each ratio new adsorbent.	83
















圖目錄
Figure 1. Ion exchange of iron oxides.	9
Figure 2. Speciation diagram of cadmium, TOTCd =10-4 M.	13
Figure 3. Schematic of new adsorbent maker.	26
Figure 4. Schematic of adsorption experiment model.	27
Figure 5. PSFFH new adsorbent.	32
Figure 6. Cd(II) removal efficiency as a function of reaction time at pH 7.0 for PSFFH adsorbents under various pH conditions . Initial Cd(II) concentration = 20 mg/L with 100 mL. PSFFH adsorbent dosage = 20 g/L and PSFFH adsorbent ( Fe (OH)3:PSF:CH2Cl2 = (1) 1:1.5:10  (2) 1:1.5:15  (3) 1:1.5:18) 15g/L. Error bars are one standard deviation from the mean for triplicate experiments.	39
Figure 7. Cd(II) removal efficiency as a function of reaction time at pH 7.0 for PSFFH adsorbents . Initial Cd(II) concentration = 20 mg/L with 100 mL. PSFFH adsorbent dosage = 20 g/L and PSFFH adsorbent ( Fe (OH)3:PS:CH2Cl2 = (1) 1:1.5:10  (2) 1:2:10  (3) 1:2.5:10) 15g / L. Error bars are one standard deviation from the mean for triplicate experiments.	41
Figure 8. PS:HIOPs:CH2Cl2 = 1:1.5:10. Experimental condition:(A)Temperature = 43℃, Velocity of flow = 450 mL /min, particle size about 600μm.(B)Temperature = 43℃, Velocity of flow = 600 mL /min, particle size about 300μm~500μm.(C) Temperature = 43℃, Velocity of flow = 1000 mL /min, particle size about 50μm~150μm.	43
Figure 9. Photo of system with adsorbent failed to form.	47
Figure 10. Photo of system with adsorbent formed successfully.	47
Figure 11. Cd(II) removal efficiency as a function of reaction time for different PS ratio with PS-HIOPs adsorbent. PS-HIOPs adsorbent = 15 g/L. PS-FH adsorbent = 15 g/L. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH = 7.0.	50
Figure 12. Cd(II) removal efficiency as a function of reaction time for Fe(OH)3 and PS-FH new adsorbent. Fe(OH)3 = 15 g/L,PS-FH new adsorbent= 15 g/L. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH = 7.0.	53
Figure 13. Cd(II) removal efficiency as a function of reaction time for Fe(OH)3 and PS-FH adsorbent. Fe(OH)3 = 6 g/L, PS-FH adsorbent=15 g/L with different particle size = (1) About 50μm~150μm (2) About 600μm (3) About 300μm~500μm. Velocity of flow (1)1000 mL/min(2) 600 mL/min (3) 450 mL/min. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH = 7.0.	55
Figure 14. Cd(II) removal efficiency as a function of reaction time at pH 7.0 for PSFH adsorbents under various pH conditions . Initial Cd(II) concentration = 20 mg/L with 100 mL. PSFH adsorbent dosage = 15 g/L、Fe(OH)3 = 15 g/L. and PSFH adsorbent (Fe(OH) 3:PS:CH2Cl2=1:1.5:10).	57
Figure 15. Cd(II) removal efficiency as a function of reaction time at pH 7.0 for PS-HIOPs and PS-FH adsorbents .Initial Cd(II) concentration = 20 mg/L with 100 mL. PS-HIOPs adsorbent dosage = 13.7 g/L、PS-FH adsorbent dosage = 15 g/L、HIOPs= 5.49 g /L、Fe(OH)3 = 6 g/L and PS-HIOPs adsorbent (Fe(OH)3:PS =1:1.5)、PS-FH adsorbent (Fe(OH)3:PS =1:1.5).	59
Figure 16. Cd(II) removal efficiency as a function of reaction time at 35℃and 20℃for PS-HIOPs adsorbents fixed at different pH.	60
Figure 17. Cd(II) removal efficiency as a function of reaction time at pH 7.0 for Fe(OH)3 and PSF-FH adsorbents fixed at different temperature.	61
Figure 18. Cd(II) removal efficiency as a function of reaction time at pH 7.0 for PSFH and PSFFH adsorbents. Initial Cd(II) concentration = 20 mg/L with 100 mL. PS-FH adsorbent dosage = 15g/L、Fe(OH)3 = 15 g/L. and PSFH adsorbent (PS:Fe(OH)3=1.5:1).	63
Figure 19. Cd(II) removal efficiency as a function of reaction time at pH 7.0 for PSFFH adsorbents . Initial Cd(II) concentration = 20 mg/L with 100 mL. PSFFH adsorbent ratio = Fe (OH)3:PS:CH2Cl2 = (1) 1:1.5:18 (2) 1:1.5:15 (3) 1:1.5:10(4) 1:2:10 (5) 1:2.5:10. PSFFH adsorbent dosage = (1)15 g/L (2)15 g/L (3)15 g/L (4)18 g/L (5)21 g/L.	65
Figure 20. Plot of adsorbed amount versus time for different new adsorbent.	66
Figure 21. Pseudo-first order kinetics for Cd onto PSF-FH and PSF-HIOPs. PSF-FH  = 15 g/L and PSF-HIOPs = 13.7 g/L. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH at 7.0.and 35℃.	67
Figure 22. Pseudo-second order kinetics for Cd onto PSF-FH and PSF-HIOPs. PSF-FH = 15 g/L and PS-HIOPs = 13.7 g/L. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH at 7.0.and 35℃.	68
Figure 23. Pseudo-first order kinetics for Cd onto PS-FH and PS-HIOPs. PS-FH = 15 g/L and PS-HIOPs = 13.7 g/L. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH at 7.0.and 35℃.	69
Figure 24. Pseudo-second order kinetics for Cd onto PS-FH and PSF-HIOPs. PS-FH  = 15 g/L and PS-HIOPs = 13.7 g/L. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH at 7.0.and 35℃.	70
Figure 25. Polt of qt versus t1/2 for adsorption of Cd on the PSFFH at different ratio. PSFFH = 15 g/L. Initial Cd(II) concentration = 20 mg/L with 100 mL. Fixed pH at 7.0.	72
Figure 26. Adsorption isotherm for PSF-FH new adsorbent. PSF-FH = 15 g/L. Fixed pH = 7.0. Reaction time = 12 hrs.	73
Figure 27. SEM image of different ratio. SEM Mag = 5Kx。Adsorbent ratio = Fe(OH)3:PSF:CH2Cl2 = (A1)1:1.5:10 (A2) 1:1.5:15(A3) 1:1.5:18 (A4) 1:2:10 (A5) 1:2.5:10.	77
Figure 28. SEM image of different ratio. SEM Mag = 10Kx。Adsorbent ratio = Fe(OH)3:PSF:CH2Cl2 = (B1)1:1.5:10 (B2) 1:1.5:15(B3) 1:1.5:18 (B4) 1:2:10 (B5) 1:2.5:10.	78
Figure 29. SEM image of different ratio. SEM Mag = 10Kx。Adsorbent ratio = Fe(OH)3: PSF:CH2Cl2 = (C1)1:1.5:10 (C2) 1:1.5:18(C3) 1:2.5:10.	79
Figure 30. SEM image of different ratio. SEM Mag = 500 Kx and 50 Kx。Adsorbent ratio =HIOPs:PS:CH2Cl2 = (D1)1:3:15 (D2) 1:2:10.	80
參考文獻
參考文獻
1.	Hansen, B.; Kwan, P.; Benjamin, M. M.; Li, C. W.; Korshin, G. V., Use of iron oxide-coated sand to remove strontium from simulated Hanford tank wastes. Environmental Science and Technology 2001, 35, (24), 4905-4909.
2.	Vagliasindi, F. G. A.; Benjamin, M. M., Redox reactions of arsenic in As-spiked lake water and their effects on As adsorption. Journal of Water Supply: Research and Technology - AQUA 2001, 50, (4), 173-186.
3.	Yuan, T.; Luo, Q., Removal of arsenic from dispersed drinking water by iron oxide-coated sand. Huanjing Kexue/Environmental Science 2001, 22, (3), 25-29.
4.	Bose, P.; Aparna Bose, M.; Kumar, S., Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Advances in Environmental Research 2002, 7, (1), 179-195.
5.	Yuan, T.; Hu, J. Y.; Ong, S. L.; Luo, Q. F.; Ng, W. J., Arsenic removal from household drinking water by adsorption. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 2002, 37, (9), 1721-1736.
6.	Liu, D.; Sansalone, J. J.; Cartledge, F. K., Comparison of sorptive filter media for treatment of metals in runoff. Journal of Environmental Engineering 2005, 131, (8), 1178-1186.
7.	Geng-Fuhrman, H.; Mikkelsen, P. S.; Ledin, A., Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Research 2007, 41, (3), 591-602.
8.	Buamah, R.; Petrusevski, B.; Schippers, J. C., Adsorptive removal of manganese(II) from the aqueous phase using iron oxide coated sand. Journal of Water Supply: Research and Technology - AQUA 2008, 57, (1), 1-11.
9.	Hsu, J. C.; Lin, C. J.; Liao, C. H.; Chen, S. T., Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. Journal of Hazardous Materials 2008, 153, (1-2), 817-826.
10.	Chang, Y. J.; Choo, K. H.; Benjamin, M. M.; Reiber, S., Combined adsorption-UF process increases TOC removal. Journal / American Water Works Association 1998, 90, (5), 90-102.
11.	Zhang, M.; Li, C.; Benjamin, M. M.; Chang, Y., Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment. Environmental Science and Technology 2003, 37, (8), 1663-1669.
12.	Kim, J.; Cai, Z.; Benjamin, M. M., Effects of adsorbents on membrane fouling by natural organic matter. Journal of Membrane Science 2008, 310, (1-2), 356-364.
13.	Gu, Z.; Fang, J.; Deng, B., Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental Science and Technology 2005, 39, (10), 3833-3843.
14.	Zhang, Q. L.; Lin, Y. C.; Chen, X.; Gao, N. Y., A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials 2007, 148, (3), 671-678.
15.	Li, C. W.; Benjamin, M. M.; Korshin, G. V., Characterization of NOM and its adsorption by iron oxide coated sand (IOCS) using UV and fluorescence spectroscopy. Journal of Environmental Engineering and Science 2006, 5, (6), 467-472.
16.	Huang, C. P.; Vane, L. M., Enhancing As5+ removal by a Fe2+-treated activated carbon. Research Journal of the Water Pollution Control Federation 1989, 61, (9-10), 1596-1603.
17.	Fettig, J., Removal of humic substances by adsorption/ion exchange. In Water Science and Technology, 1999; Vol. 40, pp 173-182.
18.	賴進興, 氧化鐵覆膜濾砂吸附過濾水中銅離子之研究. 國立台灣大學環境工程學研究所博士論文 1995.
19.	Schwertman, U. T. R. M., Iron Oxides,” In:Minerals in Soil Environments, Dixon, J. B., Weed S. B., (ed.),2nd ed., Soil Sci. Soc.Am. J., Medison, Wisconsin, USA, pp.379-428. 1989.
20.	Gupta, V. K.; Saini, V. K.; Jain, N., Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. Journal of Colloid and Interface Science 2005, 288, (1), 55-60.
21.	柯清水, 新世紀化工化學大辭典. 正文書局: 2000.
22.	吳舜英, 塑膠發泡成型技術. 復文書局: 1997.
23.	中華民國行政院環保署, 放流水標準. In 2008.
24.	中華民國行政院環境保護署, 飲用水標準. In 2009.
25.	Yang, W. W.; Luo, G. S.; Wu, F. Y.; Chen, F.; Gong, X. C., Di-2-ethylhexyl phosphoric acid immobilization with polysulfone microcapsules. Reactive and Functional Polymers 2004, 61, (1), 91-99.
26.	Gong, X. C.; Luo, G. S.; Yang, W. W.; Wu, F. Y., Separation of organic acids by newly developed polysulfone microcapsules containing triotylamine. Separation and Purification Technology 2006, 48, (3), 235-243.
27.	Benjamin, M. M., WATER CHEMISTRY. 2002.
28.	孫嘉福,駱尚廉, 氧化鐵之特性與應用,自來水會刊雜誌,第49 期,pp. 47-56. 1994.
29.	趙承琛, 界面科學基礎. 復文書局: 1990.
30.	鄧禮堂, 化學反應工程. 高立圖書: 1989.
31.	陳寶祺、林振隆, 物理化學. 學富文化: 2000.
32.	Lai, C. H.; Chen, C. Y.; Wei, B. L.; Yeh, S. H., Cadmium adsorption on goethite-coated sand in the presence of humic acid. Water Research 2002, 36, (20), 4943-4950.
33.	Osipow, L. I., Surface Chemistry. 1972.
34.	Pivovarov, S., Adsorption of cadmium onto hematite: Temperature dependence. Journal of Colloid and Interface Science 2001, 234, (1), 1-8.
35.	Stumm, W., Chemistry of the Solid-Water interface. Wiley: 1992.
36.	Ho, Y. S.; McKay, G., The sorption of lead(II) ions on peat. Water Research 1999, 33, (2), 578.
37.	Kula, I.; Ugurlu, M.; Karaoglu, H.; Celik, A., Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresource Technology 2008, 99, (3), 492.
38.	Ho, Y. S.; McKay, G., Sorption of dyes and copper ions onto biosorbents. Process Biochemistry 2003, 38, (7), 1047.
39.	Ho, Y. S.; McKay, G., Batch Lead(II) Removal From Aqueous Solution by Peat: Equilibrium and Kinetics. Process Safety and Environmental Protection 1999, 77, (3), 165.
40.	Vadivelan, V.; Kumar, K. V., Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science 2005, 286, (1), 90.
41.	Ji, B.; Shao, F.; Hu, G.; Zheng, S.; Zhang, Q.; Xu, Z., Adsorption of methyl tert-butyl ether (MTBE) from aqueous solution by porous polymeric adsorbents. Journal of Hazardous Materials 2009, 161, (1), 81-87.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信