§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1307200914214000
DOI 10.6846/TKU.2009.00388
論文名稱(中文) 利用強氧化劑過硫酸鈉配合UV光及加熱系統處理染料廢水
論文名稱(英文) Treating dye wastewater by sodium persulfate with thermal and UV activation
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 黃淑惠
研究生(英文) Shu-Hui Huang
學號 696480226
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-06-11
論文頁數 73頁
口試委員 指導教授 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 陳孝行
委員 - 李柏青
關鍵字(中) 高級氧化
過硫酸鈉
UV

催化
染料
關鍵字(英) Advanced oxidation process (AOPs)
Persulfate
UV
Thermal
Dye
Decolorization
第三語言關鍵字
學科別分類
中文摘要
過去研究針對染整廢水常以AOPs(Advanced Oxidation Processes , AOPs)程序中之Fenton法處理,然而Fenton法卻有污泥之後續處理問題。本研究以強氧化劑過硫酸鈉(Sodium persulfate, Na2S2O8)配合一般染整業排放廢水皆較高溫的特質,並結合UV光照射催化產生硫酸根自由基來降解染整業廢水色度。期待了解過硫酸鈉於不同溫度及配合UV光照射之染料去除效果與其限制,以及染料orange II降解之反應機制,如反應動力常數、半衰期、活化能等。
    實驗設計為過硫酸鈉分別在溫度20、40及60℃熱催化並結合UV光照射降解染料,以及在 NaPS/Dye = 15、7.5及1.5下,探討過硫酸鈉對偶氮染料orange II色度之去除狀況及氧化劑之使用量。
Orange II染料降解在本實驗條件中為擬一階動力反應,Orange II染料僅經由熱能並無法將其降解,當加入熱催化後過硫酸鈉鹽方可對色度行降解。且染料降解效率亦隨溫度上升而增加;此外,氧化劑量的增加(NaPS/Dye莫耳比增加)對染料降解效率亦可提昇,而降解速度也隨溫度提昇及NaPS/Dye莫耳比增加而增加。在60℃及NaPS/Dye =15條件下,有UV活化能為77.38KJ/mole,而無UV光照射下120.84 KJ/mole。
    相較於使用Fenton方法,本實驗方法實可以減少二次汙染問題,而再結合UV光照射輔助降解染料證實UV可以降低活化能而有效增加色度降解。
英文摘要
The past researchers investigating dyeing wastewater focused mainly on Fenton which is one of Advanced Oxidation Processes (AOPs). However, Fenton has the problem of generating large quantity of waste sludge. Taking the advantage of higher temperature in dyeing wastewater, in this study sodium persulfate (Na2S2O8) was thermally activated with or without UV radiation to produce sulfate radical for decolorization of dyeing wastewater. The aim of this work is to investigate the effects of temperature and Na2S2O8 dosges on decolorization of dye by thermally activated Na2S2O8 with or without UV radiation. Reaction kinetic parameters of dye orange II decolorization process such as pseudo-first-order reaction rate constant, half-life and activation energy are calculated.
    The decolorization of orange II azo dye with thermal activation of Na2S2O8with or without UV radiation are investigated at temperature of 20oC, 40oC, and 60oCand NaPS/Dye molar ratio of 15, 7.5, and 1.5. The decolorization of orange II follows the pseudo-first-order reaction rate kinetic. Increased Na2S2O8 dosges and temperature enhance the efficiency of decolorization. Under the condition of NaPS/Dye =15, the activation energy with UV radiation is 77.38KJ/mole; in the meanwhile, the activation energy without UV radiation is 120.84 KJ/mole.
    In contrast to Fenton, thermally activated Na2S2O8 can alleviate the problems of generating secondary waste sludge. Furthermore, the concepts that UV could decrease activation energy and increase the effectiveness of decolorization are supported by experimental results.
第三語言摘要
論文目次
目錄	I
List of Figure	VI
List of Table	X
第一章 前言	1
1.1研究緣起	1
1.2研究目的	3
第二章 文獻回顧	4
2.1染料簡介	4
2.2染料顏色成因	4
2.3偶氮染料	5
2.4染整廢水之處理技術	7
2.4.1物理法	7
2.4.2化學法	7
2.4.3生物處理法	7
2.4.4高級氧化處理法	8
2.5過硫酸鹽介紹	9
2.5.1過硫酸鹽的沿用	9
2.5.2過硫酸鹽的特性	9
2.5.3過硫酸鹽自行分解反應	11
2.6常見氧化劑氧化還原電位比較	11
2.7 過硫酸鹽之催化	12
2.7.1 UV對過硫酸鹽的催化	14
2.7.2金屬對硫酸鹽的催化	14
2.7.3溫度對過硫酸鹽的催化	16
2.8影響過硫酸鹽催化之因素	17
2.8.1氧化劑與有機物間之不同莫耳比的影響	17
2.8.2 pH的影響	19
2.8.3 碳酸根及碳酸氫根的影響	21
第三章 實驗材料設備與方法	23
3.1實驗藥品	23
3.1.1染料廢水製備	23
3.1.2 Sodium Persulfate氧化劑試劑	23
3.1.3 Sodium Persulfate 殘餘分析藥品-硫代硫酸鈉滴定	23
3.2實驗設備	25
3.2.1反應器Photoreactor	25
3.2.2紫外光分光光度計(Ultra-Violet Spectrometer )	27
3.2.3其他實驗設備與材料	27
3.3實驗方法流程	27
3.4分析方法	28
3.4.1染料廢水降解分析	28
3.4.2過硫酸根殘餘量-硫代硫酸鈉滴定	30
第四章 實驗結果與討論	32
4.1溫度對染料及氧化劑自行分解影響	32
4.1.1溫度對orange II 降解	32
4.1.2溫度對過硫酸鈉的分解作用	33
4.2氧化劑/染料莫爾比 (NaPS/Dye) 及溫度控制對染料降解影響	34
4.2.1在20℃於不同NaPS/Dye莫爾比下降解染料影響	34
4.2.2在40℃於不同NaPS/Dye莫爾比下降解染料影響	35
4.2.3在60℃於不同NaPS/Dye莫爾比下降解染料影響	36
4.2.3.1在60℃於不同NaPS/Dye莫爾比下染料降解效率	36
4.2.3.2在60℃於不同NaPS/Dye莫爾比下降解動力常數	37
4.2.4於相同NaPS/Dye莫耳比在不同溫度下對染料降解影響	39
4.2.4.1於相同NaPS/Dye莫耳比在不同溫度下染料降解效率	39
4.2.4.2於相同NaPS/Dye莫爾比在不同溫度下降解動力常數	40
4.2.4.3於相同NaPS/Dye莫爾比在不同溫度下降解活化能	41
4.2.4.4於相同NaPS/Dye莫爾比在不同溫度下過硫酸鈉殘餘量探討	43
4.3溫度配合UV對染料及氧化劑自行分解影響	44
4.3.1溫度配合UV對orange II 降解	44
4.3.2溫度配合UV對過硫酸鈉的分解作用	45
4.4氧化劑/染料莫爾比 (NaPS/Dye) 及溫度控制並配合UV光對染料降解影響	46
4.4.1在20℃於不同NaPS/Dye莫爾比下配合UV光降解染料影響	46
4.4.2在40℃於不同氧NaPS/Dye莫爾比下配合UV光降解染料影響	47
4.4.2.1在40℃於不同氧NaPS/Dye莫爾比下染料降解效率	47
4.4.2.2在40℃於不同NaPS/Dye莫爾比配合UV光下降解動力常數	48
4.4.3在60℃於不同NaPS/Dye莫爾比下配合UV光降解染料影響	49
4.4.3.1在60℃於不同NaPS/Dye莫爾比下配合UV光染料降解效率	49
4.4.3.2在60℃於不同NaPS/Dye莫爾比配合UV光下降解動力常數	50
4.4.4溫度控制60℃於NaPS/Dye = 7.5及15配合UV光下降解階段反應探討	51
4.4.4.1在 60℃於NaPS/Dye = 7.5及15配合UV光下降解第一階反應	52
4.4.4.2在60℃於NaPS/Dye = 7.5及15配合UV光下降解第二階反應	53
4.4.5在60℃於NaPS/Dye =15配合UV光下降解不同濃度染料反應	54
4.4.5.1在60℃於NaPS/Dye =15配合UV光下降解不同濃度染料動力常數	55
4.4.5.2在60℃於NaPS/Dye =15配合UV光下降解不同濃度染料階段反應探討	56
4.4.5.3在60℃於NaPS/Dye =15配合UV光下降解不同濃度染料第一階反應	57
4.4.5.4在60℃於NaPS/Dye =15配合UV光下降解不同濃度染料第二階反應	58
4.4.6於相同氧化劑/染量莫爾濃度在不同溫度下配合UV光降解染料影響	59
4.4.6.1於相同氧化劑/染量莫爾濃度在不同溫度下配合UV光染料降解效率	59
4.4.6.2於相同氧化劑/染量莫爾濃度在不同溫度下配合UV光染料降解動力常數	60
4.4.6.3於相同氧化劑/染量莫爾濃度在不同溫度下配合UV光染料降解活化能	61
4.4.6.4於相同NaPS/Dye莫爾比在不同溫度下配合UV光過硫酸鈉殘餘量探討	62
4.5熱催化及熱配合UV光燈催化過硫酸鈉鹽降解染料探討	63
4.5.1熱催化及熱配合UV光燈催化過硫酸鈉鹽降解染料效率	63
4.5.2熱催化及熱配合UV光燈催化過硫酸鈉鹽降解染料常數	64
4.5.3熱催化及熱配合UV光燈催化過硫酸鈉鹽降解染料活化能探討	65
第五章結論與建議	67
Reference	69

List of Figure
Figure 1. The Chemical Structure of Dye	5
Figure 2. Mechanism of Diazotization	6
Figure 3. The Chemical Structure of Persulfate	10
Figure 4. The Chemical structure of Orange II	23
Figure 5. Schematic of Photoreactor	26
Figure 6. Schematic diagram of OrangeII degradation by NA2S2O8	28
Figure 7. Orange II absorbance vs. Wavelength for different concentrations.	29
Figure 8. Absorbance at 487nm vs. Orange II concentration.	29
Figure 9. Theoritical concentration vs. concentration defermined by Iodimetric titration method.	31
Figure 10. Effect of temperature on oxidation of Orange II without oxidatant at 20、40 and 60℃	33
Figure 11. Effect of temperature on decompostion of Na2S2O8 in DI water at 20、40 and 60℃	34
Figure 12. Comparison of decolorization efficiency in the different molar ratio of Na2S2O8 to OrangeII. [OrangeII] = 0.086mM;Temp = 20℃	35
Figure 13. Comparison of decolorization efficiency in the different molar ratio of Na2S2O8 to OrangeII. [OrangeII] = 0.086mM;Temp = 40℃	36
Figure 14. Comparison of decolorization efficiency in the different molar ratio of Na2S2O8 to OrangeII. [OrangeII] = 0.086mM;Temp = 60℃	37
Figure 15. Pseudo-first-order disappearance of OrangeII in the different molar ratio of Na2S2O8 to OrangeII.[OrangeII] = 0.086mM;Temp = 60℃	38
Figure 16. Comparison of decolorization efficiency at the different temperatures . [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	40
Figure 17. Pseudo-first-order disappearance of Orange II at the different temperatures . [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	41
Figure 18. Arrhenius Plots for Dye degradation. [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	42
Figure 19. Persulfate decomposition in NaPS/Dye = 15 at the different temperatures. [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	44
Figure 20. Effect of temperature combine UV on oxidation of OrangeII without oxidatant at 20℃、40℃ and 60℃	45
Figure 21. Effect of temperature and UV on decompose of Na2S2O8 without contaminant at 20℃、40℃ and 60℃	46
Figure 22. Comparison of decolorization efficiency in the different molar ratio of Na2S2O8 to OrangeII with UV.[OrangeII] = 0.086mM;Temp = 20℃	47
Figure 23. Comparison of decolorization efficiency i in the different molar ratio of Na2S2O8 to OrangeII with UV. [OrangeII] = 0.086mM;Temp = 40℃	48
Figure 24. Pseudo-first-order disappearance of OrangeII in the different molar ratio of Na2S2O8 to OrangeII with UV.[OrangeII] = 0.086mM;Temp = 40℃	49
Figure 25. Comparison of decolorization efficiency in NaPS/Dye molar ratio 15、7.5 and 1.5 at 60℃ with UV.	50
Figure 26. Pseudo-first-order disappearance of OrangeII in the different molar ratio of Na2S2O8 to OrangeII with UV.[OrangeII] = 0.086mM;Temp = 60℃	51
Figure 27. Comparison of pseudo-first-order disappearance of OrangeII in NaPS/Dye molar ratio 15 and 7.5 with UV. [OrangeII] = 0.086mM ;Temp = 60℃	52
Figure 28. Comparison of pseudo-first-order disappearance of OrangeII in NaPS/Dye molar ratio 15 and 7.5 with UV at phase of first. [OrangeII] = 0.086mM ;Temp = 60℃	53
Figure 29. Comparison of pseudo-first-order disappearance of OrangeII in NaPS/Dye molar ratio 15 and 7.5 with UV at phase of second. [OrangeII] = 0.086mM ;Temp = 60℃	54
Figure 30. Comparison of decolorization efficiency in the different dye concentration with UV. [ Na2S2O8] = 1.28 mM ;Temp = 60℃	55
Figure 31. Pseudo-first-order in the different concentratrion of dye with UV.[ NaPS/Dye = 15];Temp = 60℃	56
Figure 32. Comparison of pseudo-first-order in the different concentratrion of dye with UV.[ NaPS/Dye = 15];Temp = 60℃.	57
Figure 33. Comparison of pseudo-first-order in the different concentratrion of Orange II with UV at phase of first. [ NaPS/Dye = 15] ;Temp = 60℃	58
Figure 34. Comparison of pseudo-first-order in the different concentratrion of Orange II with UV at phase of second. [ NaPS/Dye = 15] ;Temp = 60℃	59
Figure 35. Comparison of decolorization efficiency at the different temperatures  with UV . [Orange II] = 0.086mM;[ Na2S2O8] = 1.28 mM	60
Figure 36. Pseudo-first-order disappearance of Orange II at the different temperatures with UV. [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	61
Figure 37. Arrhenius Plots for Dye degradation at the different temperatures with UV. [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	62
Figure 38. Persulfate decomposition in NaPS/Dye = 15 with UV at the different temperatures. [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	63
Figure 39. Comparison of decolorization efficiency with thermal in UV and non-UV system. [OrangeII] = 0.086mM; [ Na2S2O8] = 1.28 mM;Temp = 60℃	64
Figure 40. Pseudo-first-order disappearance of Orange II with thermal in UV and non-UV system. [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM; Temp = 60℃	65
Figure 41. Arrhenius Plots for Dye degradation with thermal in UV and non-UV system. [OrangeII] = 0.086mM;[ Na2S2O8] = 1.28 mM	66


List of Table
Table 1. Chromophore	5
Table 2. Physical and Chemical Properties of Persulfates	11
Table 3. Standard Redox Potential of Selected Oxidants(21, 35)	12
Table 5.Reagen used in this study	25
Table 6. Degradation of Dye at Temperature of 60℃ as a Function of Oxidant/Contaminant Molar Ratio	39
Table 7.Degradation of Dye at an Oxidant/Contaminant Molar Ration of 15/1 as a Funtion of Temperature	43
Table 7. Degradation of Dye at Temperature of 40℃with UV as a Function of Oxidant/Contaminant Molar Ratio	49
Table 8. Degradation of Dye at Temperature of 60℃with UV as a Function of Oxidant/Contaminant Molar Ratio	51
Table 9.Dye Degradation at an Oxidant/Contaminant Molar Reaction 15/1 as a Funtion of Temperature with UV	62
參考文獻
(1)	Cao, J.; Wei, L.; Huang, Q.; Wang, L.; Han, S., Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 1999, 38, 565-571.
(2)	Riegel, E. R., Riegel's handbook of industrial chemistry. New York : Van Nostrand Reinhold: New York, 1983.
(3)	Hsueh, C. L.; Huang, Y. H.; Wang, C. C.; Chen, C. Y., Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 2005, 58, 1409-1414.
(4)	Zollinger, H., Color chemistry : syntheses, properties, and applications of organic dyes and pigments / Zürich : Verlag Helvetica Chimica Acta ; Weinheim : Wiley-VCH, c2003.: New York, 2003.
(5)	Park, H.; Choi, W., Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2. Journal of Photochemistry and Photobiology A: Chemistry 2003, 159, 241-247.
(6)	Nerud, F.; Baldrian, P.; Gabriel, J.; Ogbeifun, D., Decolorization of synthetic dyes by the Fenton reagent and the Cu/pyridine/H2O2 system. Chemosphere 2001, 44, 957-961.
(7)	康世芳, 染整業放流水回收再利用技術推廣計畫. 經濟部水資源局 2000, 7-14.
(8)	中華民國行政院環保署, 放流水標準. 水汙染防治法規 2007, 7-14.
(9)	Chiou, M. S.; Li, H. Y., Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 2003, 50, 1095-1105.
(10)	Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 2001, 77, 247-255.
(11)	Forgacs, E.; Cserháti, T.; Oros, G., Removal of synthetic dyes from wastewaters: a review. Environment International 2004, 30, 953-971.
(12)	Sadik, W. A.-A.; Nashed, A. W., UV-induced decolourization of acid alizarine violet N by homogeneous advanced oxidation processes. Chemical Engineering Journal 2008, 137, 525-528.
(13)	Neppolian, B.; Choi, H. C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V., Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 2002, 46, 1173-1181.
(14)	Sureyya Meric¸ , D. K., and Olcay Tu¨ nay, Removal of Color and COD from a Mixture of Four Reactive Azo Dyes Using Fenton Oxidation Process. Journal of Environmental Science & Health, Part A: Toxic/Hazardous Substances & Environmental Engineering 2003, 38, 2241.
(15)	Bianco Prevot, A.; Baiocchi, C.; Brussino, M. C.; Pramauro, E.; Savarino, P.; Augugliaro, V.; Marci, G.; Palmisano, L., Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2 Suspensions. Environmental Science & Technology 2001, 35, 971-976.
(16)	Villanueva, S. F.; Martínez, S. S., TiO2-assisted degradation of acid orange 7 textile dye under solar light. Solar Energy Materials and Solar Cells 2007, 91, 1492-1495.
(17)	Bauer, C.; Jacques, P.; Kalt, A., Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. Journal of Photochemistry and Photobiology A: Chemistry 2001, 140, 87-92.
(18)	Wu, C.-H., Decolorization of C.I. Reactive Red 2 in O3, Fenton-like and O3/Fenton-like hybrid systems. Dyes and Pigments 2008, 77, 24-30.
(19)	House, D. A., Kinetics and mechanism of oxidatons by peroxydisulfate. CHEMICAL REVIEWS 1962, 62, 19.
(20)	Sadik, W. A.; Nashed, A. W.; El-Demerdash, A.-G. M., Photodecolourization of ponceau 4R by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2007, 189, 135-140.
(21)	Liang, C. J.; Bruell, C. J.; Marley, M. C.; Sperry, K. L., Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1?硲richloroethane (TCA) in Aqueous Systems and Soil Slurries. Soil & Sediment Contamination 2003, 12, 207.
(22)	Anipsitakis, G. P.; Dionysiou, D. D., Transition metal/UV-based advanced oxidation technologies for water decontamination. Applied Catalysis B: Environmental 2004, 54, 155-163.
(23)	Liang, C.; Bruell, C. J.; Marley, M. C.; Sperry, K. L., Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 2004, 55, 1213-1223.
(24)	Wang, S., A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments 2008, 76, 714-720.
(25)	Peralta-Hernández, J. M.; Meas-Vong, Y.; Rodríguez, F. J.; Chapman, T. W.; I.Maldonado, M.; Godínez, L. A., Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: Decolorization and destruction of Orange II azo dye in dilute solution. Dyes and Pigments 2008, 76, 656-662.
(26)	Salari, D.; Niaei, A.; Aber, S.; Rasoulifard, M. H., The photooxidative destruction of C.I. Basic Yellow 2 using UV/S2O82- process in a rectangular continuous photoreactor. Journal of Hazardous Materials 2009, 166, 61-66.
(27)	Swamy, J.; Ramsay, J. A., The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme and Microbial Technology 1999, 24, 130-137.
(28)	J. P. Riggs, F. R., Polymerization of acrylamide initiated by the persulfate-thiosulfate redox couple. Journal of Polymer Science Part A-1: Polymer Chemistry 1967, 5, 3167-3181.
(29)	Apelblat, A.; Korin, E.; Manzurola, E., Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. The Journal of Chemical Thermodynamics 2001, 33, 61-69.
(30)	FMC, Persulfates Technical Information. FMC Corporation 1998.
(31)	Goulden, P. D.; Anthony, D. H. J., Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Anal. Chem. 1978, 50, 953-958.
(32)	Liang, C.; Huang, C. F.; Mohanty, N.; Lu, C. J.; Kurakalva, R. M., Hydroxypropyl-β-Cyclodextrin-Mediated Iron-Activated Persulfate Oxidation of Trichloroethylene and Tetrachloroethylene. Ind. Eng. Chem. Res. 2007, 46, 6466-6479.
(33)	Waldemer, R. H.; Tratnyek, P. G.; Johnson, R. L.; Nurmi, J. T., Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate: Kinetics and Products. Environ. Sci. Technol. 2007, 41, 1010-1015.
(34)	Huang, K.-C.; Zhao, Z.; Hoag, G. E.; Dahmani, A.; Block, P. A., Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 2005, 61, 551-560.
(35)	Latimer, W. M., Oxidation Potentials. Prentice-Hall, Inc.: Englewood Cliffs, NJ., 1952.
(36)	Ball, R. E.; Chako, A.; Edwards, J. O.; Levey, G., Mechanism of oxidation of nitrogen nucleophiles by peroxodisulfate ion: Nitrate ion and ammonia. Inorganica Chimica Acta 1985, 99, 49-58.
(37)	Behrman, E. J.; Dean, D. H., Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications 1999, 723, 325-326.
(38)	Kolthoff, I. M.; Miller, I. K., The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium. J. Am. Chem. Soc. 1951, 73, 3055-3059.
(39)	Huang, K.-C.; Couttenye, R. A.; Hoag, G. E., Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 2002, 49, 413-420.
(40)	Liang, C.; Bruell, C. J.; Marley, M. C.; Sperry, K. L., Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 2004, 55, 1225-1233.
(41)	Hayon, E.; Treinin, A.; Wilf, J., Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2 -, SO3 -, SO4 -, and SO5 - radicals. Journal of the American Chemical Society 1972, 94, 47-57.
(42)	Huang, Y.-F.; Huang, Y.-H., Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process. Journal of Hazardous Materials 2009, 162, 1211-1216.
(43) Liang, C.; Wang, Z.-S.; Mohanty, N., Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 C. Science of The Total Environment 2006, 370, 271-277.
(44) Dogliotti, L.; Hayon, E., Flash Photolysis of Persulfate Ions in Aqueous Solutions. Study of Sulfate and Ozonide Radical Anions. J. Phys. Chem. 1967, 71, 2511-2516.
(45) Sadik, W.; Shama, G., UV-Induced Decolourization of an Azo Dye by Homogeneous Advanced Oxidation Processes. Process Safety and Environmental Protection 2002, 80, 310-314.
(46) Liang, C.; Wang, Z.-S.; Bruell, C. J., Influence of pH on persulfate oxidation of
73
TCE at ambient temperatures. Chemosphere 2007, 66, 106-113.
(47) Erkselius, S.; Karlsson, O. J., Free radical degradation of hydroxyethyl cellulose. Carbohydrate Polymers 2005, 62, 344-356.
(48) Waldemer, R. H.; Tratnyek, P. G.; Johnson, R. L.; Nurmi, J. T., Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate:  Kinetics and Products. Environmental Science & Technology 2007, 41, 1010-1015.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信